MATHEMATICS 300 - FALL 2018 Introduction to Mathematical Reasoning
 H. J. Sussmann

HOMEWORK ASSIGNMENT NO. 6, DUE ON THURSDAY, NOVEMBER 1 (FOR SECTION 5) AND FRIDAY, NOVEMBER 2 (FOR SECTION 3)
 SOLUTIONS

Problem 1. For each of the following sentences in formal language,

1. Translate the sentence into reasonable English. (Please do not write horrors such as "if n an element of the set of natural numbers then n is a mamber of the set of even numbers or n is a member of the set of odd numbers". The way a normal English speaker would say that "a natural number is even or odd".)
2. Indicate whether the sentence is true or false.
3. Give a brief explanation (that is, a brief proof) of why the sentence is true or why it is false. (Please do not write long, incomprehensible horrors such as "the sentence $(\forall n \in \mathbb{N})(\exists m \in \mathbb{N}) m>n$ is true because the set of natural numbers is infinite so that every natural number has other natural numbers that are associated to it where m is greater that $n "$. Write instead: The sentence is true because given any $n \in \mathbb{N}$ we can take $m=n+1$, and then $m>n "$. This is short, precise, clear, and correct.)
4. $(\forall n \in \mathbb{Z})(\exists m \in \mathbb{Z}) m<n$.

Answer: For every integer n there exists an integer m such that $m<$ n. This is true, because given any $n \in \mathbb{Z}$ we can choose m to be $n-1$, and then $m<n$.
2. $(\forall n \in \mathbb{N})(\exists m \in \mathbb{N}) m<n$.

Answer: For every natural number n there exists a natural number m such that $m<n$. This is false, because if $n=1$ then there is no $m \in \mathbb{N}$ such that $m<n$.
3. $(\forall n \in \mathbb{N})(\exists m \in \mathbb{N}) m \leq n$.

Answer: For every natural number n there exists a natural number m such that $m \leq n$. This is true, because given any $n \in \mathbb{N}$ we can choose m to be n, and then $m \leq n$.
4. $(\exists m \in \mathbb{N})(\forall n \in \mathbb{N}) m \geq n$.

Answer: There exists a natural number m such that m is greater than or equal to every natural number n. This is false because, given any $m \in \mathbb{N}, m$ cannot be greater than or equal to every natural number n, since m is not greater than or equal to $m+1$.
5. $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(\forall z \in \mathbb{R})(z<y \Longrightarrow z<x)$.

Answer: For every real number x there exists a real number y such that for every real number z if $z<y$ then $z<x$. This is true, because given any $x \in \mathbb{R}$ we can choose y to be x, and then given any $z \in \mathbb{R}$ the implication " $z<y \Longrightarrow z<x$ " says " $z<x \Longrightarrow z<x$ ", which is obviously true.
6. $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(\forall z \in \mathbb{R})(z<y \Longrightarrow x<z)$.

Answer: For every real number x there exists a real number y such that for every real number z if $z<y$ then $x<z$. This is false. To prove this it suffices to find one value of x for which the sentence

$$
\begin{equation*}
(\exists y \in \mathbb{R})(\forall z \in \mathbb{R})(z<y \Longrightarrow x<z) \tag{0.1}
\end{equation*}
$$

is false. I will actually show much more than this: I will show that the sentence (0.1) is false for every $x \in \mathbb{R}$. Let $x \in \mathbb{R}$ be arbitarry. I will show that (0.1) is false. Suppose it was true. Then we could pick a witness, that is, a real number y for which the sentence

$$
\begin{equation*}
(\forall z \in \mathbb{R})(z<y \Longrightarrow x<z) \tag{0.2}
\end{equation*}
$$

is true. This means that " $z<y \Longrightarrow x<z$ " is true for every $z \in \mathbb{R}$. Let us pick ${ }^{1} z=-|x|-|y|-1$. Then it follows from (0.2) by Rule $\forall_{\text {use }}$ that

$$
\begin{equation*}
z<y \Longrightarrow x<z \tag{0.3}
\end{equation*}
$$

[^0]On the other hand, since $z=-|x|-|y|-1$, it follows that $z<x$ and $z<y$. So " $z<y$ " is true, and " $x<z$ " is false. Hence the implication " $z<y \Longrightarrow x<z$ " is false. Therefore

$$
\begin{equation*}
\sim(z<y \Longrightarrow x<z) \tag{0.4}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
(z<y \Longrightarrow x<z) \wedge(\sim(z<y \Longrightarrow x<z)) \tag{0.5}
\end{equation*}
$$

Clearly, (0.5) is a contradiction. This contradiction arose from assuming that (0.1) was true. Hence (0.1) is false.
7. $(\forall x \in \mathbb{R})(\forall z \in \mathbb{R})(\exists y \in \mathbb{R})(z<y \Longrightarrow x<z)$.

