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21 Finite sets

There are two kinds of sets: finite sets and infinite sets.
Finite sets are much easier to think about and study, but infi-

nite sets are much more numerous, and much more interesting,
because they have many strange and surprising properties.

Since finite sets are easier to understand and work with, we
will discuss them first. And then, in the next section, we will
study infinite sets.

21.1 What is a finite set? What is an infinite set?

You probably think you know the answer to these questions. But many
people who think they know the answer will say, when asked, things like

• A finite set is a set that has a finite number of members.

• A finite set is a set that has finitely many members.

• A finite set is a set that has n members, for some natural number n.

• A finite set is a bounded set.

But none of this answers is acceptable.
If you answer that “a finite set is a set that has a finite number of mem-

bers”, or “a finite set is a set that has finitely many members”, then these
answers are either circular, or presuppose that we know what “having a finite
number of members”, or “having finitely many members”, means (as distinct
from “being a finite set”):

• If you think that “having a finite number of members” is just another
way of saying “is finite”, then you are just saying that “a set is finite
if it is a finite set”, which is a circular, totally useless, statement.

• If you think that “having a finite number of members” does not just
mean the same as “is finite”, then you have to tell me what it means.

If you answer that “a finite set is a set that has n members, for some
natural number n”, then you still have to tell me what that means. You
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probably think that the meaning is clear, but if it is so clear then it should
be possible to give a precise definition.

And if you answer that “a finite set is a bounded set”, then I have two
serious problems with that.

1. First of all, sets can be sets of any kinds of objects. For example, we
can have a set of giraffes, or a set of galaxies, or a set of molecules,
or a set of integers, or a set of real numbers, or a set of sets1, or a
set of matrices, or a set of lists, or even a very heterogeneous set that
has members of lots of different kinds: some real numbers, some sets,
some cows, several stars, a number of movies, five books, a chicken,
a guitar, and your house. And I haven’t the faintest idea of what it
might possibly mean for such a set to be “bounded”.

The last time I looked, the definition of “bounded set” says that “if X
is a subset of IR, then X is bounded if (∃C ∈ IR)(∀x ∈ X)|x| ≤ C.”
So, according to this definition, it makes sense for a set of real numbers
to be “bounded”, but it doesn’t make sense for other sets, such as, for
example, a set of giraffes, to be “bounded”.

2. Second, even if we were talking about sets of real numbers, “bounded”
and “finite” are two totally different concepts. For example, the closed
interval [0, 1] is bounded but infinite, as I shall show you in subsection
21.1.5.

21.1.1 Our intuitions about what a finite set is and about the
number of members of a set can be contradictory

We all have an intuition of what a finite set is, and our intuition
tells us all kinds of things. But not all these intuitions are correct. And
many of these intuitions are not precise. And this causes problems, because
when we do not have a precise understanding of what something means, we
cannot prove or disprove statements about this thing, and if our intuition
leads us to contradictory beliefs then we do not know how to decide which
belief is right.

1For some mysterious reason, some students seem to think that “a set cannot be a
member of another set”. Where on Earth did they get that idea? Nobody has ever
said that “a set cannot be a member of another set”. Furthermore, we have discussed the
power set P(A) of a set A. And, you see, P(A) is a set whose members are sets!
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21.1.2 Our intuitions can be contradictory: Hilbert’s hotel and
Galileo’s paradox

Here is an example of two things that our intuitions tell us must be true and
yet, as we will show, they contradict each other:

Intuitive idea No. 1: Suppose that two sets A and B are “perfectly
matched”, or “perfectly paired”, in the sense that

• To each member a of A there corresponds a member m(a) of B, called
“the member of B matched with a”, in such a way that

(i) every member a of A is matched to one and only one member m(a)
of B,

(ii) every member b of B is the member of B matched with one and
only one a of A. (That is, (∀b ∈ B)(∃!a ∈ A)m(a) = b.)

Then A and B have the same number of members.

Example 54. Suppose you see in a theater that there are lots of seats and
lots of people, and (i) every person is seated, (ii) every seat is occupied by
one person. Then you can conclude, without having to count, that the
number of seats is equal to the number of people. You do not need to
count and find out how many people and how many chairs there
are, in order to know that the two numbers are the same. All you
need is to observe that the set of people and the set of seats are perfectly
matched: every person occupies a seat, and every seat is occupied by a
person, �

Example 55. Suppose you see several toys and several boxes, and you ob-
serve that: (i) every box has a toy in it, (ii) no box has two or more toys,
(iii) every toy is in a box.

Then you know, without having to count, that the number of boxes
is the same as the number of toys. �

Intuitive idea No. 2: If we remove one or more members from a set A,
then the resulting set B has fewer members than A, not the same number of
members as A. And if we add one or more members to a set A, then the
resulting set B has more members than A, not the same number of members
as A.
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Example 56. Suppose that last night you bought ten oranges, and after
that you ate one of those oranges. Then you can be sure that you now have
fewer than ten oranges. �

Example 57. If A is the set of all the natural numbers from 1 to 1, 000, 000,
and you remove from A all the prime numbers, thus producing a set B (so
B is the set {n ∈ IN : n ≤ 1, 000, 000 ∧ n is not prime }) then you know for
sure that B has fewer that 1, 000, 000 members, because A has 1, 000, 000
members, and B is obtained from A by removing some members of A. You
do not need to write down the lists of all the members of A and
B and see how many members A and B have in order to arrive
at this conclusion. �

Example 58. Suppose a hotel is full, in the sense that every room is occupied
by at least one guest. Suppose a new person arrives, seeking a room, and this
person is not willing to share a room with another guest. Then there is no
way that this new guest can be accommodated, because, if n is the number
of rooms, in order to accommodate the new guest you would need to have
n+ 1 rooms, and the hotel only has n rooms. �

Yet, it turns out that there are situations where these two “intuitively
obvious” ideas yield contradictory conclusions, so they cannot both be cor-
rect.

Let us take another look at the hotel example.
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Hilbert’s Hotel

Imagine a hotel with infinitely many rooms, labeled by
the natural numbers. That is, there is room 1, room 2,
room 3, and so on, one room for each natural number.
Suppose the hotel is full, in the sense that all the rooms
are occupied.
Now suppose a new guest arrives, and asks for a room.
You would think that it is not possible to accommodate
this guest. But this is not true. It is easy to accom-
modate the new guest! All the hotel has to do is this:
move the guest or guests that were occupying room 1 to
room 2, move the guest or guests that were occupying
room 2 to room 3, move the guest or guests that were
occupying room 3 to room 4, and so on. This frees up
room 1, and the new guest can be given that room.
To put it somewhat differently: leta ℵ0 be the number
of rooms in the hotel. To give a room to a new guest the
hotel needs to have ℵ0 +1 rooms. And the hotel “only”
has ℵ0 rooms. However, the hotel does have enough
rooms to accommodate the new guest, so it appears that
ℵ0 + 1 = ℵ0 .
This clearly contradicts Intuitive idea No. 2: We added
more members to the set of guests, and the new set of
guests still “has the same number of members” as the
old set, not a larger number.

a“ℵ” is the Hebrew letter “aleph”. George Cantor, the founder of set theory,
introduced the notation ℵ0, ℵ1, ℵ2, etc., for infinite cardinals. And this notation
is widely used by mathematicians today.

And here is another example of a similar situation.
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Galileo’s paradox

Suppose A is the set of all natural numbers, that is, A = IN.
Suppose B is the set of all the natural numbers that are
squares, so the members of B are 1, 4, 9, 16, 25, and so on.
(That is: B = {n ∈ IN : (∃m ∈ IN)m2 = n}.)
Then it is clear that B is “much smaller than A”, because B
is the result of removing from A a large number of members
of A. (Actually, to obtain B from A we have to remove
from A all the natural numbers that are not squares, that is,
the numbers 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, . . .. It
is clear that in this process we are removing “most” of the
natural numbers: we are only leaving in the squares, which
are “very few”. For example, out of the first 100 natural
numbers, only 10 are squares, so we are removing 90 numbers
and keeping 10.) So,

according to intuition No. 1, B has fewer

members than A.

And yet, we can construct a “perfect matching” between A

and B by pairing each member n of A with its square n2,
which is a member of B. Under this correspondence, each
member of A is matched to one and only one member of
B, and each member of B is matched to one and only one
member of A. So

according to intuition No. 2, B has the same

number of members as A.

These two conclusions are contradictory. So one of them must
be wrong.
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21.1.3 Review of the definition of “finite set”

We begin by recalling some definitions.
First of all, we recall that “INn” stands for “the set of all natural numbers

k such that k ≤ n”. So, for example,

• IN0 is the empty set;

• IN1 is the set {1},

• IN2 is the set {1, 2},

• IN3 is the set {1, 2, 3},
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• IN15 is the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}.

We now review the definitions of “finite set” and “infinite set”.

Definition 58. If S is a set and a = (aj)
n
j=1 is a finite list, we say that a is

a list of members of S if every entry of a belongs to S.
In formal language, a is a list of members of S if

(∀j ∈ INn)aj ∈ S .

Definition 59. If S is a set and a = (aj)
n
j=1 is a finite list, we say that a

is a list of all the members of S if every entry of a belongs to S and every
member of S is an entry of a. .

In formal language, a is a list of all the members of S if

(∀j ∈ INn)aj ∈ S ∧ (∀x ∈ S)(∃j ∈ INn)x = aj .

Definition 60. If a = (aj)
n
j=1 is a finite list, the set of entries of a is the set

Set(a) given by

Set(a) =
{

x : (∃j ∈ INn)x = aj

}

.

That is, Set(a) is the set whose members are all the entries of a. �

If should be clear from the above definitions that saying that “a is a list
of all the members of S” is exactly equivalent to saying that “S = Set(a)”.
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Definition 61. Let S be a set. We say that S is finite if there exists a finite
list a = (aj)

n
j=1 such that a is a list of all the members of S.

In other words, S is finite if and only if there exists a finite list a = (aj)
n
j=1

such that S = Set(a). �

Definition 62. Let S be a set. We say that S is infinite if S is not finite.�

21.1.4 Examples of finite and infinite sets

Now that we know what a “finite set” is and what an “infinite set” is, we
should give some examples of both kinds of sets.

Example 59.

Proposition 1. If n is a natural number, then the set INn is finite.

Proof. We write a finite list a = (aj)
n
j=1 of all the members of INn. We define

aj, for j ∈ INn, by letting aj = j. Then it is clear that a is a list of all the
members of INn, because

1. a is a list of members of INn, because if j ∈ INn then aj ∈ INn, since
aj = j, so every entry of a is in INn.

2. a is a list of all the members of INn, because if x ∈ INn then we may
pick j = x, and with this choice j ∈ INn and x = aj, so every member
of INn occurs as an entry of a.

It follows from the definition of “finite set” that INn is finite. �

Example 60.

Proposition 2. The set IN of all natural numbers is infinite.

Proof.

Suppose IN was finite.

Then we would be able to pick a finite list a = (aj)
n
j=1 which is a list

of all the members of IN.

Let

m = 1 +
n
∑

j=1

aj . (21.1)
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Then m is not an entry of a. (Reason: if m was an entry of a then we
would be able to pick an index i ∈ INn such that m = ai. But (21.1)
implies that m > ai. So assuming that m is an entry of a leads to a
contradiction.)

Butm is an entry of a, becausem ∈ IN and a is a list of all the members
of IN.

So m is an entry of a and m is not an entry of a, and we have reached
a contradiction.

So IN is infinite. Q.E.D.

Example 61.

Proposition 3. Every subset of a finite set is finite.

Proof. Let A be a finite set and let B be a subset of A. We want to prove
that B is finite.

If B = A then B is finite, because A is.
So let us assume B 6= A.
Let a = (aj)

n
j=1 be a finite list of of all the members of A.

We will construct a new finite list b = (bj)
k
j=1 by removing from a all the

entries that are not in B.
We create the list b in several steps as follows:

Step 1: Removal of one entry. Since we are assuming that B ⊆ A and
B 6= A, we can pick a member x1 of A such that x1 /∈ B.

Since a is a list of all the members of A, there must exist an index i ∈ INn

such that ai = x1.
We then remove the entry ai, taking care of moving ai+1 to the i-th place,

ai+2 to the i+ 1-th place, and so on.

Precisely, we define a new list a(1) = (a
(1)
j )n−1

j=1 by letting

a
(1)
j =

{

aj if j < i
aj+1 if i ≤ j ≤ n− 1

.

(So, for example, if we want to remove the entry a8, we take a
(1)
j = aj for

j = 1, 2, 3, 4, 5, 6, 7, but then we let a
(1)
8 = a9, a

(1)
9 = a10, and so on.)
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The new list a(1) has one fewer entry than a, and has exactly the same
set of entries as a, except possibly2 for x1 (that is, Set(a(1)) = Set(a)), or
Set(a(1)) = Set(a)− {x1}),

So a(1) is a list of all the members of a set A1 which is either A or A−{x1}.
In particular, B ⊆ A1 and A1 ⊆ A.

If A1 = B, then we take b = a(1), and we are done. The list b is a list of
all the members of B, so B is finite.

Removal of all the entries that are not in B. If B 6= A1, then we repeat
the removal process (by picking an x2 such that x2 ∈ A1 but x2 /∈ B and

removing an entry ai2 such that Ai2 = x2), and form a list a(2) = (a
(2)
j )n−2

j=1

which is a list of all the members of a set A2 such that B ⊆ A2 and A2 ⊆ A.
And we continue in this way, removing one entry at a time, until the

process stops,
The process will stop when we get to a list a(r) that is a list of all the

members of a set Ar such that B = Ar. And when we get there we can take
b to be a(r), and then b is a list of all members of B, so B is finite, and we
are done. Q.E.D.

