MATHEMATICS 300 — FALL 2019 Introduction to Mathematical Reasoning
 H. J. Sussmann

HOMEWORK ASSIGNMENT NO. 4, DUE ON MONDAY, OCTOBER 7

For each of the following sentences in formal language
i. Translate the sentence into English. Please use a translation that is a reasonable English sentence. For example:

- do not translate " $n \in \mathbb{N}$ " as " n belongs to the set of natural numbers"; write " n is a natural number", because that is a much better translation;
- do not translate " $2 \mid n$ " as " 2 divides n ", or " n is divisible by 2 "; write " n is even", because that is a much better translation;
- do $\boldsymbol{n o t}$ translate " $(\forall n \in \mathbb{N})(2|n \Longrightarrow \sim 2| n+1)$ " as "for all n in the set of natural numbers if n is divisible by 2 then it's not true that $n+1$ is divisible by 2 ; write "if n is an even natural number then $n+1$ is not even".
ii. Indicate which of the variables that occur in the sentence are open (i.e., free) and which ones are closed (i.e., bound, or dummy).
iii. Indicate whether the sentence is a proposition (i.e., has no free variables) or not.
iv. If the sentence is a proposition, indicate whether it is true or false, and prove it, if it is true, or disprove it, if it is false.
v. If the sentence is not a proposition, then
- give examples of values of the free variables for which the sentence is true, and explain why the sentence is true for those values, or prove that no such examples exist,
and
- give examples of values of the free variables for which the sentence is false, and explain why the sentence is true for those values, or prove that no such examples exist.

1. $a x=b x \Longrightarrow a=b$.
(a, x, b real numbers)
2. $(\exists x \in \mathbb{R}) a x=b x \Longrightarrow a=b$.
(a, x, b real numbers)
3. $(\exists x \in \mathbb{R})(a x=b x \Longrightarrow a=b) . \quad(a, x, b$ real numbers $)$
4. $(\forall x \in \mathbb{R}) a x=b x \Longrightarrow a=b . \quad$ (a, x, b real numbers)
5. $(\forall x \in \mathbb{R})(a x=b x \Longrightarrow a=b) . \quad(a, x, b$ real numbers $)$
6. $(\forall n \in \mathbb{N})(\exists M \in \mathbb{N})(\forall m \in \mathbb{N})\left(m>M \Longrightarrow \frac{1}{m}<\frac{1}{3 n}\right)$.
(m, M, n natural numbers)
7. $(\forall x \in \mathbb{R})\left(x>0 \Longrightarrow x^{2}>x\right.$.
(x a real number)
8. $(\forall n \in \mathbb{N})(\exists m \in \mathbb{N}) 2 m<n$.
(m, n natural numbers)
9. $(\forall n \in \mathbb{N})(\exists m \in \mathbb{N}) 2 m>n$.
(m, n natural numbers)
10. $(\exists m \in \mathbb{N})(\forall n \in \mathbb{N}) 2 m>n$.
(m, n natural numbers)
11. $(\exists x \in \mathbb{R})\left(x^{2}-2 x<0 \wedge x^{2}-6 x-8<0\right)$.
(x a real number)
12. $(\forall n \in \mathbb{N})\left((2 \mid n \wedge n>2) \Longrightarrow 2^{n}-1\right.$ is not prime $)$.
(n a natural number)
13. $(\forall n \in \mathbb{Z})((a|n \wedge b| n) \Longrightarrow a b \mid n)$. (n, a, b integers)
14. $(\forall a \in \mathbb{Z})(\forall b \in \mathbb{Z})(\forall n \in \mathbb{Z})((a|n \wedge b| n) \Longrightarrow a b \mid n) . \quad(n, a, b$ integers $)$