Answer: For every real number x and every real number z there exists a real number y such that if $z<y$ then $x<z$. This is true. Let x, z be arbitrary real numbers. Pick y to be z. Then " $z<y$ " is false, so " $z<y \Longrightarrow x<z$ " is true. So y is a witness for the sentence $"(\exists y \in \mathbb{R})(z<y \Longrightarrow x<z) "$. So " $(\exists y \in \mathbb{R})(z<y \Longrightarrow x<z)$ " is true.
8. $(\forall x \in \mathbb{R})(\forall z \in \mathbb{R})(z<x \Longrightarrow(\exists y \in \mathbb{R})(z<y<x)$.

Answer: For every real number x and every real number z if $z<x$ then there exists a real number y such that $z<y<z$. This is true. Let x, z be arbitrary real numbers. Assume that $z<x$. Pick $y=\frac{1}{2}(x+z)$. Then $z<y<x$. So y is a witness for " $(\exists y \in \mathbb{R})(z<y<x)$ ".
9. $(\forall x \in \mathbb{Z})(\forall z \in \mathbb{Z})(z<x \Longrightarrow(\exists y \in \mathbb{Z})(z<y<x)$.

Answer: For every integer x and every integer z if $z<x$ then there exists an integer y such that $z<y<z$. This is false. To see this, take $x=3, z=2$. Then " $z<x$ " is true. But " $(\exists y \in \mathbb{R})(z<y<x)$ " is false, because there is no integer y such that $2<y<3$.
10. $(\forall x \in \mathbb{Z})\left(x>0 \Longrightarrow(\exists y \in \mathbb{Z})(\forall z \in \mathbb{R})\left(z>y \Longrightarrow \frac{1}{z^{2}}<x\right)\right)$.

Answer: For every integer x, if x is positive then there exists an integer y such that for every real number z if $z>y$ then $\frac{1}{z^{2}}<x$. This is true. To see this, let x be an arbitrary integer. Assume $x>0$. Pick $y=1$. Then if z is an arbitrary integer the implication " $z>y \Longrightarrow \frac{1}{z^{2}}<x$ is true, because if $z>y$ then $z^{2}>y^{2}$, so $\frac{1}{z^{2}}<\frac{1}{y^{2}}=1$, while on the other hand $x \geq 1$, because $x \in \mathbb{Z}$ and $x>0$, so $\frac{1}{z^{2}}<x$. Thus y is a witness for " $(\exists y \in \mathbb{Z})(\forall z \in \mathbb{R})\left(z>y \Longrightarrow \frac{1}{z^{2}}<x\right)$ ".
11. $(\forall X) \emptyset \in X$.

Answer: The empty set belongs to every set. This is false. To see this, take $X=\emptyset$. Then \emptyset does not belong to X, because X is the empty set, so X has no members.
12. $(\forall X) \emptyset \subseteq X$.

Answer: The empty set is a subset of every set. This is true. This was proved in class.
13. $(\exists X)(\forall Y) X \in Y$.

Answer: There exist sets X, Y such that X belongs to Y. This is true. Just take $X=\emptyset, Y=\{\emptyset\}$.
14. $(\exists X)(\forall Y) X \subseteq Y$.

Answer: There exists a set X that is a subset of every set. This is true, because \emptyset is a subset of every set,
15. $(\forall X)(\forall x)(x \in X \Longrightarrow\{x\} \in X)$.

Answer: If X is a set and x is a member of X, then the singleton of x belongs to X. This is false. Take X to be $\{\emptyset\}$ and take $x=\emptyset$. Then x belongs to X, but $\{x\}$ does not belong to X, since the only member of X is \emptyset, and $\{\emptyset\} \neq \emptyset$. (To see that $\{\emptyset\} \neq \emptyset:\{\emptyset\}$ has one member, and \emptyset has no members, so they cannot be the same set.)
16. $(\forall X)(\forall x)(x \in X \Longrightarrow\{x\} \subseteq X)$.