Remark 31. Exactly how do we know that this process will stop?
Intuitively, the process has to stop because at every step the length of the

list goes down by 1. (That is, a(1) has length n−1, a(2) has length n−2, and
so on.) And the lengths cannot keep going down for ever, because if they
did so then at the n+ 1-th step we would have a list with a negative length,
which is impossible.

Another way to see that the removal process of the proof of Proposition
3 has to stop is to use the well-ordering principle as follows . Let S be the
set of all the lengths of all the lists produced by this process. Then S is a
set of nonnegative integers. By the well-ordering principle, S has a smallest
member s. Then s is a nonnegative integer. and the process must stop at
step s. �

Example 62.

Proposition 4. The union of two finite sets is finite.

2We are not assuming that a is a list without repetitions. So x1 could still be an entry
of a(1) even after the entry ai has been removed. This would be so if there was another
index j, different from i, such that aj = ai,
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Proof. Let A, B be finite sets.
Let a = (aj)

n
j=1 be a finite list of of all the members of A, and let b =

(bj)
m
j=1 be a finite list of of all the members of B.
Let c be the concatenation3 of a and b. That is, c = (cj)

m+n
j=1 , where

cj =

{

aj if j ∈ IN, j ≤ m
bj−m if j ∈ IN.m+ 1 ≤ j ≤ m+ n

.

Then c is a finite list of all the members of A∪B. So A∪B is finite.Q.E.D.

Example 63.

Proposition 5. Let N be a natural number, and let

AN = {k ∈ Z : |k| ≤ N} .

Then AN is a finite set.

Proof. Let BN = {k ∈ Z : −k ∈ INN}.
Then BN is a finite set, because we can construct a list b = (bj)

N
j=1 of all

the members of BN by defining bj = −j for j ∈ INN .
Clearly, AN = INN ∪ BN ∪ {0}. So AN is the union of three finite sets,

and Proposition 4 tells us that AN is finite. Q.E.D.

We have already talked about bounded sets before. Let us recall the
definition

Definition 63. A subset A of Z is bounded if there exists a natural number
N such that (∀n ∈ A)|n| ≤ N . �

Example 64.

Proposition 6. A subset A of Z is finite if and only if it is bounded.

Proof. Let A be a subset of Z.
We have to prove two things:

3The concatenation of two finite lists a, b, is the list a#b obtained by writing the list
a and then the list b. For example, if a = (a1, a2, a3, a4, a5) and b = (b1, b2, b3, b4), then
a#b = (a1, a2, a3, a4, a5, b1, b2, b3, b4). So a#b = (cj)

9
j=1, where c1 = a1, c2 = a2, c3 = a3,

c4 = a4, c5 = a5, c6 = b1, c7 = b2, c8 = b3, and c9 = b4.
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(I) If A is bounded then A is finite.

(II) If A is finite then A is bounded.

Proof of (I). Assume A is bounded. Pick a natural number N such that
|n| ≤ N for all n ∈ A.

Then A is a subset of the set AN defined in Example 63. And Proposition
5 tells us that AN is finite. So Proposition 3 implies that A is finite.

Proof of (I). Assume A is finite.
Let a = (aj)

n
j=1 be a finite list of all the members of A.

Let N = 1 +
∑n

j=1 |aj|. Then N is a natural number and |aj| ≤ N for
every j ∈ n.

It follows from this that |k| ≤ N for every k ∈ A . (Reason: if k ∈ A,

then k = aj for some j, because a is a list of all the members of A.)
So A is bounded. Q.E.D.

Example 65.

Proposition 7. The set Z of all integers is infinite.

Proof. We can prove this in lots of different ways. Here are two examples:

• Z is clearly not bounded. So Proposition 6 tells us that Z is infinite.

• IN is a subset of Z. If Z was finite then Proposition 3 would imply that
IN is finite. But we know that IN is infinite. Q.E.D.

21.1.5 “Finite” is not the same as “bounded”

An example of an incorrect idea students often have is that they confuse the
notion of “finite set” with the notion of “bounded set”. And yet “finite
set” is totally different from “bounded set”.

It is true that, for subsets of Z, “bounded” is equivalent to “finite”, as
we proved in Example 64.

But for subsets of IR the two notions are very different.
And for more general sets (e.g., sets of giraffes, or of galax-

ies, or of sets, or of lists, or of functions, or of molecules, or
of abstract ideas), “finite” is a perfectly meaningful notion but
“bounded” is not.



Math. 300, Fall 2017 395

Let us look at sets of real numbers. In this case, the notions of “bounded
set” and “finite set” are both perfectly meaningful, but the definitions of
“bounded set” and “finite set” are completely different. (Just look
at them, and you will see.)

And, in case you are not convinced by that, here is an example of a
bounded set that is infinite.

Example 66. Let S be the closed interval [0, 1], so S is the set of all real
numbers x such that 0 ≤ x ≤ 1. In formal language,

S = {x ∈ IR : 0 ≤ x ≤ 1} .

Then S is a bounded subset of IR. Why? Because the definition of
“bounded subset of IR” says that

(B) If X is a subset of IR, we say that X is bounded if there exists a real
number C such that |x| ≤ C for every x ∈ X.

So the set S is bounded, because of the following simple argument:

Let C = 1.
Let x be an arbitrary member of S.
Then 0 ≤ x ≤ 1.
So |x| ≤ 1, i.e., |x| ≤ C.
Since we have shown that |x| ≤ C for arbitrary x ∈ S, we can
conclude from Rule (∀prove) that (∀x ∈ S) |x| ≤ C .
So, by Rule ∃use, (∃C ∈ IR)(∀x ∈ S) |x| ≤ C .
So S is bounded. Q.E.D.

But S is an infinite set. Why? This can be proved in a number of ways.
Here is one.

We will prove that the open interval ]0, 1[, that is, the set of all real
numbers x such that 0 < x < 1, is infinite. This will imply that the closed
interval [0, 1] is infinite as well, because if [0, 1] was finite then its subset ]0, 1[
would be finite as well.

To prove that ]0, 1[ is infinite, we assume it is finite and derive a contra-
diction.

Assume that ]0, 1[ is a finite set. Let a = (aj)
n
j=1 be a finite list of all the

members of ]0, 1[,
Then we may pick an index i ∈ INn such that ai is the largest of all the

aj, that is, ai ≥ aj for every j ∈ INn.
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Then ai ∈ ]0, 1[, because a is a list of members of ]0, 1[. Therefore 0 <
aj < 1. Let x = 1

2
(ai + 1). Then 0 < x < 1. (Reason: 0 < ai < 1. So

0 < aj + 1 < 2, and then 0 < 1
2
(aj + 1) < 1, so 0 < x < 1.)

So x ∈]0, 1[. But x cannot be an entry of a, because x > ai. (Reason:
1 > ai, so 1 + ai > 2ai, and then 1

2
(1 + ai) > ai, i.e., x > ai.)

So a is not a list of all the members of ]0, 1[. But a is a list of all the
members of ]0, 1[. So we got a contradiction. �

Problem 45. Many students seem to think that “finite” means
the same as “bounded”. The previous example should have per-
suaded everybody that this is a mistaken idea. The purpose of
this problem is to reinforce this, by having you prove that some
important sets are bounded and infinite.

In this problem, we use the following terminology and notations:

• If a, b are real numbers, then

– The open interval from a to b is the set ]a, b[ given by

]a, b[ = {x ∈ IR : a < x < b} ,

– The closed interval from a to b is the set [a, b] given by

[a, b] = {x ∈ IR : a ≤ x ≤ b} ,

Notice that

• If a > b then both sets ]a, b[ and [a, b] are empty.

• If a = b then ]a, b[ is empty and [a, b] is {a}, the singleton of a, so [a, b]
consists of exactly one point.

Prove that if a, b are real numbers such that a < b then the sets ]a, b[, [a, b]
are both bounded and infinite. �

Remark 32. You have probably seen open intervals before, but the name
for them was “(a, b)” rather than “]a, b[”. I am using “]a, b[” here because

1. I think this notation is nicer than “(a, b)”.

2. I do not want the interval ]a, b[ to be confused with the ordered pair
(a, b), so I prefer not to use “(a, b)” for the open interval. �
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Problem 46. A subset D of IR is said to be dense in IR if every nonempty
open interval ]a, b[ has a nonempty intersection with D. In other words, D is
dense in IR if for every pair a, b of real numbers such that a < b there exists
a member x of D such that a < x < b. (In formal language: D is dense in IR

if (∀a ∈ IR)(∀b ∈ IR)
(

a < b =⇒ (∃x ∈ D)a < x < b
)

.)

Prove that if D is a dense subset of IR and a, b are real numbers such
that a < b then the sets ]a, b[∩D, [a, b] ∩D are infinite.

NOTE: (You don’t need to know this to do the problem, but it’s good
to know.) Two important examples of subsets of IR that are dense in IR are
(a) the set Q of all rational numbers, (b) the set I of all irrational numbers.
This will be proved in subsection 21.1.6 �

Problem 47. If n is a natural number, and a, b are two integers, we say
that a and b are congruent modulo n if a− b is divisible by n.

We write “a ≡n b” to indicate that a and b are congruent modulo n. (For
example, the following sentences are true: 23 ≡4 7, 32 ≡17 15, −5 ≡7 9,
729 ≡3 0, ∼ 33 ≡3 2, ∼ 444 ≡2 1.)

Prove that there are infinitely many primes that are congruent to 3
modulo 4. (That is, prove that the set of all natural numbers n such that
n ≡4 3 and n is prime is an infinite set.)

NOTE: Here are some examples of primes that are congruent to 3 modulo
4: 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103. The result you are asked
to prove says that this list can be continued indefinitely, and never stops.

Here is a guided list of the steps for your proof.

1. First, you should prove that every integer is congruent modulo 4 to one
of the integers 0, 1, 2, 3.

2. Next, you should conclude from the previous step that every odd integer
is congruent modulo 4 to 1 or 3.

3. Next, you should prove that every prime number other than 2 is odd.

4. Next, you should conclude from the above that every prime number
other than 2 is congruent to 1 or to 3 modulo 4.

5. Then you should show that:

(a) If a, b, c, d are integers, n is a natural number, and a ≡n b and
c ≡n d, then a+ c ≡n b+ d and ac ≡n bd.
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(b) As a special case of the above result:

i. The product of two integers that are congruent to 1 modulo
4 is congruent to 1 modulo 4.

ii. The product of two integers that are congruent to 3 modulo
4 is congruent to 1 modulo 4.

iii. The product of an integer that is congruent to 3 modulo 4
and an integer that is congruent to 1 modulo 4 is congruent
to 3 modulo 4.

(c) If a natural number n is ≥ 2 and is congruent to 3 modulo 4, then
n has a prime factor that is congruent to 3 modulo 4.

6. And now, finally, you should be able to prove the desired conclusion as
follows:

(a) Let p = (pj)
r
j=1 be a list of all the primes that are congruent to 3

modulo 4, except for 3. (That is: let S be the set of all natural
numbers n such that n is prime, n 6= 3, and n ≡4 3. Let p be a
list of all the members of S.)

(b) Let

M = 3 + 4
r
∏

j=1

pj .

(c) Prove that M is not divisible by 3.

(d) Prove that M has a prime factor q such that q ≡4 3.

(e) Prove that q cannot be equal to 3.

(f) Prove that q cannot be an entry of the list p, and get a contra-
diction from this.

Problem 48. Prove that there are infinitely many primes that are congru-
ent to 5 modulo 6. (That is, prove that the set of all natural numbers n such
that n ≡6 5 and n is prime is an infinite set.)

NOTE: Here are some examples of primes that are congruent to 5 modulo
6: 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101. The result you are asked
to prove says that this list can be continued indefinitely, and never stops.)

HINT: Follow a strategy similar to the one you used for the previous
problem. �
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21.1.6 A couple of facts about rational and irrational numbers;
the Archimedean principle and the density of the rationals
and the irrationals

The Archimedean principle is a very important property of the real num-
bers. It says this:

Fact 1. (The Archimedean principle) If x is an arbitrary real number
then there exists a natural number n usch that x < n. �

This is one of the basic facts about the real numbers that, in a formal de-
velopment of the theory, would either be taken for granted as a starting
point for the theory, or would be proved from other basic facts, such as the
completeness axiom.

For us, here, the Archimedean principle is just something we will accept.
And it should not be surprising to you. You know that

(DE) Every positive real number r can be written as “n, d1d2d3 . . .”, where n
is a nonnegative integer and d1, d2, d3, . . . are digits.

(The “digits” are the members of the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.)
For example,

√
2 = 1.414213562373095048801688724209698078569671875376948073 . . . ,

and

π = 3.141592653589793238462643383279502884197169399375105820974 . . .

Remark 33. You can find
√
2 with 10 million digits in

https://apod.nasa.gov/htmltest/gifcity/sqrt2.10mil

and one million digits of π in

https://www.angio.net/pi/digits/pi1000000.txt �

Since you can write your real number x as “n, d1d2d3 . . .”, it is clear that
x < n+ 1. And, since every positive real number x can be written that way,
and every nonpositive real number x satisfies x < 1, we seem to have actually
proved the Archimedean principle.

This should at least convince you that the Archimedean principle is true.
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But what we have said is not truly a proof, for the following reason: I
haven’t told you how to prove statement (DE), that is, that every
positive real number r has a decimal expansion. And the fact is,
in order to prove (DE) you need to use the Archimedean principle. So the
Archimedean principle “comes first”, and the argument I gave you to “prove”
it is circular.

