MATHEMATICS 300 — FALL 2018

Introduction to Mathematical Reasoning

H. J. Sussmann

HOMEWORK ASSIGNMENT NO. 8, DUE ON THURSDAY, NOVEMBER 15 (FOR SECTION 5) AND FRIDAY, NOVEMBER 16 (FOR SECTION 3)

IMPORTANT REMARK. The definition of "inductive set" given in the book is slightly different from the one I gave in class:

• The book's definition says: a subset S of \mathbb{N} is <u>inductive</u> if

$$(\forall n \in \mathbb{N})(n \in S \Longrightarrow n+1 \in S)$$
.

• My definition says: a subset S of \mathbb{N} is inductive if

$$1 \in S \land (\forall n \in \mathbb{N}) (n \in S \Longrightarrow n + 1 \in S)$$
.

In other words: a subset S is inductive in my sense if and only if it is inductive in the book's sense and in addition $1 \in S$.

This homework assignment is about induction. The only way you will learn induction is by doing lots and lots and lots of problems. The book has a lot of problems, but I cannot assign as many problems as I should because when I do that students complain that it is too much work. But you cannot have it both ways: either you do a lot of work or you will not learn much.

I am only assigning a few problems. But I strongly recommend that you practise a lot, by doing **all** the problems in sections 2.4 and 2.5. Several of these problems have answers at the end of the book, so I especially recommend those problems. because you can do them and then compare your answer with the book's anser.

Problem 1. Book, pages 123-124, Problem 4, parts (d), (e), (k), (l).

Problem 2. Book, page 124, Problem 5, parts (d), (h), (j), (n), (q).

Problem 3. Book, page 126, Problem 10. This problem requires some writing. Please write clearly. Explain how you would move the disks in a clear, precise, understandable way. Make sure you explain how you get the number $2^n - 1$.

Problem 4. Book, pages 126-127, Problem 12, Parts (c) and (d).

Problem 5. For each of the following two theorems and alleged proofs:

- 1. *Indicate* whether the proof is correct.
- 2. *Indicate* whether the theorem is true.
- 3. If the theorem is false (in which case the alleged proof \boldsymbol{must} be wrong), then
 - (a) *Find* the mistake or mistakes in the proof. (Do not mention small mistakes such as "the third step is not justified", or "the sixth step is not clear". I amonly interested is serious mistakes, that make the proof invalid.)
 - (b) **Prove** that the theorem is false.
- 4. If the theorem is true but the proof is invalid, then
 - (a) **Explain** what is wrong with the proof.
 - (b) *Give* a correct proof.
- 5. If the theorem and the proof are correct, all you need to do is say so.

Theorem I. If n is a natural number, then $1+2+\cdots+n=\frac{n(n+1)}{2}$.

Proof:

• For
$$n = 1, 1+2+\cdots+n = 1$$
 and $\frac{n(n+1)}{2} = 1$, so $1+2+\cdots+n = \frac{n(n+1)}{2}$.

• For
$$n=2, 1+2+\cdots+n=3$$
 and $\frac{n(n+1)}{2}=3$, so $1+2+\cdots+n=\frac{n(n+1)}{2}$.

• For
$$n = 3$$
, $1 + 2 + \dots + n = 6$ and $\frac{n(n+1)}{2} = 6$, so $1 + 2 + \dots + n = \frac{n(n+1)}{2}$.

• For
$$n = 4$$
, $1+2+\cdots+n = 10$ and $\frac{n(n+1)}{2} = 10$, so $1+2+\cdots+n = \frac{n(n+1)}{2}$.

• For
$$n = 5$$
, $1+2+\cdots+n = 15$ and $\frac{n(n+1)}{2} = 15$, so $1+2+\cdots+n = \frac{n(n+1)}{2}$.

• For
$$n = 6$$
, $1+2+\cdots+n = 21$ and $\frac{n(n+1)}{2} = 21$, so $1+2+\cdots+n = \frac{n(n+1)}{2}$.

• For
$$n = 7$$
, $1+2+\cdots+n = 28$ and $\frac{n(n+1)}{2} = 28$, so $1+2+\cdots+n = \frac{n(n+1)}{2}$.

• For
$$n = 8$$
, $1+2+\cdots+n = 36$ and $\frac{n(n+1)}{2} = 36$, so $1+2+\cdots+n = \frac{n(n+1)}{2}$.

so we see that $1 + 2 \cdots + n = \frac{n(n+1)}{2}$ for every $n \in \mathbb{N}$.

Theorem II. If n is a natural number, then $n^2 + n + 41$ is a prime number. **Proof:**

- For n = 1, $n^2 + n + 41 = 43$, which is prime.
- For n = 2, $n^2 + n + 41 = 47$, which is prime.
- For n = 3, $n^2 + n + 41 = 53$, which is prime.
- For n = 4, $n^2 + n + 41 = 61$, which is prime.
- For n = 5, $n^2 + n + 41 = 71$, which is prime.
- For n = 6, $n^2 + n + 41 = 83$, which is prime.
- For n = 7, $n^2 + n + 41 = 97$, which is prime.
- For n = 8, $n^2 + n + 41 = 97$, which is prime.
- For n = 9, $n^2 + n + 41 = 131$, which is prime.
- For n = 10, $n^2 + n + 41 = 151$, which is prime.
- For n = 11, $n^2 + n + 41 = 173$, which is prime.
- For n = 12, $n^2 + n + 41 = 197$, which is prime.

So we see that $n^2 + n + 41$ is prime for every $n \in \mathbb{N}$.

NOTE: Actually, you can go on with this computation for n = 13, n = 14, n = 15, and so on, all the way until n = 39. And, amazingly, **you always get a prime number!!!** For example, for n = 30, $n^2 + n + 41 = 971$, which is prime.

NOTE: Do not forget the story of the turkey who sees that every day Mr. Bob comes to bring food, so the turkey draws the general conclusion (universal sentence) that

 $(\forall n)$ on Day n Mr. Bob comes to feed me.

Until one day, a few days before Thanksgiving, Mr. Bob comes to visit the turkey, but with a different purpose in mind.