Answer: If X is a set and x is a member of X then the singleton of x is a subset of X. This is true. To see that $\{x\} \subseteq X$ we have to show that every member of $\{x\}$ belongs to X. But the only member of $\{x\}$ is x, and x indeed belongs to X.
17. $(\forall X)(\forall Y)(X \subseteq Y \Longrightarrow\{X\} \in \mathcal{P}(Y))$.

Answer: If X and Y are sets and X is a subset of Y then the singleton of X belongs to the power set of Y. This is false. Take $X=Y=\{\emptyset\}$. Then $X=Y$, so $X \subseteq Y$. But X is not a member of Y. (Reason: since $Y=\{\emptyset\}$, the only member of Y is \emptyset. But X is not \emptyset, because X is a singleton, so X has one member, whereas \emptyset has no members. So X is not a member of Y.) Since $\mathcal{P}(Y)$ is the set of all subsets of $Y,\{X\}$ belongs to $\mathcal{P}(Y)$ if and only if $\{X\}$ is a subset of Y. And $\{X\}$ is a subset of Y if and only if every member of $\{X\}$ belongs to Y. Since X is the unique member of $\{X\}$, we see that $\{X\} \subseteq Y$ if and only if $X \in Y$. So $\{X\} \in \mathcal{P}(Y)$ if and only if $X \in Y$. But we have seen that $X \notin Y$. Hence $\{X\} \notin \mathcal{P}(Y)$.
18. $(\forall X)(\forall Y)(X \subseteq Y \Longrightarrow X \subseteq \mathcal{P}(Y))$.

Answer: If X and Y are sets and X is a subset of Y then X is a subset of the power set of Y. This is false. Take X to be the set $\{\{\emptyset\}\}$, and take $Y=X$. Then X a singleton, so X has only one member. And that unique member of X is $\{\emptyset\}$. But $\{\emptyset\}$ does not belong to $\mathcal{P}(Y)$). (Proof: Assume $\{\emptyset\}$ belongs to $\mathcal{P}(Y)$. Then $\{\emptyset\}$ is a subset of Y, i.e., of X. But this would imply that every member of $\{\emptyset\}$ belongs to X. Since $\{\emptyset\}$ has only one member, and that member is \emptyset, it would follow that \emptyset belongs to X. But X has only one member, and that member is $\{\emptyset\}$. So $\{\emptyset\}=\emptyset$. But this is not possible, since $\{\emptyset\}$ has one member by \emptyset has no members.) Since $\{\emptyset\} \in X$ but $\{\emptyset\} \notin \mathcal{P}(Y)$, it follows that X is not a subset of $\mathcal{P}(Y)$.
19. $(\forall X)(\forall Y)(X \subseteq Y \Longrightarrow \mathcal{P}(X) \subseteq \mathcal{P}(Y))$.

Answer: If X and Y are sets X is a subset of Y then the power set of X is a subset of the power set of Y. This is true. To prove this we have to show that every member of $\mathcal{P}(X)$ belongs to $\mathcal{P}(Y))$. So let Z be an arbitrary member of $\mathcal{P}(X)$. Then $Z \subseteq X$. Since $X \subseteq Y$, it follows that $Z \subseteq Y$, so $Z \in \mathcal{P}(Y)$.

Problem 2.

1. Find at least ten prime numbers p such that $p+4$ is also prime.

Answer: 3, 7, 13, 19, 37, 43, 67, 79, 97, 103.
2. Prove that there exists a unique prime number p such that $p+4$ and $p+8$ are also prime, and find that number.

Answer: Let $p \in \mathbb{Z}$ be such that $p, p+4$ and $p+8$ are prime, Using the division theorem, write $p=3 q+r$, with $q \in \mathbb{Z}, r \in \mathbb{Z}, 0 \leq r<3$. Then $r=0 \vee r-1 \vee r=2$. We now prove that $r \neq 1$ and $r \neq 2$:

- Assume $r=1$. Then $p=3 q+1$, so $p+8=3 q+9$, and then $p+8=3(q+3)$. Hence $3 \mid p+8$. Since $p+8$ is prime, $3=p+8$ or $3=1$. Since $3 \neq 1$, it follows that $3=p+8$, so $p=-5$, contradicting the fact that $p>1$. So $r \neq 1$.
- Next, assume $r=2$. Then $p=3 q+2$, so $p+4=3 q+6$, and then $p+4=3(q+2)$. Hence $3 \mid p+4$. Since $p+4$ is prime, $3=p+4$ or $3=1$. Since $3 \neq 1$, it follows that $3=p+4$, so $p=-1$, contradicting the fact that $p>1$. So $r \neq 2$.