But my goal was not give you a proof. It was just to convince you that
the Archimedean principle is true. And I hope I have achieved that.

Here is how you can use the Archimedean principle to prove, for example,
the results of Problem 46.

Definition 64. A subset D of IR is said to be dense in IR if every nonempty
open interval ]a, b[ has a nonempty intersection with D. In other words, D is
dense in IR if or every pair a, b of real numbers such that a < b there exists
a member x of D such that a < x < b.

In formal language: D is dense in IR if

(∀a ∈ IR)(∀b ∈ IR)
(

a < b =⇒ (∃x ∈ D)a < x < b
)

.

In the following theorem, we prove that two important subsets of IR are
dense in IR. These are two sets already known to you: the set Q of all rational
numbers, and the set I of all irrational numbers.

Recall that

Q =
{

x ∈ IR : (∃m ∈ Z)(∃n ∈ Z)
(

n 6= 0 ∧ x =
m

n

)}

.

And, clearly,
I = IR−Q ,

i.e.,
I = {x ∈ IR : x /∈ Q} .

Theorem 73. The sets Q and I are dense in IR.

Proof. Let us first prove that Q is dense in IR.
We have to prove that if if a, b ∈ IR and a < b, then the set ]a, b[∩Q is

nonempty.
Idea of the proof. It is a very simple idea: we subdivide the real line

IR into intervals of length 1
n
. The subdivision points are the points k

n
, k ∈ Z.



Math. 300, Fall 2017 401

(That is, we divide IR into the intervals [0, 1
n
], [ 1

n
, 2
n
], [ 2

n
, 3
n
], [ 3

n
, 4
n
], . . ., and

also the intervals [− 1
n
, 0], [− 2

n
,− 1

n
], [− 3

n
,− 2

n
], . . ..) And we choose n so large

that 1
n
< b − a. Then, since the interval ]a, b[ is longer than 1

n
, the interval

]a, b[ has to contain an endpoint of one of these intervals, and this endpoint
will be k

n
for some k ∈ Z, that is, a rational number. And that will give us

a rational number belonging to ]a, b[. The only problem with this idea is this:
how do we find k? The obvious way is to go from left to right, starting far
to the left of a, with a point i

n
(with i ∈ Z, of course) far to the left of a,

and then make small jumps to the right, going to to i+1
n
, i+2

n
, and so, until

we go past a for the first time. Then we will have found k, the smallest of
all integers i such that i

n
> a. And then k

n
will have to be < b, because if k

n

was greater than or equal to b then in the jump from k−1
n

to k
n
we would have

jumped from k−1
n
, which is to the left of a, to k

n
, which is to the right of b,

so we would have made a jump of length 1
n
and jumped over an interval of

length b− a, which is longer than 1
n
.

But there are two problems with this approach: How do we find n ∈ IN
such that 1

n
< b − a? And how do we find k? The following proof takes

care of these key issues. And, as you will see, the Archimedean principle is
essential. And it will be used twice.

Using the Archimedean principle, we find a natural number n such that

1

n
< b− a . (21.2)

(The Archimedean principle says that there exists a natural number n such
that 1

b−a
< n. Then, using Rule ∃use, we pick one. Then the fact that 1

b−a
< n

implies the inequality 1
n
< b− a.)

Next, we look at the numbers i
n
, for all integers i. One of these numbers

must be larger than a. (Reason: The Archimedean principle tells us that
there exists a natural number m such that a < m. Using Rule ∃use, pick one
such m. Then a < m = mn

n
. So, if we take i = mn, we see that i ∈ Z and

a < i
n
.)

So, if we let S be the set of all integers i such that i
n
> a, the set S is

nonempty.
Next, we show that S is bounded below. (Recall that a subset X of IR is

bounded below if (∃C ∈ IR)(∀x ∈ X)x ≥ C.)
For this purpose, observe that if k ∈ S then a < k

n
, so k ≥ na. So, if we

take C to be na, we see that (∀k ∈ S)k ≥ C. So S is indeed bounded below.
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Next, we want to prove that there exists an integer N such that

(∀k ∈ S)k ≥ N . (21.3)

Using the Archimedean principle, we find an integer W such that −C < W .
Then C > −W . Take N = −W . Then k ≥ C for every k ∈ S, and C > N .
So k ≥ N for every k ∈ S. So (21.3) holds.

In one of the previous homework problems, we defined the set Z≥q, for
each integer q, to be the set of all integers that are greater than or equal to
q. Then (21.3) tells us that

S ⊆ Z≥N .

Also, we proved in the previous homework problem that if M ∈ Z and X is
a nonempty subset of Z≥M , then X has a smallest member.

In our case, N is an integer, and S is a nonempty subset of Z≥N . So S
has a smallest member. Let us call this smallest member s.

Then s ∈ Z, and s
n
> a (because s ∈ S).

On the other hand, s−1
n

≤ a. (Reason: if s−1
n

was > a, it would follow
that s− 1 ∈ S, contradicting the fact that s is the smallest member of S.)

Finally, I claim that s
n
< b. The reason for this is as follows:

Suppose that
s

n
≥ b . (21.4)

We know that
s− 1

n
≤ a ,

and then

−s− 1

n
≥ −a . (21.5)

Adding the two inequalities (21.4) and (21.5), we get

s

n
− s− 1

n
≥ b− a .

But
s

n
− s− 1

n
=

1

n
.

So
1

n
≥ b− a . (21.6)
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But we have chosen n precisely such that 1
n

< b − a. So we got a
contradiction.

So we have proved that s
n
< b.

Hence, if we let r = s
n
, the rational number r satisfies a < r < b.

So r ∈]a, b[∩Q.
Therefore the set ]a, b[∩Q is nonempty, and this completes the proof that Q
is dense in IR.

Now we prove that I is dense in IR.
Let a, b be arbitrary real numbers such that a < b.

We know that Q is dense in IR. So we can pick a rational number r such
that a < r < b.
Using again the fact that Q is dense in IR, we pick a rational number s such
that r < s < b.
Let

u = r + (s− r)

√
2

2
.

Then u ∈ I. (Reason: suppose u was rational. Then
√
2 would have to be

rational as well, because
√
2 = 2u−r

s−r
. But we know that

√
2 is irrational as

well.)

Furthermore, it is clear that u > a, because r > a and s > r.
And, finally, u < b. (Reason:

√
2
2

< 1, so (s − r)
√
2
2

< s − r, and then

u = r + (s− r)
√
2
2

< r + (s− r) = s < b.)

So a < u < b, and then u ∈]a, b[∩Q. Q.E.D.

Problem 49. A dyadic rational number is a rational number r such that

r = k
2n

for some integer k and some natural number n. (So, for example: 3
4
,

29
8
, 365,908

1,024
, −10,298,635

2234
are dyadic rational numbers.)

Let D be the set of all dyadic rational numbers.
Prove that D is dense in IR. More precisely:

1. Write a very short proof (just a few lines), using Theorem 73

2. Write a proof without using Theorem 73. (That means that you have
to write a proof following the same pattern as in the proof we gave of
Theorem 73. All you have to do is choose n to be a power of 2.) �
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21.2 The cardinality of a finite set

Definition 65. Let a = (aj)
n
j=1 be a finite list. We say that the list a

has no repetitions if no two entries corresponding to different indices can be
equal.

In formal language, a has no repetitions if

(∀i, j ∈ INn)(i 6= j =⇒ ai 6= aj) . �

Definition 66. Let S be a set and let n be a nonnegative integer4. We say
that S has n members, or that S has cardinality n, if either

1. S = ∅ and n = 0,

or

2. S 6= ∅, n 6= 0, and there exists a finite list a = (aj)
n
j=1 of length n such

that

1. a is a list of all the members of S,

2. a has no repetitions.

In formal language: S has n members if either S = ∅ and n = 0, or there
exists a finite list a = (aj)

n
j=1 of length n such that

Set(a) = S ∧ (∀i, j ∈ INn)(i 6= j =⇒ ai 6= aj) . �

Remark 34. Things get much nicer if we allow also the empty list:

• The empty list is a list of length zero.

• The empty list has no entries.

• If a is the empty list, then the corresponding set Set(a) is the empty
set.

• And the name of the empty list is ∅.
• So Set(∅) = ∅.
• And it’s O.K. to give the same name to the empty list that we gave
to the empty set because, when we do things in a more precise way, it
will turn out that the empty list is the empty set.

4The nonnegative integers are the natural numbers together with zero. That is, the
nonnegative integers are the members of the set IN∪ {0}. So n ∈ IN∪ {0}” is just another
way of saying “n is a nonnegative integer”, that is, “n is a natural number or zero”.
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With this addition of a new list to our supply of finite lists, the definition
of “number of members of a set” becomes much simpler: If S is a set and
n ∈ IN∪{0}, we say that S has n members if there exists a list a of length n
without repetitions such that S = Set(a). �

It is clear that

Fact 2. If S is a set that has n members for some n ∈ IN ∪ {0}, then S is a
finite set in the sense of Definition 61.

To see this, just observe that if S has nmembers then there must exist a finite
list a = (aj)

n
j=1 without repetitions such that S = Set(a). So, if we forget

about the “no repetitions” part, then a is a finite list of all the members of
S, and this tells us that S is finite.

It is also fairly clear that

Fact 3. If S is a finite set in the sense of Definition 61, then S has n members
for some n ∈ IN ∪ {0}.

Proof. Suppose S is a finite set. Then there exists a finite list b = (bj)
m
j=1

such that S = Set(b). In order to prove that S has n members for some
n ∈ IN ∪ {0}, all we need is a finite list a = (aj)

n
j=1 without repetitions such

that S = Set(a). But is is easy to get such a list from the list b. All we have
to do is remove the repetitions from b.

Lemma 7 below tells us that this removal of repetitions is possible. Using
the lemma, we find a finite list a = (aj)

n
j=1 without repetitions such that

S = Set(a). And then S has n members. Q.E.D.

And here is the lemma that tells us that we can remove the repetitions from
a list.

In plain English the lemma says this: if we start with a finite list
b, then we can produce a finite list a that has no repetitions
and has exactly the same set of entries as b. If b already has no
repetitions, then a is b. Otherwise (that is, if b has repetitions),
the length of a is strictly less than the length of b.

Lemma 7. (The repetitions removal lemma) Let b = (bj)
m
j=1 be a finite

list. Then there exists a finite list a = (aj)
n
j=1 such that

1. Set(a) = Set(b),
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2. a has no repetitions.

Furthermore,

3. n ≤ m,

4. n = m if and only if b has no repetitions, in which case a = b.

Proof of Lemma 7. If b has no repetitions, then we take a to be b, and we
are done.

Now suppose that b has at least one repetition.
We are going to show how to remove one repetition. And after we do

that we will discuss how to remove all the repetitions.

Removal of one repetition: Since we are assuming that b has at least one
repetition, we can pick two indices i1, i2 ∈ INm such that i1 < i2 and bi1 = bi2 .

We then remove the entry bi2 , taking care of moving bi2+1 to the i2-th
place, bi2+2 to the i2 + 1-th place, and so on.

(So, for example, if we want to remove the entry b8, we take b
(1)
j = bj for

j = 1, 2, 3, 4, 5, 6, 7, but then we let b
(1)
8 = b9, b

(1)
9 = b10, and so on.)

Precisely, we define a new list b(1) = (b
(1)
j )m−1

j=1 by letting

b
(1)
j =

{

bj if j < i2
bj+1 if j ≥ i2

.

The new list b(1) has one fewer entry than b, and has exactly the same
set of entries as b (that is, Set(b(1)) = Set(b)), because the entry of b that
has been removed also occurs elsewhere in b, so the set of entries does not
change.

If b(1) has no repetitions, then we take a = b(1), and we are done.

Removal of all the repetitions: If b(1) has a repetition, then we repeat the
repetition removal process, and form a list b(2).

And we continue in this way, removing one repetition at a time, until the
process stops,

The process will stop when we get to a list b(r) that has no repeti-
tions. And when we get there, we can take a to be b(r), and we are done.
Q.E.D.[Lemma 7]

Remark 35. Exactly how do we know that this process will stop?
This was discussed in Remark 31, where we analyzed another entry re-

moval process. The reasons that the process has to stop are the same:
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• Intuitively, the process has to stop because at every step the length of
the list goes down by 1, and the length can never be negative.

• A more rigorous way to say this is to invoke the well-ordering principle
as follows: let S be the set of all the lengths of all the lists produced
by this process. Then S is a set of nonnegative integers. By the well-
ordering principle, S has a smallest member s. Then s is a nonnegative
integer. and the process must stop at step s. �

21.2.1 Can we talk about the cardinality of a finite set?

So far, in Definition 66, we have introduced and defined the two-variable pred-
icate “S has n members”. Let us call this predicate M(S, n), so “M(S, n)”
stands for “S has n members”.

We would like to say, when M(S, n) holds, that “n is the cardinality (or
the number of members) of S”.

But in order to do that, we have to know that n is unique, that is, that if
M(S, n) holds, and m is a nonnegative integer such that M(S,m) also holds,
then m has to be equal to n.

This may seem obvious to you, but it still needs a proof.

Theorem 74. Let p, q be nonnegative integers, and let S be a set such that
S has p members and S has q members in the sense of Definition 66. Then
p = q.

Theorem 74 says that if there exists a nonnegative integer n such
that S has n members, then n is unique.

In order to prove the theorem, we will a lemma, which probably deserves the
name “the stupidest lemma ever”. It says that if you have a set S with
n members and you remove one member s from S, then you get
a set with n − 1 members. Nothing could be more evident than that,
right? Sure, but if it is evident, then it should be possible to prove it. So
let us state it precisely and then prove it. (And the proof is going to be the
obvious argument: make a list a without repetitions of all the members of
S, remove s from the list, and you get a list b without repetitions of all the
members of S − {s}. And that’s all.)

Lemma 8. If S is a set and n is a nonnegative integer such that S has n
members according to Definition 66, then
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1. S = ∅ if and only if n = 0,

2. If S 6= ∅, and s is a member of S, then the set S − {s} has n − 1
members.

Proof of the lemma. Since S has n members, Definition 66 says that either
S = ∅∧n = 0 or S 6= ∅∧n 6= 0. And in both cases the biconditional sentence
“S = ∅ ⇐⇒ n = 0” is true. (Remember that a biconditional P ⇐⇒ Q is
true if either P and Q are both true or P and Q are both false!) This proves
Part 1.

To prove Part 2, suppose S 6= ∅, and s ∈ S. Since S has n members,
Definition 66 tells us that we may pick a finite list a = (aj)

n
j=1 without

repetitions such that a is a list of all the members of S.
Since s ∈ S, and a is a list of all the members of S, s must be one of the

entries of a. That is, we can pick an index i ∈ INn such that ai = s.
Our goal is to prove that S−{s} has n−1 members, and for that purpose

we need to produce a finite list b = (bj)
n−1
j=1 of length n − 1 which is a list

without repetitions of all the members of S − {s}.
In order to construct such a list, we do the most obvious thing: we remove

s from a. Precisely, we define a list b = (bj)
n−1
j=1 by letting

bj =

{

aj if j ∈ IN, j < i
aj+1 if j ∈ IN, i ≤ j < n

.

(For example, if we start with a list a = (a1, a2, a3, a4, a5, a6), and s = a4,
then b = (a1, a2, a3, a5, a6), so that b1 = a1, b2 = a2, b3 = a3, b4 = a5, and
b5 = a6.)

Then b is a finite list of length n − 1. Furthermore, b is a list without
repetitions. (This is very easy to prove. YOU DO IT.)

And, finally, b is a list of all the members of S − {s}. (This is also very
easy to prove. YOU DO IT.)

So we have found a finite list of length n − 1 which is a list without
repetitions of all the members of S − {s}.

This proves, according to Definition 66, that S−{s} has n− 1 members.
Q.E.D.[Lemma 8]

Proof of Theorem 74. As before, we write “M(S, n)” for “S has n members”.
We want to prove that

(∀p ∈ IN)(∀q ∈ IN)(∀S)
(

(M(S, p) ∧M(S, q)) =⇒ p = q
)

. (21.7)
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We rewrite the above proposition as

(∀p ∈ IN)A(p) ,

where A(p) is the sentence

(∀q ∈ IN)(∀S)
(

(M(S, p) ∧M(S, q)) =⇒ p = q
)

.

So our goal is to prove (∀p ∈ IN)A(p). And we will do that by induction.

Base step. A(0) says “if S has zero members and S has q members then
q = 0.”And this is true because it follows from Lemma 8 that M(S, 0) implies
S = ∅, and M(∅, q) implies q = 0.

Inductive step. We have to prove that (∀p ∈ IN)(A(p) =⇒ A(p+ 1)).

Let p ∈ IN ∪ {0} be arbitrary.

We want to prove that A(p) =⇒ A(p+ 1).

Assume that A(p) holds. We want to prove A(p+ 1).
That is, we want to prove that

(∀q ∈ IN)(∀S)
(

(M(S, p+ 1) ∧M(S, q)) =⇒ p+ 1 = q
)

.

Let q ∈ IN ∪ {0} be arbitrary and let S be an arbitrary set.
Assume that M(S, p + 1) and M(S, q) hold, that is, S has
p+ 1 members and S has q members.
Pick a member s of S, and let S ′ = S − {s}.
Then by Lemma 8 S ′ has p members and also q− 1 members.

That is, M(S ′, p) ∧M(S ′, q − 1).
But (M(S ′, p) ∧M(S ′, q − 1)) =⇒ p = q − 1, because we are
assuming that A(p) holds,
Since we know that M(S ′, p)∧M(S ′, q− 1), we can conclude
(using Rule =⇒use, i.e., theModus Ponens rule) that p = q−1.

Then p+ 1 = q.

We have proved that p + 1 = q assuming that M(S, p + 1) and
M(S, q) hold. So we have proved (thanks to Rule =⇒prove) that

(M(S, p+ 1) ∧M(S, q)) =⇒ p+ 1 = q . (21.8)
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And (21.8) was proved for arbitrary q ∈ IN∪{0} and an arbitrary
set S. So we have proved (thanks to Rule ∀prove)

(∀q ∈ IN)(∀S)
(

(M(S, p+ 1) ∧M(S, q)) =⇒ p+ 1 = q
)

. (21.9)

That is, we have proved A(p+ 1).

Since we proved A(p + 1) assuming A(p), we have proved (thanks to
Rule =⇒prove) that A(p) =⇒ A(p+ 1).

And, since we have proved that A(p) =⇒ A(p+1) for arbitrary p ∈ IN∪{0},
we have proved (thanks to Rule ∀prove) that (∀p ∈ IN)(A(p) =⇒ A(p+ 1)).
This completes the inductive step.

The PMI then implies that (∀p ∈ IN)A(p), which is what we wanted to prove.
Q.E.D.(Theorem 74)

Problem 50. Give a detailed proof of the two statements marked “YOU
DO IT” in the proof of Lemma 8. �

And now, finally we can talk about the number of members of a finite
set S, and give it a name.
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The cardinality of a finite set

If S is a finite set then Fact 3 tells us that S has

n members for some n ∈ IN ∪ {0}, and Theorem

74 says that this n is unique.

So we can talk about the number of members of a

finite set S. And we will also call this number the

cardinality of S, and use the expression card(S)

to denote it.

Definition 67. Let S be a finite set. Then the

cardinality of S is the nonnegative integer card(S)

defined as follows: card(S) is the unique nonneg-

ative integer n such that S has n members (i.e.,

S has cardinality n. �

21.3 Counting

In this section we discuss several “counting” problems of the following general
form: suppose that a set A is related in some way to some set B (or to two
sets B1, B2, or to several sets B1, B2, . . . , Bn). If the sets Bj are finite, can
we conclude that A is finite? And can we determine the cardinality of A, or
at least say something nontrivial about card(A)?

In all the problems we will discuss, the conclusion will be of the form “A
is finite and . . .”. But we will often omit the statement “A is finite”, on the
grounds that, if we prove that card(A) = n for some nonnegative integer n,
then it follows automatically that A is finite, so we don’t need to say that
separately.

We will look at:

1. Subsets of a finite set.
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2. The union of two or more finite sets.

3. The power set of a finite set.

4. The Cartesian product of two finite sets.

5. Sets of lists of members of a set.

6. Sets of subsets of a set.

And, in order to be able to do that, we will prove in subsection 21.3.5 a
general “counting principle” that will help us find cardinalities of lots of
finite sets.

21.3.1 The cardinality of a subset of a finite set

Theorem 75. If A is a finite set and B is a subset of A, then

1. B is a finite set,

2. card(B) ≤ card(A),

3. if B 6= A then card(B) < card(A).

Proof. We already proved, in Proposition 3, that B is finite.
Let a = (aj)

n
j=1 be a finite list without repetitions of all the members of

A. Let b = (bj)
m
j=1 be a list obtained from a by removing all the entries that

are not members of B.
Then n = card(A) and m = card(B). Since b was obtained form a by

removing some entries, m is ≤ n, And, if B 6= A, then there is at least one
entry aj of a that does not belong to B, so at least one entry is removed to
go from a to b, and then m < n. Q.E.D.

21.3.2 The cardinality of the union of two sets

In this subsection we look at the following question.

Question 12. If A,B are finite sets, can we say something useful about the
cardinality of the union A ∪B? �

First a definition.
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Definition 68. Two sets A,B are disjoint if A ∩B = ∅. �

And now we can prove the two main theorems about the cardinality of
the union of two sets.

Theorem 76. If A,B are disjoint finite sets, then A∪B is a finite set, and

card(A ∪ B) = card(A) + card(B) . (21.10)

Theorem 77. If A,B are finite sets, then A ∪B is a finite set, and

card(A ∪ B) = card(A) + card(B)− card(A ∩B) (21.11)

Proof of Theorem 76. Let a = (aj)
m
j=1 be a finite list without repetitions of

all the members of A, and let b = (bj)
n
j=1 be a finite list without repetitions

of all the members of B.
Let c be the concatenation5 a#b of the lists a, b.
Then it is easy to prove that

(*) c is a list without repetitions of all the members of A ∪ B.

(YOU SHOULD PROVE THIS.)
It follows from (*) that A ∪ B is a finite set, and card(A ∪ B) = m + n.

Q.E.D.[Theorem 76]

Proof of Theorem 77. Let C = A− B, that is,

C = {x : x ∈ A ∧ x /∈ B} .

Let D = B − A, that is,

D = {x : x ∈ B ∧ x /∈ A} .

Let E = A ∩ B, that is,

E = {x : x ∈ A ∧ x ∈ B} .

Then C and E are subsets of A, and D is a subset of B, so C, D and E are
finite sets.

5The concatenation of two lists was defined on page 393.
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Also, C ∪ E = A and C ∩ E = ∅. Therefore

card(A) = card(C) + card(E) .

Similarly, 000
card(B) = card(D) + card(E) .

Furthermore, A ∪D = A ∪ B, and A ∩D = ∅.
Since A and D are disjoint finite sets, Theorem 76 implies that A ∪ B is

a finite set, and
card(A ∪ B) = card(A) + card(D) .

It follows from the above equations that

card(A ∪B) + card(A ∩ B) = card(A ∪ B) + card(E)

=
(

card(A) + card(D)
)

+ card(E)

= card(A) +
(

card(D) + card(E)
)

= card(A) + card(B) ,

so
card(A ∪ B) + card(A ∩ B) = card(A) + card(B) ,

and then

card(A ∪B) = card(A) + card(B)− card(A ∩ B) ,

Q.E.D.[Theorem 77]

Example 67. In a group of 1000 people, there are 700 people who like coffee,
and 650 people who like tea.

Can we say something about the number N of people who like both coffee
and tea?

The answer is that with the information we have we cannot determine N
exactly, but we can give a lower bound for N , that is, an integer B usch
that we can guarantee that N ≥ B.

Indeed, let A be the set of the people in our group who like coffee, and
let B be the set of the people in our group who like tea.

Then we know that card(A) = 700 and card(B) = 650.
Also,

card(A ∪B) = card(A) + card(B)− card(A ∩ B) ,
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so
card(A ∩B) = card(A) + card(B)− card(A ∪ B) .

Since card(A) = 700 and card(B) = 650, we can conclude that

card(A ∩ B) = 1, 350− card(A ∪ B) ,

But card(A ∪ B) ≤ 1, 000, so

−card(A ∪B) ≥ −1, 000 ,

and then
1, 350− card(A ∪ B) ≥ 1, 350− 1, 000 = 350 .

So
card(A ∩ B) ≥ 350 .

So we have proved that the number of people who like both coffee and
tea is at least 350. �

21.3.3 The cardinality of the union of several pairwise disjoint
sets

Now that we know something about the cardinality of the union A ∪ B of
two finite sets, we can discuss the question:

Question 13. If A = (Aj)
n
j=1 is a finite list of finite sets, can we say some-

thing useful about the cardinality of the union of those sets? �

First of all, we have to define the union
⋃n

k=1 Ak (or “A1∪A2∪· · ·∪An”)
of the sets Ak.

And, as I am sure you will have guessed, it is going to be an inductive
definition.

Definition 69. Let A = (Aj)
n
j=1 be a finite list of sets. The union of A

(or “the union of the Aj”) is the set
⋃n

j=1Aj (or “A1 ∪ · · · ∪ An”) defined
inductively as follows:

1
⋃

j=1

Aj = A1 ,

n+1
⋃

j=1

Aj =
(

n
⋃

j=1

Aj

)

∪ An+1 if n ∈ IN .
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Remark 36. In case you don’t like inductive definitions, it is also possible
to give a noninductive definition of

⋃n

j=1 Aj. The following theorem tells us
how to do it. �

Theorem 78. Let A = (Aj)
n
j=1 be a finite list of sets. Then

n
⋃

j=1

Aj = {x : (∃j ∈ INn)x ∈ Aj} . (21.12)

Proof. YOU DO IT.

Remark 37. Theorem 78 tells us that it is possible to give a noninductive
definition of

⋃n

j=1Aj: instead of defining
⋃n

j=1 Aj as we did, we could have
defined it to be the set {x : (∃j ∈ INn)x ∈ Aj}. And then the theorem tells us
that if we had done that we would have ended up with the same set. In other
words: if we had defined

⋃n

j=1Aj to be the set {x : (∃j ∈ INn)x ∈ Aj},
then this would have been an equivalent definition, in the sense
that the result would have been exactly the same set. �

Problem 51. Prove Theorem 78. �

Now that we know what “
⋃n

j=1Aj ” means, we would like to express the
cardinality of

⋃n

j=1 Aj in terms of the cardinalities of the sets Aj. In the
previous section we studied the case of two sets, and we saw that the nice
formula card(A ∪ B) = card(A) + card(B) holds under the extra condition
that A and B be disjoint.

So it is natural that for the case of more than two sets a similar condition
will be needed. We will have to require that the sets be pairwise disjoint,
and we first have to define what that means.