It follows that $r=0$. Then $p=3 q$, and $q \in \mathbb{Z}$. So $3 \mid p$. Since p is prime and $3 \mid p$, either $3=1$ or $3=p$. Since $3 \neq 1$, we find that $p=3$.

So the assumption that $p, p+4$ and $p+8$ are prime implies that $p=3$.

On the other hand, if $p=3$ then $p+4=7$ and $p+8=11$, so p, $p+4$ and $p+8$ are prime. So 3 is the unique p such that $p, p+4$ and $p+8$ are prime.
3. Prove that there does not exist a prime number p such that $p+4$, $p+8$ and $p+12$ are also prime.

Answer: Assume there does exist a prime number p such that $p+4$, $p+8$ and $p+12$ are also prime. Pick one. Since $p, p+4$, and $p+8$ prime, it follows from the previous part of the problem that $p=3$. Since $p+12$ is prime, and $p+12=15$, it follows that 15 is prime. But 15 is not prime, So we have proved a contradiction. Hence an integer p such that $p, p+4, p+8$ and $p+12$ are prime does not exist.

Problem 3. Prove the following statement:
$\left.{ }^{*}\right)$ If n is an integer then $n(n+1)(n+2)(n+3)(n+4)$ is divisible by 120 .

Answer:

Let $n \in \mathbb{Z}$ be arbitrary
Let $m=n(n+1)(n+2)(n+3)(n+4)$.
We are going to prove that

1. $8 \mid m$,
2. $3 \mid m$,
3. $5 \mid m$,
4. $24 \mid m$,
5. $120 \mid m$.

Proof that $8 \mid m$:
Using the division theorem, write $n=4 q+r$, with $q \in \mathbb{Z}, r \in \mathbb{Z}$, $r=0 \vee r=1 \vee r=2 \vee r=3$.

Case 1: $r=0$.
Then $n=4 q$.
So $n+2=4 q+2$.

Hence

$$
\begin{aligned}
m & =n(n+1)(n+2)(n+3)(n+4) \\
& =4 q(n+1)(4 q+2)(n+3)(n+4) \\
& =8 q(n+1)(2 q+12)(n+3)(n+4),
\end{aligned}
$$

so $8 \mid m$.
Case 2: $r=1$.
Then $n=4 q+1$.
So $n+3=4 q+4=4(q+1)$.
And $n+1=4 q+2=2(2 q+1)$.
Hence

$$
\begin{aligned}
m & =n(n+1)(n+2)(n+3)(n+4) \\
& =2(2 q+1)(n+1) 4(q+1)(n+3)(n+4) \\
& =8(2 q+1)(n+1)(q+1)(n+3)(n+4)
\end{aligned}
$$

so $8 \mid m$.
Case 3: $r=2$.
Then $n=4 q+2=2(2 q+1)$.
And $n+4=4 q+4=4(q+1)$.
Hence

$$
\begin{aligned}
m & =n(n+1)(n+2)(n+3)(n+4) \\
& =2(2 q+1)(n+1) 4(q+1)(n+3)(n+4) \\
& =8(2 q+1)(n+1)(q+1)(n+3)(n+4)
\end{aligned}
$$

so $8 \mid m$.
Case 4: $r=3$.
Then $n=4 q+3$.
So $n+1=4 q+4=4(q+1)$.
And $n+3=4 q+6=2(2 q+3)$.

Hence

$$
\begin{aligned}
m & =n(n+1)(n+2)(n+3)(n+4) \\
& =4 n(q+1)(n+2) 2(2 q+3)(n+4) \\
& =8 n(q+1)(n+2)(2 q+3)(n+4)
\end{aligned}
$$

so $8 \mid m$.
We have proved that $8 \mid m$ in all four cases. So $8 \mid m$.
Proof that $3 \mid m$:
Using the division theorem, write $n=3 q+r$, with $q \in \mathbb{Z}, r \in \mathbb{Z}$, $r=0 \vee r=1 \vee r=2$.