Definition 70. Let A = (Aj)
n
j=1 be a finite list of sets. We say that A is a

pairwise disjoint list, or that the sets Aj are pairwise disjoint, if

Ai ∩ Aj = ∅ whenever i, j ∈ INn and i 6= j .

And then we can state the result about the cardinality of a union of several
pairwise disjoint sets:
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Theorem 79. Let A = (Aj)
n
j=1 be a finite list of finite sets. Assume that the

Aj are pairwise disjoint. Then

card
(

n
⋃

j=1

Aj

)

=
n
∑

j=1

card(Aj) . (21.13)

Proof. YOU DO IT.

Problem 52. Prove Theorem 79. Your proof should be by induction, and
you will have to use the inductive definitions of “

⋃

” and “
∑

”, because
those are the only things you know about “

⋃

” and “
∑

”, and you will have
to use the definition of “pairwise disjoint”. Also, you may need a lemma (for
example, that if A = (Aj)

n
j=1 is a finite list of sets, B is a set, and Aj∩B = ∅

for every j, then
(

⋃n

j=1 Aj

)

∩ B = ∅). If you need such a lemma, prove it.

�

21.3.4 The cardinality of the union of several finite sets: the
inclusion-exclusion formula

In this section we discuss the following question:

Question 14. If A = (Aj)
n
j=1 is a finite list of finite sets, we know that

the cardinality of the union of the sets is the sum of the cardinalities of the
sets if the sets are pairwise disjoint. Can we say something useful about the
cardinality of the union of the sets even if the sets are not pairwise disjoint.?
�

The answer is “yes, we can say something, but not much”.
For two sets A1, A2, we saw in subsection 21.3.2 that

card(A1 ∪ A2) = card(A!) + card(A2)− card(A1 ∩ A2) (21.14)

What about three sets? In this case, we get a formula like (21.14), but
more complicated:

Theorem 80. Let A1, A2, A3 be finite sets. Then

card(A1 ∪ A2 ∪ A3) = card(A1) + card(A2) + card(A3)− card(A1 ∩ A2)

−card(A1 ∩ A3)− card(A2 ∩ A3) + card(A1 ∩ A2 ∩ A3) . (21.15)
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Proof.

card(A1 ∪ A2 ∪ A3) = card
(

(A1 ∪ A2) ∪ A3

)

= card(A1 ∪ A2) + card(A3)− card
(

(A1 ∪ A2) ∩ A3

)

= card(A1) + card(A2)− card(A1 ∩ A2) + card(A3)

−card
(

(A1 ∩ A3) ∪ (A2 ∩ A3)
)

= card(A1) + card(A2) + card(A3)− card(A1 ∩ A2)

−
(

card(A1 ∩ A3) + card(A2 ∩ A3)

−card
(

(A1 ∩ A3) ∩ (A2 ∩ A3)
)

)

= card(A1) + card(A2) + card(A3)− card(A1 ∩ A2)

−card(A1 ∩ A3)− card(A2 ∩ A3)

+card
(

(A1 ∩ A2 ∩ A3) .

So

card(A1 ∪ A2 ∪ A3) = card(A1) + card(A2) + card(A3)

−card(A1 ∩ A2)− card(A1 ∩ A3)− card(A2 ∩ A3)

+card(A1 ∩ A2 ∩ A3) ,

completing the proof. Q.E.D.

What can be said about the cardinality of a union A1 ∪ A2 ∪ · · · ∪ An of
several finite sets? The answer is the following result.

Theorem 81. (The inclusion-exclusion formula) Let (A1, A2, . . . , An)
be a finite list of finite sets. Then

card
(

n
⋃

j=1

Aj

)

=
n
∑

k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n

card(Ai1∩Ai2∩· · ·∩Aik) (21.16)

Proof. YOU DO IT.

Problem 53.
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1. Write out Formula (21.16) for n = 2 and n = 3, and verify that the
results agrees with Formulas (21.11) and (21.15).

2. Prove Theorem 81. HINT: Do it by induction. The proof that I gave
you of Theorem 80 is really the step P (2) =⇒ P (3). �

21.3.5 A general counting principle

In this section we present a general method for solving counting problems,
that is, problems in which we want to find the number of members of a finite
set.

We will consider the following general situation: we will assume we are
given a way of “generating all the members of a set G in k steps”, by making
a sequence of k choices:

1. In step 1 we choose one of n1 possibilities, by choosing an object o1,
which is a member of a set O1 of “available options before step 1”, such
that O1 has n1 members.

2. In step 2, we choose one of n2 possibilities, by choosing an object o2,
which is a member of a set O2 of “available options after step 1 and
before step 2”, such that O2 has n2 members.

3. In step 3, we choose one of n3 possibilities, by choosing an object o3
which is a member of a set O3 of “available options after step 2 and
before step 3”, such that O3 has n3 members.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k. In step k, we choose we choose one of nk possibilities, by choosing an
object ok, a member of a set Ok−1 of “available options after step k− 1
and before step k”, such that Ok has nk members.

And we assume that to each “admissible sequence o of choices” (that is, each
list o = (o1, o2, o3, . . . , ok) such that o1 ∈ O1, o2 ∈ O2, and so on) we associate
a member g(o) of G, in such a way that every member of G arises in this
way from one and only one sequence o.

The result will then be that G has n1×n2×n3×· · ·×nk (that is,
∏k

j=1 nj)
members.
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It is very important that the set of options available after step
j−1 and before step j must be allowed to depend on all the choices
made before step j. So the sets O2, O3, etc, should really be called O2(o1),
O3(o1, o2), O4(o1, o2, o3), and so on, to indicate this dependence.

The following example should make this clear.

Solved problem 1. Let G be the set of all lists x = (x1, x2, . . . , x100) of 100
integers that have the following properties: |x1| ≤ 3, and |xj+1 − xj| ≤ j for
each j ∈ IN99. How many members does G have?

This is exactly a counting problem of the kind described above. We
determine a list x in 100 steps, by making a choice at each step.

In step 1 we choose x1, and we have 7 ways to do that, because the integer
x1 must satisfy the condition |x1| ≤ 3, so x1 must belong to the 7-member
set O1 = {−3,−2,−1, 0, 1, 2, 3}.

Having chosen x1 in step 1, we have to choose an integer x2 in step 2
from the 3-member set O2(x1) = {x1−1, x1, x1+1} (because x2 must satisfy
|x2 − x1| ≤ 1).

Having chosen x2 in step 2, we have to choose x3 in step 3 from the 5-
member set O2(x2) = {x2 − 2, x2 − 1, x2, x2 + 1, x2 + 2} (because x3 must
satisfy |x3 − x2| ≤ 2).

And so on. For each j, at step j we choose xj from the set Oj(x1, . . . , xj−1)
given by

Oj(x1, . . . , xj−1) = {x ∈ Z : |x− xj−1| ≤ j − 1} ,
which has 2j − 1 members.

So the numbers nj are as follows: n1 = 7, and nj = 2j−1 for 2 ≤ j ≤ 100.
And the counting principle will tell us that

card(G) = 7×
100
∏

j=2

(2j − 1) .

Notice that the sets Oj are not fixed. They depend on the previous
choices made. (In our case, Oj depends on xj−1). �

And now we give a precise statement and proof of the counting principle.

We will assume that we are given the following data:

A. a natural number k (the “number of steps”),

B. a list n = (n1, n2, . . . , nk) of natural numbers, of length k,
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C1. a finite set O1 (the “set of options available in Step 1”) with n1 mem-
bers,

C2. for each o1 ∈ O1, a finite set O2(o1), which may depend on o1, but has
n2 members for every o1,

C3. for each o1 ∈ O1, o2 ∈ O2(o1), a finite set O3(o1, o2), which may depend
on o1 and o2, but has n3 members for every o1, o2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cj. for each o1 ∈ O1, o2 ∈ O2(o1), . . ., oj−1 ∈ Oj−1(o1, o2, . . . , oj−2), a finite
set Oj(o1, o2, . . . , oj−1), which may depend on all the previous oi’s (that
is, on o1, o2, . . . , oj−1), but has nj members for every o1, o2, . . . , oj−1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ck. for each o1 ∈ O1, o2 ∈ O2(o1), . . ., ok−1 ∈ Ok−1(o1, o2, . . . , ok−2), a finite
set Ok(o1, o2, . . . , ok−1), which may depend on all the previous oi’s (that
is, on o1, o2, . . . , ok−1), but has nk members for every o1, o2, . . . , ok−1.

Using these data, we can introduce the notion of an admissible sequence
of choices. An admissible sequence of choices is a list o = (o1, o2, . . . , ok)
such that

1. o1 ∈ O1,

2. o2 ∈ O2(o1),

3. o3 ∈ O3(o1, o2),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

j. oj ∈ Oj(o1, o2, o3, . . . , oj−1) for all j ∈ IN such that 2 ≤ j ≤ k,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k. ok ∈ Ok(o1, o2, o3, . . . , ok−1).
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Suppose, furthermore, that

D. We are given a set G, and a way of associating to each admissible
sequence o of choices a member g(o) of G in such a way that every
member of G is g(o) for one and only one o.

Under those circumstances, we have the following theorem:

Theorem 82. (The counting principle) The set G described above has
n1 × n2 × · · · × nk (that is,

∏k

j=1 nj) members.

Proof. We prove the result by induction on k.
The statement we are trying to prove is true for k = 1, because in that

case the admissible lists of choices are just lists of length 1, whose single
entry is a member of O1. Since O1 has n1 members, there are exactly n1

admissible lists of choices. If a = (a1, a2, . . . , an1
) is a list without repetitions

of all these lists, then (g(a1), g(a2), . . . , g(ak)) is a list without repetitions of
all the members of G.

Now let us assume that the statement we are trying to prove is true for
a natural number k, and let us prove it for k + 1.

Assume we are given data as above, involving k + 1 steps.
Let Qk be the set of all lists of admissible choices up to k steps, and let

Qk+1 be the set of all lists of admissible choices up to k + 1 steps.
Then Qk is the set of all lists o = (o1, o2, . . . , ok) such that o1 ∈ O1,

o2 ∈ O1(o1), o3 ∈ O2(o1, o2), . . ., ok ∈ Ok(o1, o2, . . . , ok−1).
Then by the inductive assumption P (k), the set Qk has

∏k

j=1 nj members.

This means, if we let ν =
∏k

j=1 nj, that there are ν lists belonging to Qk.
Now, all the members of the set Qk+1 can be obtained by taking a list

o = (o1, o2, . . . , ok) belonging to Qk and adding one more entry ok+1 to o,
where ok+1 is any member of the set Ok+1(o1, o2, . . . , ok). This means that
every list o ∈ Qk gives rise to nk+1 lists in Qk+1. It follows from this that
Qk+1 has nk+1ν members. That is, the cardinality of Qk+1 is

∏k+1
j=1 nj.

On the other hand, the members of the set G are obtained from the
members of Qk+1 as follows:

1. Each o ∈ Qk+1 gives rise to a member g(o) of G.

2. Each member x of G is equal to g(o) for one and only one o ∈ Qk+1.

Now let µ =
∏k+1

j=1 nj . Let q = (q1, q2, . . . , qµ) be a list without repetitions of
all the members of Qk+1. Then p = (g(q1), g(q2), . . . , g(qµ)) is a list without
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repetitions of all the members of G. (It’s a list of members of G because
for every j g(qj) is a member of G, since qj is in Qk+1. It’s a list of all the
members of G because every x ∈ G is equal to g(q) for some q ∈ Qk+1, and
then q = qj for some j, because q is a list of all the members of Qk+1. Finally,
p is a list without repetitions because, if there was a repetition in p, that is,
a pair of indices i, j ∈ INµ such that i 6= j but g(qi) = g(qj), it would follow
that qi = qj, because every member x of G is g(q) for a unique q ∈ Qk+1, so
if we let x = g(qi), then x = g(qj) as well, and the uniqueness of q says that
qi = qj, contradicting the fact that q is a list without repetitions.

So card(G) = µ, and this completes the proof of P (k+1), assuming P (k),
for an arbitrary k ∈ IN. This completes the proof of the theorem. Q.E.D.

21.3.6 The cardinality of a power set

In this section we discuss the following question:

Question 15. If A is a finite set, what is the cardinality of the power set
P(A) of A? In other words: if A is a finite set, how many subsets
does A have? �

The answer to this question turns out to be quite simple and precise: if
A has n members then the power set P(A) has 2n members. That
is:

Theorem 83. If A is a finite set, then the power set P(A) is a finite set,
and

card
(

P(A)
)

= 2card(A) . (21.17)

Proof. Let a = (a1, a2, . . . , an) be a list without repetitions of all the members
of A.

We can generate an arbitrary member X of P(A) in n steps, as follows:

In step 1, we decide whether or not a1 is going to be in X. This can be done
in two ways.

In step 2, we decide whether or not a2 is going to be in X. This can be done
in two ways.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In step n, we decide whether or not an is going to be in X. This can be done
in two ways.
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So we generate all the members of P(A) in n steps, with two choices at each
step. So the total number if subsets of A is the product of n factors, each
one equal to 2, that is, 2n. Q.E.D.

Problem 54. If A is a finite set, we define

Peven(A) =
{

X ∈ P(A) : card(X) is even
}

Podd(A) =
{

X ∈ P(A) : card(X) is odd
}

.

So Peven(A) is the set of all subsets of A that have an even number of mem-
bers, and Podd(A) is the set of all subsets of A that have an odd number of
members.

1. Prove that if A is a nonempty finite set, then

card
(

Peven(A)
)

= card
(

Podd(A)
)

.

(That is, if you call a subset of A “even” if has an even number of
members and “odd” if has an odd number of members then you have to
prove that A has as many even subsets as odd subsets. And, naturally,
this will imply that, if n = card(A), that each of the sets Peven(A),
Podd(A) has 2

n−1 members.)

2. Explain why the assumption that A is nonempty is necessary, by de-
scribing what happens if A = ∅.

3. Verify the statement proved in Part 1, by listing all the subsets of the
following sets, and counting how many have an even cardinality and
how many have an odd cardinality:

{α, β, γ}
{u, v, w, x} ,

where α, β, γ are three different objects and u, v, w, x are four different
objects.

HINT: There is a very easy way to do this problem if card(A) is odd. In this
case, you can prove the result as follows: using Xc to denote the complement
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of X relative to A (that is, writing “Xc” for “A−X”), then: (i) if X is even
then Xc is odd, and (ii) if X is odd then Xc is even. So, if X = (Xj)

m
j=1

is a list without repetitions of all the members of Peven(A), it follows that
Y = (Xc

j )
m
j=1 is a list without repetitions of all the members of Podd(A). So

card
(

Peven(A)
)

= card
(

Podd(A)
)

.

Unfortunately, this method does not work if card(A) is even, be-
cause in that case if X is even then Xc is also even, and if X is odd then Xc

is also odd, so you cannot match the two sets Peven(A), Podd(A) by pairing
each member X of Peven(A) with its complement Xc.

So you need a more sophisticated argument. I suggest you use the count-
ing principle. In order to generate all the members of Peven(A), do the same
n-step counting as in the proof of Theorem 83, but observe that you can stop
after step n − 1 because, once you have decided for each of the first n − 1
aj’s whether it is going to be in X or not, you are no longer free to make
a decision about an: since the set X you are trying to create has to have
an even number of members, then, if you already have an even number of
members of X before step n, you have no choice but to leave an out, whereas
if you have an odd number of members, then you have to put an in. �

21.3.7 The cardinality of a Cartesian product

In this section we discuss the following question:

Question 16. If A, B are finite sets, what is the cardinality of the Cartesian
product A × B? In other words: if A, B are finite sets, how many
subsets does A×B have? �

First we recall the definition of Cartesian product:

Definition 71. IF A,B are sets, the Cartesian product of A and B is the set
A×B whose members are all the ordered pairs (a, b) consisting of a member
a of A and a member n of B. That is,

A×B = {u : (∃a ∈ A)(∃b ∈ B)u = (a, b) } .

or
A× B = { (a, b) : a ∈ A ∧ b ∈ B } .

The answer to Question 16 is given by the following theorem:
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Theorem 84. Let A, B be finite sets. Then the Cartesian product A×B is
finite set, and

card(A× B) = card(A)× card(B) . (21.18)

Proof. Let m = card(A), n = card(B).
We can generate all the members (a, b) of A×B in two steps:

Step 1: Choose a. This can be done in m ways.

Step 2: Choose b. This can be done in n ways.

So the total number of ways in which we can generate an arbitrary member
of A×B is mn.

This prove (21.18). Q.E.D.

21.3.8 Sets of lists

In this section we discuss the following question:

Question 17. If A is a finite set of cardinality n, and k is a nonnegative
integer, how many lists of members of A of length k are there? And we are
interested in the following two kinds of lists:

1. Lists allowed to have repetitions.

2. Lists without repetitions.

Let us rephrase our question in more formal language.
For a set A, and a nonnegative integer k, we define two sets, Listk(A) and

Listnorepk (A), as follows:

1. Listk(A) is the set of all lists a = (aj)
k
j=1 of members of A of length k.

2. Listnorepk (A) is the set of all lists a = (aj)
k
j=1 without repetition of

members of A of length k.

That is,

Listk(A) = {a = (aj)
k
j=1 : (∀j ∈ INk)aj ∈ A} ,

Listnorepk (A) = {a= (aj)
k
j=1 : a∈Listk(A)∧(∀i, j∈ INk)(i 6=j=⇒ai 6=aj)}.

We want to prove that the sets Listk(A) and Listnorepk (A) are finite, and
determine their cardinalities.

Counting all lists of length k, possibly with repetitions, is easy.
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Theorem 85. Let A be a finite set, let n = card(A), and let k be a nonneg-
ative integer. Then the set Listk(A) is finite, and

card
(

Listk(A)
)

= nk . (21.19)

Proof. We can generate all the members a = (a1, a2, . . . , ak) of Listk(A) in
k steps:

Step 1: Choose a1. This can be done in n ways.

Step 2: Choose a2. This can be done in n ways.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Step k: Choose ak. This can be done in n ways.

So the total number of ways in which we can generate an arbitrary member
of Listk(A) is n

k.
This proves (21.19). Q.E.D.

We now count all lists of length k without with repetitions. This is also
rather easy.

Theorem 86. Let A be a finite set, let n = card(A), and let k be a nonneg-
ative integer. Then the set Listnorepk (A) is finite, and

card
(

Listnorepk (A)
)

=

{

n!
(n−k)!

if k ≤ n

0 if k > n
. (21.20)

Proof. If k > n, then the set Listnorepk (A) is clearly empty, so

card
(

Listnorepk (A)
)

= 0 ,

in agreement with (21.20).
Now let us consider the case when k ≤ n.
In this case, we can generate all the members a = (a1, a2, . . . , ak) of

Listnorepk (A) in k steps:

Step 1: Choose a1. This can be done in n ways.

Step 2: Choose a2. This can be done in n − 1 ways, because after we have
chosen a1 in step 1 we are no longer allowed to choose a2 to be equal to a1,
so there are only n− 1 possible values for a2.
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Step 3: Choose a3. This can be done in n − 2 ways, because after we have
chosen a1 and a2 in steps 1, 2 we are no longer allowed to choose a3 to be
equal to a1 or to a2, so there are only n− 2 possible values for a3.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Step k: Choose ak. This can be done in n − (k − 1) ways, because after we
have chosen a1, a2, . . . , ak−1 in steps 1, 2, . . . , k − 1 we are no longer allowed
to choose ak to be equal to any of the aj for j = 1, 2, . . . , k − 1, so there are
only n− (k − 1) possible values for ak.

So the number of members of Listnorepk (A) is the product
∏k

j=1 qj of k factors
q1, q2, . . . , qk, where q1 = n, q2 = n− 1, q3 = n− 2, and so on, until we get to
qk = n− (k − 1). Then qj = n− (j − 1) for j = 1, 2, . . . , k. That is,

card
(

Listnorepk (A)
)

=
k
∏

j=1

(n− (j − 1)) ,

or
card

(

Listnorepk (A)
)

= n× (n− 1)× · · · × (n− (k − 1)) .

Since

k
∏

j=1

(n− (j − 1)) =

∏n

j=1(n− (j − 1))
∏n

j=k+1(n− (j − 1))

=

∏n

i=1 i
∏n−k

i=1 i

=
n!

(n− k)!

(where we have made the change of variables i = n − (j − 1), and used the
facts that (i) as j varies from 1 to n, i varies from n to 1, and (ii) as j varies
from k + 1 to n, i varies from n− k to 1), it follows that

card
(

Listnorepk (A)
)

==
n!

(n− k)!
.

So our result is proved. Q.E.D.
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21.3.9 Enumerations and permutations

Definition 72. If A is a finite set, a list without repetitions of all the
members of A is called an enumeration of A, or a permutation of A. �

It is clear that the set of all enumerations of A is the set Listnorepcard(A)(A) of all

lists of length card(A) of members of A without repetitions. So we get

Theorem 87. The number of enumerations of a finite set A with cardinality
n is n!.

Proof. Theorem 86 says that if card(A) = n, k ∈ IN ∪ {0}, and k ≥ n,

then card
(

Listnorepk (A)
)

= n!
(n−k)!

. In our case, k = n, so n − k = 0, and

(n− k)! = 1 (because 0! = 1), so we get card(Listnorepn (A)) = n!. Q.E.D.

21.3.10 The binomial coefficients

We recall the definition of the binomial coefficients, given earlier:

Definition 73. If n, k are nonnegative integers such that k ≤ n, then the

binomial coefficient

(

n
k

)

is defined by the formula

(

n

k

)

=
n!

k!(n− k)!
. (21.21)

One of the most important facts about the numbers

(

n
k

)

is that they are

always integers.

Remark 38. It is not obvious at all from the definition that
(

n

k

)

is always
an integer.

For example: why should
(

17
9

)

be an integer? Why does 17! have
to be divisible by 9! × 8!? There is no doubt that 17! has to be divisible
by 9!, because 17! = 17× 16× 15× 14× 13× 12× 11× 10× 9!. But why is
the quotient

17!

9!
= 17× 16× 15× 14× 13× 12× 11× 10
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divisible by 8!? In this particular example, it is easy to do the cancellations,
and get

17!

8!9!
=

17× 16× 15× 14× 13× 12× 11× 10

8× 7× 6× 5× 4× 3× 2

=
17× 15× 14× 13× 12× 11× 10

7× 6× 5× 4× 3

=
17× 13× 12× 11× 10

6× 2
= 17× 13× 11× 10

So in this particular case it is clear that

(

17
9

)

is an integer, but it is not

clear yet why it should be true in general that

(

n
k

)

is an integer

for all n, k ∈ IN ∪ {0} such that k ≤ n.
The following two theorems give one answer to this question. �

Theorem 88. Let n, k ∈ IN ∪ {0} be such that 1 ≤ k ≤ n. Then
(

n+ 1
k

)

=

(

n
k − 1

)

+

(

n
k

)

. (21.22)

Proof. YOU DO IT.

Theorem 89. If n, k are nonnegative integers such that k ≤ n, then the

binomial coefficient

(

n
k

)

is an integer.

Proof. YOU DO IT.

Problem 55. Prove Theorems 88 and 89.
The proof of Theorem 88 should be very easy: you just add the fractions

n!
(k−1)!(n−(k−1))!

and n!
k!(n−k)!

and the answer turns out to be (n+1)!
k!(n−k)!

.
The proof of Theorem 89 should be very easy, by induction. Theorem

88 easily implies that if all the binomial coefficients

(

n
k

)

are integers for

a given n, then all the binomial coefficients

(

n+ 1
k

)

are integers as well.

And this is basically the inductive step.
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But you should write the proof carefully and correctly. In par-
ticular, pay attention to the fact that what you want to prove is a statement
with two quantifiers, but in a proof by induction of (∀n ∈ IN ∪ {0})P (n),
the sentence P (n) has to have n as an open variable, and no other open
variables. So you cannot take P (n) to be a closed formula such as

(∀n ∈ IN ∪ {0})(∀j ∈ IN ∪ {0})
(

k ≤ n =⇒
(

n
k

)

∈ Z

)

,

and you cannot take P (n) to be “k ≤ n =⇒
(

n
k

)

∈ Z” either, because

this formula has two open variables.
Also, you should pay attention in your inductive step to the fact that

Formula (21.22) cannot be applied if k = 0, so you will have to consider the
case when k = 0 separately. �

21.3.11 Counting the number of subsets of a given cardinality

In this section we discuss the following question:

Question 18. If A is a finite set of cardinality n, and k is a nonnegative
integer, how many subsets with k members does A have?

Let us rephrase our question in more formal language.
For a set A, and a nonnegative integer k, we define the set Pk(A) as

follows: Pk(A) is the set of all subsets X of A such that card(X) = k. That
is,

Pk(A) = {X : X ⊆ A ∧ card(X) = k } .

Theorem 90. Let A be a finite set, let n = card(A), and let k be a nonneg-
ative integer. Then the set Pk(A) of all subsets of A that have k members is
finite, and

card
(

Pk(A)
)

=







(

n
k

)

if k ≤ n

0 if k > n
. (21.23)

Proof. If k > n, then the set Pk(A) is clearly empty, so card
(

Pk(A)
)

= 0,

in agreement with (21.23).
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Now let us consider the case when k ≤ n.
In this case, instead of using our general counting principle to find the

number card
(

Pk(A)
)

, we will use it to find a number that we already know,

namely, card
(

Listnorepk (A)
)

.

The key idea is this: we will use a different way of generating the members

of Listnorepk (A). And this will give as an equation for card
(

Pk(A)
)

that we

will be able to solve in order to find card
(

Pk(A)
)

.

We can generate all the members a of Listnorepk (A) (i.e., all the lists of
length k of members of A without repetition) in two steps:

Step 1: Choose the set Set(a) of all the entries of a. Since a has to be a list
of length k without repetitions, the set S has to be a subset of A having k

members. So this step can be done in card
(

Pk(A)
)

ways.

Step 2: Having chosen the set S of entries, create the list a. That is, create
an enumeration of S. Since we already have the k entries of a, there are k!
enumerations of S. (Reason: Theorem 87.)

Then the total number of members of Listnorepk (A) is k!×card
(

Pk(A)
)

. That

is,

card
(

Listnorepk (A)
)

= k!× card
(

Pk(A)
)

.

But we already know that

card
(

Listnorepk (A)
)

=
n!

(n− k)!
,

It follows from the above formulas that

k!× card
(

Pk(A)
)

=
n!

(n− k)!
,

Hence

card
(

Pk(A)
)

=
n!

k!(n− k)!
,

which is the desired result. Q.E.D.
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21.3.12 Some simple counting problems, with some solutions

Solved problem 2. In how many ways can the letters of the word MISSIS-
SIPPI be rearranged?

Solution. Let ν be the number of rearrangements that we are trying to
determine.