Case 1: $r=0$.
Then $n=3 q$.
So

$$
\begin{aligned}
m & =n(n+1)(n+2)(n+3)(n+4) \\
& =3 q(n+1)(n+2)(n+3)(n+4)
\end{aligned}
$$

so $3 \mid m$.
Case 2: $r=1$.
Then $n=3 q+1$.
So $n+2=3 q+3=3(q+1)$.
Hence

$$
\begin{aligned}
m & =n(n+1)(n+2)(n+3)(n+4) \\
& =n(n+1)(3 q+3)(n+3)(n+4) \\
& =3(q+1) n(n+1)(n+3)(n+4)
\end{aligned}
$$

so $3 \mid m$.
Case 3: $r=2$.
Then $n+1=3 q+3$.

So $n+1=3(q+1)$.
Hence

$$
\begin{aligned}
m & =n(n+1)(n+2)(n+3)(n+4) \\
& =3 n(q+1)(n+2)(n+3)(n+4)
\end{aligned}
$$

so $3 \mid m$.
We have proved that $3 \mid m$ in all three cases. So $3 \mid m$.
Proof that 5|m:
Using the division theorem, write $n=5 q+r$, with $q \in \mathbb{Z}, r \in \mathbb{Z}$, $r=0 \vee r=1 \vee r=2 \vee r=3 \vee r=4$.

Case 1: $r=0$.
Then $n=5 q$.
Hence

$$
\begin{aligned}
m & =n(n+1)(n+2)(n+3)(n+4) \\
& =5 q(n+1)(n+2)(n+3)(n+4)
\end{aligned}
$$

so $5 \mid m$.
Case 2: $r=1$.
Then $n+4=5 q+5=5(q+1)$.
Hence

$$
\begin{aligned}
m & =n(n+1)(n+2)(n+3)(n+4) \\
& =5 n(n+1)(n+2)(n+3)(q+1)),
\end{aligned}
$$

so $5 \mid m$.
Case 3: $r=2$.
Then $n+3=5 q+5=5(q+1)$.

Hence

$$
\begin{aligned}
m & =n(n+1)(n+2)(n+3)(n+4) \\
& =5 n(n+1)(n+2)(q+1)(n+4)
\end{aligned}
$$

so $5 \mid m$.
Case 4: $r=3$.
Then $n+2=5 q+5=5(q+1)$.
Hence

$$
\begin{aligned}
m & =n(n+1)(n+2)(n+3)(n+4) \\
& =5 n(n+1)(q+1)(n+3)(n+4)
\end{aligned}
$$

so $5 \mid m$.
Case 5: $r=4$.
Then $n+1=5 q+5=5(q+1)$.
Hence

$$
\begin{aligned}
m & =n(n+1)(n+2)(n+3)(n+4) \\
& =5 n(q+1)(n+2)(n+3)(n+4),
\end{aligned}
$$

so $5 \mid m$.
We have proved that $5 \mid m$ in all five cases. So $6 \mid m$.
So we have proved that $8|m, 3| m$, and $5 \mid m$.
We now prove that $24 \mid m$.
Since $3|m, 8| m$, and $5 \mid m$, we may write

$$
m=3 j, \quad m=8 k, \text { and } m=5 \ell, \text { with } j, k, \ell \in \mathbb{Z}
$$

On the other hand,

$$
1=16-15
$$

Therefore

$$
\begin{aligned}
m & =16 m-15 m \\
& =16 \times 3 j-15 \times 8 k \\
& =(8 \times 3) 2 j-(3 \times 8) \times 5 k \\
& =24(2 j-5 k)
\end{aligned}
$$

So $24 \mid m$.

Finally, we prove that $120 \mid m$.
We have

$$
1=25-24
$$

Therefore

$$
\begin{aligned}
m & =25 m-24 m \\
& =25 \times 24(2 j-5 k)-24 \times 5 \ell \\
& =5 \times 24 \times 5(2 j-5 k)-(24 \times 5) \ell \\
& =120 \times 5(2 j-5 k)-120 \ell \\
& =120((2 j-5 k)-\ell) .
\end{aligned}
$$

So $120 \mid m$.
Q.E.D.

[^0]: ${ }^{1}$ Or we could pick $z=\min (x, y)-1$.