We can create a rearrangement of the word MISSISSIPPI in three steps,
as follows:

We first observe that a rearrangement of MISSISSIPPI will consist of putting
one of the letters of MISSISSIPPI in each of 11 slots. Let us number
the slots 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. So the set of slots is IN11, i.e., the set
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}.
And then, here are the three steps:

Step 1. We choose a subset U1 with four members of the set IN11. (These
are the slots where we are going to put an S.) This can be done in n1 ways,
where n1 is the number of 4-member subsets of a set with 11 members.

Step 2. We choose a subset U2 with four members of the set IN11−U1. (These
are the slots where we are going to put an I.) This can be done in n2 ways,
where n2 is the number of 4-member subsets of a set with 7 members.)

Step 3. Now that we have three slots left, we have to put an M in one of
them and two P s in the remaining two slots. So all we have to do is choose
the one slot where we will put the M . And this can be done in 3 ways.

So ν = 3n1n2.

It follows from Theorem 90 that n1 =

(

11
4

)

and n2 =

(

7
4

)

.

Hence ν = 3

(

11
4

)(

7
4

)

.

Therefore

ν = 3× 11× 10× 9× 8

4× 3× 3
× 7× 6× 5× 4

4× 3× 2
= 3× 11× 10× 7× 3× 5

= 33× 70× 15

= 2, 310× 15

= 34, 650 .

So the number of rearrangements is equal to 34, 659. �



Math. 300, Fall 2017 434

Problem 56. In how many ways is it posible to rearrange the letters of the
word ABRACADABRA ? �

Solved problem 3. In a group of 100 men and 100 women, in how many
ways can the people be divided into 100 couples consisting of one man and
one woman?

Solution. First we make a list w = (wj)
100
j=1, without repetitions, of the 100

women.

Next we divide the people into couples in 100 steps, as follows:

Step 1. We choose a man m1 to form a couple with w1. This can be done in
100 ways.

Step 2. We choose a man m2 to form a couple with w2. This can be done in
99 ways, because m1 is not available.

Step 3. We choose a man m3 to form a couple with w3. This can be done in
98 ways, because m1 and m2 are not available.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Step 99. We choose a man m99 to form a couple with w99. This can be done
in 2 ways, because only two men are available, since at this point 98 men
have already been chosen.

Step 100. We choose a man m100 to form a couple with w100. This can be
done in only one way, because only one man is still available, since at this
point 99 men have already been chosen.

So the total number of ways to form 100 couples is the product

100× 99× 98× · · · × 2× 1 ,

that is, 100!. �

Solved problem 4. If S is a finite set, how many unordered pairs {a, b}
such that a ∈ S, b ∈ S, and a 6= b are there?

Solution. The unordered pairs {a, b} such that a ∈ S, b ∈ S, and a 6= b are
exactly the members of the set P2(S) of all two-member subsets of S.

This number was computed in Theorem 90, where we found that

card
(

Pk(S)
)

=

(

card(S)
k

)

whenever k ∈ INn .
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So

card
(

P2(S)
)

=

(

card(S)
2

)

=
1

2
card(S)(card(S)− 1) .

So the number we have been asked to find is equal to 1
2
card(S)(card(S)− 1).

�

Solved problem 5. In a group of 200 people, in how many ways can the
people be divided into 100 sets consisting of two people each?

Remark. The number we get for this problem should be much larger than
the number we got for Problem 3. (Why? Divide the group of 200 people in
any way you like, into two sets M , W of 100 members each, and label the
members of M “men” and the members of W ‘women”. Then in Problem 3
we found out in how many ways one can form 100 couples consisting of one
member of M and one member of W . But here we are asked to form 100
pairs in any way, not just man-woman pairs, so the number should be much
larger.)

Solution. We solve this problem by solving another counting problem in two
ways, and getting an equation for the number we want.

Let P be the given set of 200 people.
Let ν be the number we want to compute.

We compute the number α = card
(

Listnorep200 (P )
)

of all lists without rep-

etition of all the members of P , i.e., of all enumerations of P .
We already know from Theorem 87 that α = 200!.
What we are going to do now is compute that very same number α in a

different way, and this will give us an equation that we will be able to solve
for ν.

We are going to describe a way to generate all the members of the set
Listnorep200 (P ) in 102 steps. Here is how we can do that.

Step 1. We divide the set P into 100 sets with two members each, and we
let Q be the set of 100 2-member subsets of P obtained in this way. Clearly,
the number of ways to do this is ν.

Step 2. Now that we have a set Q of 100 unordered pairs {a, b} of members
of P , which are pairwise disjoint, we produce a list q = (qj)

100
j=1 without

repetitions of all the members of Q (i.e., an enumeration of Q). Since Q has
100 members, this can be done in 100! ways.
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Steps 3 to 102. Now that we have the list q, in 100 steps we order each of
the entries of q. Remember that each entry qj is an unordered pair {a, b}
consisting of two members of P . So we order this pair, that is, we choose one
of the members of the set qj and call it aj, and call bj the other member. In
Step 3 we do this for q1, in Step 4 we do this for q2, and so on, until in Step
102 we do it for q100.

Clearly, in each of the 100 steps we have two ways to order the pair qj.
And now that are finished, we can easily produce a list p without repe-

titions of all the members of P : we let p1 be a1, p2 be b1, p3 be a2, p4 be b2,
and so on. (In general, p2j−1 = aj and p2j = bj, for j = 1, 2, . . . , 100.)

In this way we generate all the enumerations of P .
So there are ν × 100!× 2100 enumerations of P .
It follows that

ν × 100!× 2100 = 200! .

Therefore

ν =
200!

2100100!
. (21.24)

So, finally, we have shown that the number of ways to divide a set with 200
members into 100 2-member sets is 200!

2100100!
. �

Problem 57. Prove that the number ν of equation (21.24) is equal to the
product of all the odd natural numbers from 1 to 199. That is, prove that

ν =
100
∏

j=1

(2j − 1) . (21.25)

Problem 58. Since the number ν given by Equation (21.24) has such a
simple expression, given by Equation (21.25), there has to be a reason for
that. It has to be possible to find a simple way to generate the set D200,2

of all ways of dividing a set with 200 members into 100 2-member sets, in
100 steps, with 2j − 1 options in Step j, so that we can apply the counting
principle and get Formula (21.25).

Find it. �

Problem 59. This problem deals with a generalization of Solved Problem
5.

Let m, q be natural numbers, and let n = qm.
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In a set P of n people, in how many ways can the set P be divided into q sets
each one of which has m members?.

NOTE: Solved Problem 5 was the case when m = 2, q = 100, n = 200.
Here I am asking you to use the same idea as in our solution of Solved
Problem 5 to do the more general case. �

Solved problem 6. A standard deck of playing cards contains 52 cards.
There are 13 different ranks of cards, namely, A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q
and K. And there are four suits: Hearts, Spades, Diamonds and Clubs. For
each rank r and each suit s, the standard 52-card deck contains exactly one
card of rank r and suit s.

A poker hand is a set of five cards.

How many poker hands are there?

Solution. A poker hand is a 5-member subset of the 52-member set of all

cards. According to Theorem the number of such subsets is

(

52
5

)

.

So the solution of our problem is

(

52
5

)

, which is equal to 52!
5!×47!

, i.e., to

52×51×50×49×48
5×4×3×2

. This fraction is in turn equal to 2,598,960.

So the total number of poker hands is 2,598,960, which is about 2, 6 million.

Solved problem 7. This problem is a continuation of Solved Problem 6.

If S is a set of hands, the probability of S is the real number P (S) given by

P (S) =
card(S)

N
,

where N is the number of poker hands. (That is, N = 2, 598, 960.)

A poker hand is a full house if it consists of three cards of one rank and two
cards of another rank.

How many full houses are there? And what is the probability of a full house?

Solution. We use the counting principle. We can generate all full house hands
in four steps as follows:

Step 1, Choose which of the 13 ranks is going to be the one of which there
are going to be three cards in the hand. This can be done in 13 ways.
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Step 2, Choose which of the 12 ranks left after Step 1 is going to be the one
of which there are going to be two cards in the hand. This can be done in
12 ways.

Step 3, Choose which three of the four cards of the rank chosen in step 1
are going to be the ones occurring in the hand. This can be done in 4 ways.
(Choosing three out of four is the same as choosing one out of four, because
choosing three out of four amounts to choosing the one card that will not be

there. Mathematically,

(

4
3

)

=

(

4
1

)

= 4.)

Step 4, Choose which two of the four cards of the rank chosen in step 2 are
going to be the ones occurring in the hand. This can be done in 6 ways,

because

(

4
2

)

= 6.

So the numbers n1, n2, n3, n4 are 13, 12, 4 and 6.
Hence the total number of full houses is 13 × 12 × 4 × 6, which is equal

to 3,754.
So the total number of full houses is 3,754.
As for the probability of a fulls house, it is equal to the quotient 3,754

2,598,960
.

This can be computed exactly, but to have an idea of its magnitude we
just observe that 2, 598, 960 is a little over 2, 5 million, so 3,754

2,598,960
is a little

under 3,754
2,500,000

, which equals 15,016
10,000,000

, that is, approximately, 15 in 10, 000,

or 0.0015, or 0.15%.
So the probability of a full house is approximately 15 in 10, 000, or 0.0015,

or 0.15 percent.

NOTE: A more accurate estimate can be obtained by observing that when
we substituted 2, 500, 000 for 2, 598, 960 we made an error of about 1 in 25,
that is 4%. This resulted in underestimating the denominator of the fraction

3,754
2,598,960

by about 4%, so we overestimated the quotient by about 4%, So we

must reduce the number we found by about 4%. And 4% of 0.15 is about
0.006. This means that a more accurate estimate of the probability is 0.144%.

NOTE: The exact value is 0.1441%. �

Problem 60. This problem is a continuation of Solved Problems 6 and 7.

A poker hand is a two pair hand if it consists of two cards of the same rank,
two cards of another rank, and a fifth card of a rank different from the other
two.
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Determine the number of two pair hands, and the probability of a two pair
hand. �

Problem 61. This problem is a continuation of Solved Problems 6 and 7
and Problem 60 .

A poker hand is a three of a kind hand if it consists of three cards of one
rank and two cards of two different ranks.

Determine the number of three of a kind hands, and the probability of a
three of a kind hand. �

21.4 The binomial theorem

You must have seen for sure the formula

(a+ b)2 = a2 + 2ab+ b2 , (21.26)

and you probably have also seen the formula

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3 , (21.27)

and perhaps even the formula

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4 . (21.28)

You probably must have guessed from these three formulas that there is a
general formula for (a+ b)n. What does this formula look like?

The formula that generalizes (21.26), (21.27), and (21.28), is the bino-
mial formula. And the statement that this formula is valid is the binomial
theorem:



Math. 300, Fall 2017 440

The binomial theorem

Theorem 91. If n is a natural number, and

a, b are real numbersa, then

(a + b)n =

n
∑

k=0

(

n

k

)

akbn−k . (21.29)

aThe formula is equally valid for members of any number system in which
there are operations of addition and multiplication that obey the commutative
laws, the associative laws, and the distributive law of multiplication with rep-
sect to addition. So, for example, the formula is also valid for complex numbers,
or for integers modulo N .

Proof of the binomial theorem. It will be more convenient to work first with
objects that do not necessarily satisfy the commutative law of multiplication.
(For example, a and b could be 2 × 2 matrices, or 3 × 3 matrices, or, more
generally, r × r matrices for any r ∈ IN.) This will give us a formula whose
structure will be be very clear. And then, by making the extra assumption
that multiplication is commutative, we will see how the binomial coefficients
arise.

The first few powers of a+ b are as follows:

(a+ b)1 = a+ b

(a+ b)2 = (a+ b)(a+ b)

= (a+ b)a+ (a+ b)b

= aa+ ba+ ab+ bb

(a+ b)3 = (a+ b)2(a+ b)

= (aa+ ba+ ab+ bb)(a+ b)

= (aa+ ba+ ab+ bb)a+ (aa+ ba+ ab+ bb)b

= aaa+ baa+ aba+ bba+ aab+ bab+ abb+ bbb
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(a+ b)4 = (a+ b)3(a+ b)

= (aaa+ baa+ aba+ bba+ aab+ bab+ abb+ bbb)(a+ b)

= (aaa+ baa+ aba+ bba+ aab+ bab+ abb+ bbb)a

+(aaa+ baa+ aba+ bba+ aab+ bab+ abb+ bbb)b

= aaaa+ baaa+ abaa+ bbaa+ aaba+ baba+ abba+ bbba

+aaab+ baab+ abab+ bbab+ aabb+ babb+ abbb+ bbbb .

It is clear that (a+b)3 is the sum of 8 terms, each one of which is a product
q1q2q3 of three factors, where each factor qj is either a or b. Furthermore, all
possible such products occur in the sum.

And (a+b)4 is the sum of 16 terms, each one of which is a product q1q2q3q4
of four factors, where each factor qj is either a or b. And, again, all possible
such products occur in the sum.

Let us make this precise, and prove that the same pattern occurs for every
power (a+ b)n.

For each natural number n, let Qn(a, b) be the set of all lists q = (qj)
n
j=1

of length n such that each entry qj is either a or b. (That is, Qn(a, b) is the
set of all lists of length n of members of the set {a, b}.) Then it is clear that
Qn(a, b) has 2

n members, (Reason: we can generate the lists q = (qj)
n
j=1 in

n steps. In step 1 we choose q1 to be either a or b. In step 2 we choose q2 to
be either a or b. And so on. There are two ways to make the choice in each
step, so the total number of lists is 2n.)

And, for each member q = (qj)
n
j=1 of Qn(a, b), let

∏

q be the product
∏n

j=1 qj.
Then we will prove:

Lemma 9. The power (a+ b)n is the sum of the products
∏

q of all the lists
q ∈ Qn(a, b). That is,

(a+ b)n =
∑

q∈Qn(a,b)

∏

q . (21.30)

Proof of the lemma. Let P (n) be the statement “(a+ b)n =
∑

q∈Qn(a,b)

∏

q”.

We prove (∀n ∈ IN)P (n) by induction.

Base step. P (1) says “a+ b = a+ b” (because Q1(a, b) consists of just two
lists, namely, (a) and (b)). So P (1) is true.
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Inductive step. Let n ∈ IN be arbitrary. Assume P (n) is true. That means
that

(a+ b)n =
∑

q∈Qn(a,b)

∏

q . (21.31)

Then

(a+ b)n+1 =
(

∑

q∈Qn(a,b)

∏

q
)

(a+ b)

=
(

∑

q∈Qn(a,b)

∏

q
)

a+
(

∑

q∈Qn(a,b)

∏

q
)

b

=
(

∑

q∈Qn(a,b)

(
∏

q)a
)

+
(

∑

q∈Qn(a,b)

(
∏

q)b
)

=
(

∑

q∈Qn(a,b)

∏

(q#(a))
)

+
(

∑

q∈Qn(a,b)

∏

q#(b)
)

,

where q#(a), q#(b), stand for the concatenations of the list q and the one-
entry lists (a), (b) (that is, q#(a) = (rj)

n+1
j=1 , where rj = qj for j = 1, . . . , n,

and rn+1 = a, and q#(b) = (sj)
n+1
j=1 , where sj = qj for j = 1, . . . , n, and

sn+1 = b).
The 2n+1 lists q#(a), q#(b), as q ranges over all the lists q ∈ Qn(a, b),

are all the lists in Qn+1(a, b). Therefore

(

∑

q∈Qn(a,b)

∏

(q#(a))
)

+
(

∑

q∈Qn(a,b)

∏

q#(b)
)

=
∑

q∈Qn+1(a,b)

∏

q ,

and then
(a+ b)n+1 =

∑

q∈Qn+1(a,b)

∏

q . (21.32)

So P (n+ 1) holds.
Then the PMI implies that P (n) is true for all n, completing the proof of

the lemma.
We now return to the proof of Theorem 91.
We know that (a+b)n is the sum of 2n terms, each of which is the product

∏

q for a list q ∈ Qn(a, b).
We now assume that a and b belong to a number system where the com-

mutative law of multiplication holds. Then in every product
∏

q we can
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move all the a factors to the left, and conclude that

∏

q = ak(q)bn−k(q)

where k(q) is the number of a’s that occur in the list q. (For example, if
q = (a, b, b, b, a, a, b, a, b, b, a, b, a, a, b, b, a) then

∏

q = a8b9.)
So:

(a+ b)n =
∑

q∈Qn(a,b)

ak(q)bn−k(q) . (21.33)

Let us group together, for each k, all the terms corresponding to lists q
that have k a’s. To do this, let me define Qn(k, a, b) to be the set of all
lists q ∈ Qn(a, b) such that k(q) = k. Then we can sum first over all
q ∈ Qn(, k, a, b), for each k, and then sum over all k. We get

(a+ b)n =
n
∑

k=0

(

∑

q∈Qn(k,a,b)

ak(q)bn−k(q)
)

,

that is,

(a+ b)n =
n
∑

k=0

(

∑

q∈Qn(k,a,b)

akbn−k
)

. (21.34)

Now, all the terms in the sum
∑

q∈Qn(k,a,b)
akbn−k have the same value,

namely, akbn−k. So the sum
∑

q∈Qn(k,a,b)
akbn−k is equal to νka

kbn−k, where
νk is the number of terms in the sum. And then

(a+ b)n =
n
∑

k=0

νka
kbn−k . (21.35)

To conclude, we have to determine the numbers νk. Clearly, νk is the number
of members of Qn(k, a, b), that is, the number of lists q = (qj)

n
j=1 of a’s and

b’s that have k a’s.
Now, each list q ∈ Qn(a, b) corresponds to a subset S(q) of the set INn

as follows: for a list q ∈ Qn(a, b), let S(q) be the set of those indices j ∈ INn

such that qj = a. (In other words, a list q of length n whose entries are a’s
and b’s is determined by the set of those locations j where the entry qj of
q is a.) In this way, the 2n lists belonging to Qn(a, b) correspond to the 2n

subsets of INn.



Math. 300, Fall 2017 444

And, with this correspondence, if k ∈ IN ∪ {0} and k ≤ n, the lists with
k entries equal to a correspond to the subsets of INn that have k members,
i.e., to the members of Pk(INn). It then follows that the number νk of such

lists is equal to the cardinality of Pk(INn), that is, to

(

n
k

)

.

Hence νk =

(

n
k

)

, and (21.35) becomes

(a+ b)n =
n
∑

k=0

(

n
k

)

akbn−k , (21.36)

which is the binomial formula. Q.E.D.

21.4.1 Some important facts about the binomial formula I: the
sum of the binomial coefficients

In the binomial formula, if we plug in a = 1, b = 1, we get

2n =
n
∑

k=0

(

n
k

)

, (21.37)

because, when a = 1 and b = 1, all the products akbn−k = 1 are equal to 1.
This identity has been derived from the binomial formula, but both sides

have meanings in terms of set counting. So there has to be a reason for
(21.37) in terms of set counting. What is the reason?

Actually, the answer is quite simple: 2n is the number of subsets of a set

A with n members, i.e., the cardinality of the power set P(A). And

(

n
k

)

is the number of subsets of A that have k members, i.e., the cardinality of
Pk(A).

Since every subset X of A is in Pk(A) for one and only one k, it is clear
that the sets Pk(A), for k = 0, 1, . . . , n are pairwise disjoint, and their union
is P(A).

Then

card
(

P(A)
)

=
n
∑

k=0

card
(

Pk(A)
)

,

that is

2n =
n
∑

k=0

(

n
k

)

.
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This is the set-theoretic explanation for Formula (21.37).

21.4.2 Some important facts about the binomial formula II: the
alternating sum of the binomial coefficients

In the binomial formula, if we plug in a = −1, b = 1, the left-hand side is
zero, because (1− 1)n = 0. So the formula becomes

0 =
n
∑

k=0

(−1)k
(

n
k

)

. (21.38)

This identity has been derived from the binomial formula, but both sides
have meanings in terms of set counting. So there has to be a reason for
(21.38) in terms of set counting. What is the reason?

Actually, the answer is quite simple. The power (−1)k is equal to +1
when k is even and to −1 when k is odd.

So formula (21.38) actually says:

0 =
∑

k even

(

n
k

)

−
∑

k odd

(

n
k

)

,

that is,
∑

k even

(

n
k

)

=
∑

k odd

(

n
k

)

. (21.39)

If A is a set with n members, then the number
∑

k even

(

n
k

)

is the sum of

the cardinalities of all the sets Pk(A) for k even. If we use Peven(A) to denote
the set of all subsets of A that have an even number of members, then

Peven(A) =
⋃

k even

Pk(A) ,

and the sets Pk(A) are pairwise disjoint. So

card
(

Peven(A)
)

=
∑

k even

card
(

Pk(A)
)

=
∑

k even

(

n
k

)

.
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Similarly,

card
(

Podd(A)
)

=
∑

k odd

card
(

Pk(A)
)

=
∑

k odd

(

n
k

)

.

So Formula (21.39) just says that

card
(

Peven(A)
)

= card
(

Podd(A)
)

,

that is, that if A is a finite set, then the number of subsets of A with
an even number of members is equal to the number of subsets of
A with an odd number of members.

This is a fact that you proved in Problem 54 using purely set-theoretic
arguments.

So now we have found the set-theoretic explanation for Formula (21.38).

21.4.3 Some important facts about the binomial formula III: The
recursive formula for the binomial coefficients

In Problem (55) you proved that the binomial coefficients

(

n
k

)

are integers.

And this was done by first proving the formula

(

n+ 1
k

)

=

(

n
k − 1

)

+

(

n
k

)

. (21.40)

which expresses the binomial coefficients for n + 1 in terms of the the bi-
nomial coefficients for n, and makes it easy to prove by induction that all
the binomial coefficients are integers. (The proof is, simply, that if all the

binomial coefficients

(

n
k

)

for a given n are integers, then all the binomial

coefficients

(

n+ 1
k

)

for n + 1 are integers as well, because of Formula

(21.40). This is the inductive step of the proof. The base step is trivial,

because

(

1
0

)

=

(

1
1

)

= 1, so all the binomial coefficients for n = 1 are

integers.)
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On the other hand, we have also given a totally different proof of the
fact that he binomial coefficients are integers, based on set counting: we
proved that the binomial coefficients are the cardinalities of certain finite
sets (precisely, the sets Pk(A)), and this implies that they are integers.

Since we have two different proofs of the fact that the binomial coeffi-
cients are integers, one based on set counting and the other one based on
proving Formula (21.40) by purely algebraic means, it is reasonable to ask
the following question: is there a set-theoretic reason for Formula
(21.40)?

The answer is “yes, there is a very simple set-theoretic proof of
Formula (21.40)”.

Here is the proof: Let A be a set with n+ 1 members. Pick a member a
if A. Let B = A− {a}, so B has n members.

As before, let Pk(A) be the set of all subsets X of A that have k members.
Then, if k > 0, the members of Pk(A) are of two kinds: those that have a as
a member, and those that do not.

The members of Pk(A) that do not have a as a member are exactly the

subsets of B with k members. So the number of such subsets is

(

n
k

)

.

The members of Pk(A) that have a as a member are obtained by taking
subsets of B with k − 1 members and adding a to them. So the number of
these sets is exactly the number of subsets of B with k− 1 members. So the

number of such subsets is

(

n
k − 1

)

.

It follows that

card
(

Pk(A)
)

=

(

n
k

)

+

(

n
k − 1

)

.

But card
(

Pk(A)
)

=

(

n+ 1
k

)

.

So
(

n+ 1
k

)

=

(

n
k

)

+

(

n
k − 1

)

.

This proves (21.40), and we have found a purely set-theoretic explanation for
(21.40).

Problem 62.
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1. Prove that the binomial coefficients satisfy the following symmetry
law:

(

n
k

)

=

(

n
n− k

)

whenever n, k ∈ IN ∪ {0} and k ≤ n .

(21.41)

2. Find a a purely set-theoretic explanation for (21.41). �

21.4.4 Some important facts about the binomial formula IV:
Tartaglia’s triangle (a.k.a. Pascal’s triangle)

The following famous array of numbers is called by everal names. The most
common ones are Tartaglia’s triangle, and Pascal’s triangle. The array con-
tinues indefinitely, but I am only showing the first 11 lines.

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1

1 11 55 165 330 462 462 330 165 55 11 1

The entries of the array are the binomial coefficients

(

n
k

)

. Each row

corresponds to one value of n, and you can find which value it is by looking
at the second entry of the row from the left, that is, the entry to the right of
the leftmost 1.

And, for each row, the entries correspond to the values of k. So, for
example, the row for n = 7 says that

(

7
0

)

= 1 ,

(

7
1

)

= 7 ,

(

7
2

)

= 21 ,

(

7
3

)

= 35 ,
(

7
4

)

= 35 ,

(

7
5

)

= 21 ,

(

7
6

)

= 7 ,

(

7
7

)

= 1 .
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The entries of the array are computed using the recursive formula
(

n+ 1
k

)

=

(

n
k − 1

)

+

(

n
k

)

. (21.42)

Each entry is the sum of the two entries above it, the one Northwest of it
and the one Northeast of it.

For example, if you look at the 84 in the row for n = 9, you will ser that

1. 84 =

(

8
3

)

.

2. 84 = 28 + 56.

3. 28 =

(

7
2

)

.

4. 56 =

(

7
3

)

.

5. So the fact that 84 = 28 + 56 corresponds to the fact that

(

8
3

)

=
(

7
2

)

+

(

7
3

)

, which is a special case of (21.42).

Example 68. Tartaglia’s triangle is useful if you want to write the full bi-
nomial formula for large exponents.

Let us write the binomial formula for (a+b)11. According to the triangle,
the formula is

(a+ b)11 = a11 + 11a10b+ 55a9b2 + 165a8b3 + 330a7b4 + 462a6b5

+462a5b6 + 330a4b7 + 165a3b8 + 55a2b9 + 11ab10 + b11 .

Problem 63.

1. Write the full Tartaglia triangle up to n = 14.

2. Verify by looking at the rows for n = 2, 3, 5, 7, 11, 13 that the following
statement is true in all these cases:

(#) All the binomial coefficients

(

n
k

)

, except for k = 0 and k = n,

are divisible by n.
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3. Verify by looking at the rows for n = 4, 6, 8, 9, 10, 12 that statement
(#) is not true in those cases:

4. Prove that statement (#) is true in general for every prime number
n, not just for n = 2, 3, 5, 7, 11, 13.

Problem 64. Prove that for every natural number n the real number xn

given by
xn = (3 + 4

√
7)n + (3− 4

√
7)n

is an integer. �

Problem 65. Prove that for every natural number n

n
∑

k=0

(

n
k

)2

=

(

2n
n

)

.

(HINT: (1+x)n(1+x)n = (1+x)2n. Expand the three powers of sums using
the binomial formula, and compare the coefficients of xn. Remember that
(

n
k

)

=

(

n
n− k

)

.) �


