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6 The ordering of the integers

We have not yet discussed how we can order the integers, i.e., talk about
an integer m being “less than”, or “greater than”, an integer n, and prove,
for example, that if m and n are integers then one and only one of the three
possibilties m < n, m = n, m > n occurs.

The easiest way to do that, given what we know so far, is to give the
following definition:

Definition 14. Let m,n be integers. We say that

• m is smaller than n (or m is less than n), and write

m < n ,

if n−m is a natural number.

• m is smaller than or equal to n (or m is less than or equal to n), and
write

m ≤ n ,

if m < n or m = n.

• m is larger than n (or m is greater than n), and write

m > n ,

if m− n is a natural number.

• m is larger than or equal to n (or m is greater than or equal to n), and
write

m ≥ n ,

if m > n or m = n. �

6.1 Elementary facts about <, >, ≤, and ≥
The symbols <, >, ≤, and ≥ represent binary relations. So before we
discuss them we must talk about relations in general.
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6.1.1 Unary and binary relations

Unary and binary relations, a.k.a. predicates, a.k.a.
properties

A relation, or predicate, or property, is something that can be as-
serted about one or several variable objects, called the inputs, or
arguments, of the relation (or predicate, or property), in such a way
that, for each choice of a value for each of the inputs, the assertion
has a definite truth value, i.e., is true or false.

A relation (predicate, property) with one argument is called a
unary relation (predicate, property).

A relation (predicate, property) with two arguments is called a
binary relation (predicate, property).

Usually, each of the arguments of a relation has a domain, i.e.
a set D such that the argument takes values in D. (And, for a
binary relation with two arguments x, y, it can happen sometimes
that the domain of the x variable is different from the domain of
the y variable. But usually both domains are the same set D, and
in that case we say that the relation is a binary relation on D.)

For unary relations (predicates, properties) it is customary to
use the words predicate, or property, rather than relation.

Example 27.

• Positivity of integers is a unary predicate, whose domain is the set
Z of all integers: it takes an integer n as input and results in the truth
value “true” if n > 0, and in the truth value “false” if it is not true that
n > 0 (that is, if n ≤ 0). We can name this predicate by the formula
describing it, and talk about “the predicate ‘n > 0’ ”, or we can call it
“positivity”, or, if you want to make it clear that we are talking about
integer inputs, “positivity of integers”.

• Nonnegativity of integers is also a unary predicate whose domain is
Z: it takes an integer n as input and results in the truth value “true” if
n ≥ 0, and in the truth value “false” if it is not true that n ≥ 0 (that is,
if n < 0). We can name this predicate by the formula describing it, and
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talk about “the predicate ‘n ≥ 0’ ”, or we can call it “nonnegativity”,
or, if you want to make it clear that we are talking about integer inputs,
“nonnegativitiy of integers”.

• There are also unary predicates positivity of real numbers and
nonnegativity of real numbers. They are defined in the same way
as positivity of integers and nonnegativity of integers, except for the
fact that now the arguments take values in the set IR of all real numn-
bers.

• Evenness of integers is a unary predicate whose domain is Z: it
takes an integer n as input and results in the truth value “true” if n is
even (i.e., if 2|n), and in the truth value “false” if n is not even (and
we know now that “n is ot even” is equiva;ent to “n is odd”). We
can name this predicate by the formula describing it, and talk about
“the predicate ‘n is even’ ”, or “the predicate ‘2|n’ ”, or we can call it
“evenness”, or, if you want to make it clear that we are talking about
integer inputs, “evenness of integers”.

• Primality, that is, the property of being a prime number, is a unary
predicate whose domain1: it takes an integer n as input and results in
the truth value “true” if n is a prime number, and in the truth value
“false” if n is not a prime number. We can name this predicate by the
formula describing it, and talk about “the predicate ‘p is prime’ ”, or
we can call this predicate “the ‘is prime’ predicate”, or “primality”.

• You may ask whether there is such a thing as “evenness of real num-
bers”. You could of course define such a thing, by saying that “a real
number x is even if there exists a real number y such that x = 2y”.
But this would be a very stupid predicate, because every real number
is even according to this definition, so saying that a real number x is
even would just amount to saying that x is a real number, which says
nothing new about x.

• Equality (on any set you want) is a binary relation 2: it takes two
objects x, y (of any kind, integers, real numbers, cows, giraffes, cities,

1You could also take the domain to be IN. It does not matter, because the integers
that are not natural numbers are never prime.

2Or predicate, or property.
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molecules, sets, functions), as inputs, and results in the truth value
“true” if x = y (that is, if x and y are one and the same thing) and the
truth value “false” if x 6= y. We can name this relation by the formula
describing it, and talk about “the relation ‘x = y’ ” but a nicer, better
way is to call it “equality”.

• Divisibility is a binary relation on the set Z of all integers: it takes
two integers m, n as inputs, and results in the truth value “true” if m
is divisible by n, that is, if n|m, and in the truth value “false” if m is
not divisible by n. We can name this relation by the formula describing
it, and talk about “the relation “n|m’ ” but a nicer, better way is to
call it “divisibility”.

• Less than is a binary relation on Z: it takes two integers m, n as
inputs, and results in the truth value “true” if m < n, and in the truth
value “false” if it is not true that m < n. We can name this relation
by the formula describing it, and talk about “the relation ‘m < n’ ” or
we can call it “the ‘less than’ relation”.

• Less than or equal to is a binary relation on Z: it takes two integers
m, n as inputs, and results in the truth value “true” if m ≤ n, and
in the truth value “false” if it is not true that m ≤ n, We can name
this relation by the formula describing it, and talk about “the relation
‘m ≤ n’ ” or we can call it “the ‘less than or equal to’ relation”.

• Naturally, there are also relations “less than” and “less than or equal
to between real numbers.

• And there are also relations “greater than” and “greater than or equal
to”, between integers and between real numbers.

Remark 11. You may have noticed that relations are very similar to op-
erations. Both have arguments, and produce a value for each value of the
arguments. The difference between them is that an operation produces a
thing (number, set, function, giraffe, whatever) as output, and a relation or
predicate produces a truth value (true or false). �

For example:

• Addition of integers is a binary operation: given two integers m,n
it produces as output an integer m+ n.
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• Divisibility of integers is a binary relation: given two integers m,n
it produces a true-false output according to the following rule:

– If m is divisible by n then the output is “true”.

– If m is not divisible by n then the output is “false”.
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6.1.2 Properties of the relations <, >, ≤, and ≥
There are several interesting properties that a binary relation may or may
not have.

Definition 15. A binary relation xRy on a set S is

• reflexive if xRx for all members x of S; that is, R is reflexive if

(∀x ∈ S)xRx ,

• irreflexive if3 ∼ xRx for all members x of S; that is, R is irreflexive if

(∀x ∈ S) ∼ xRx ,

3Recall that “∼” stands for “it is not true that”, so “∼ xRx” means “x is not R-related
to x”.
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• symmetric if, whenever x ∈ S, y ∈ S are such that xRy, then it follows
that yRx; that is, R is symmetric if

(∀x ∈ S)(∀y ∈ S)(xRy =⇒ yRx) ,

• antisymmetric if, whenever x ∈ S, y ∈ S are such that xRy and yRx,
then it follows that x = y. (That is, R is antisymmetric if

(∀x ∈ S)(∀y ∈ S)((xRy ∧ yRx) =⇒ x = y) ,

• transitive if, whenever x ∈ S, y ∈ S, z ∈ S are such that xRy and yRz,
then it follows that xRz. That is, R is transitive if

(∀x ∈ S)(∀y ∈ S)(∀z ∈ S)
(

(xRy ∧ yRz) =⇒ xRz
)

.

• trichotomous if it satisfies the trichotomy 4 law: whenever x ∈ S and
y ∈ S it follows that one and only one of the following three assertions
is true: xRy, x = y, yRx. That is, R is trichotomous if

(∀x ∈ S)(∀y ∈ S)

(

(xRy ∨ x = y ∨ yRx)

∧
(

x = y=⇒
(

(∼ xRy)∧(∼ yRx)
)

)

∧
(

xRy=⇒
(

(∼ x = y)∧(∼ yRx)
)

)

)

.

Question 4. In the explanation of what it means for a binary relation to be
trichotomous, whwre I wrote the condition in formal language, explain why
it was not necessary to include a third clause stating that

yRx =⇒
(

(∼ x = y) ∧ (∼ xRy)
)

.

Theorem 27. The relation “<”, on the set of integers, is irreflexive, tran-
sitive, and trichotomous.

Translated into English, the above statement says that:

4A dichotomy is a situation in which one and only one of two possibilities occurs.
Similarly, a trichotomy is a situation in which one and only one of three possibilities
occurs.
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1. If m is an integer, then it is not the case that m < m or m > m.

2. If m,n, p are integers such that m < n and n < p, then m < p.

3. If m, n are integers, then one and only one of the following three
possibilities occurs: m < n, m = n, n < m.

Proof.
We first prove that “<” is transitive.

Let m,n, p be arbitrary integers.

Assume that m < n and n < p.

We want to prove that m < p.

It follows from Definition 14 that n−m ∈ IN and p− n ∈ IN.

Therefore (p− n) + (n−m) ∈ IN, because the sum of two natural
numbers is a natural number.

But (p− n) + (n−m) = p−m.

So p−m ∈ IN.

Therefore m < p.

This completes the proof that “<” is transitive.

We now prove the trichotomy law.

Let m, n be arbitrary integers.

Let p = m− n.

Then p ∈ Z.

So Basic Fact BFZ9 tells us that either p ∈ IN, or −p ∈ IN, or p = 0.

We analyze separately the three cases, and show that

n < m ∨m = n ∨m < n (6.1)

in each of the cases.

If p ∈ IN, then m− n ∈ IN, so n < m, and then (6.1) holds.

If −p ∈ IN, then −(m− n) ∈ IN, so (6.1) holds.
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If p = 0, then m− n = 0, so m = n, and then (6.1) holds.

So in each of the three cases, we have proved that (6.1) is

Therefore n < m ∨m = n ∨m < n .

We now show that it is not possible for two of the three possibilities to
occur.

Suppose first that m = n. Then m − n = 0 and n − m = 0. So it is
not possible to have m < n, because “m < n” means “n − m ∈ IN”,
which is not possible since n−m = 0 and 0 /∈ IN. And it is not possible
to have n < m, because “n < m” means “m − n ∈ IN”, which cannot
happen since m− n = 0 and 0 /∈ IN.

Now suppose that n < m. Then we already know that m 6= n.

Furthermore, it is not the case that m < n. (Reason: Suppose5 that
m < n. Then m − n ∈ IN and n −m ∈ IN. It follows that (m − n) +
(n−m) ∈ IN, so 0 ∈ IN, because 0 = (m− n) + (n−m). But we know
that 0 /∈ IN. So o ∈ IN ∧ 0 /∈ IN, which is a contradiction. Hence it is
not true that m < n.)

Finally, let us assume that m < n. Then the posibilities n = m and
n < m do not occur. (There is no need to give a separate proof of this
fact. We proved in the previous paragraph that “if n < m then m 6= n
and ∼ m < n”. This means6 that “if a < b then b 6= a and ∼ b < a”.
Now apply this with “n” in the role of “b” and “m” in the role of “a”.
You get “if m < n then n 6= m and ∼ n < m”.)

So we have proved that “one and only one of the possibilities ‘m < n’,
‘m = n’, ‘n < m’, occurs” for arbitrary integers m,n.

Therefore we can conclude that

5Another proof by contradiction here.
6Remember that in order to say something about arbitrary objects you can use any

letters you want as names for those objects. So, for example, once you know that “if a|b
and a|c then a|b + c”, you can rewrite this as “if m|n and m|p then m|n + p”. And then
you can rewrite this as “if b|a and b|c then b|a+ c. These are all different ways of saying
exactly the same thing.
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If m and n are arbitrary integers, then one and only one of the
possibilities “m < n”, “m = n”, “n < m”, occurs.

Q.E.D.

Remark 12. Clearly, the relation “¿” is also irreflexive, transitive, and tri-
chotomous. This can be proved exactly as we proved Theorem 27, or using
the result of Problem 15 below. �

Problem 15. The inverse of a binary relation R on a set S is the binary
relation R−1 on S defined by

xR−1y ⇐⇒ yRx if x ∈ S, y ∈ S .

Prove that

1. The inverse of “<” is “>”.

2. If a relation R on a set S is reflexive, then R−1 is reflexive.

3. If a relation R on a set S is irreflexive, then R−1 is irreflexive.

4. If a relation R on a set S is symmetric, then R−1 is symmetric.

5. If a relation R on a set S is antisymmetric, then R−1 is antisymmetric.

6. If a relation R on a set S is transitive, then R−1 is transitive.

7. If a relation R on a set S is trichotomous, then R−1 is trichotomous.�

Problem 16. For each of the following binary relations on the given set,
indicate whether the relation is reflexive, irreflexive, symmetric, antisym-
metric, transitive, or trichotomous:

1. Equality (on any set S).

2. Divisibility (that is, the relation “m|n”), on the set IN.

3. Divisibility (that is, the relation “m|n”), on the set Z.

4. “Less than or equal to”, on the set Z.
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5. “<” on the set F of all continuous real-valued functions on the interval
[0, 1]. (If f, g are two functions defined on [0, 1], we say that f < g if
f(x) < g(x) for every x belonging to the interval [0, 1]. For example,
if f is the function defined by f(x) = x2 for 0 ≤ x ≤ 1. and g is the
function defined by g(x) = 1 + x for 0 ≤ x ≤ 1. then f < g, because,
if x is an arbitrary member of [0, 1], then x2 < 1 + x, fer the following
reason: if 0 < x < 1, then x2 < x, so x2 < 1 + x; if x = 0, then x2 = 0
and 1 + x = 1, so x2 < 1 + x; if x = 1 then x2 = 1 and 1 + x = 2, so
x2 < 1 + x.) �

Definition 16. Let n be an integer. We say that n is

• positive if n > 0,

• negative if n < 0,

• nonnegative if n ≥ 0,

• nonpositive if n ≤ 0. �

The precise meaning of “positive”

The distinction between “positive” and “nonnegative”
is important. “Positive” means “> 0”, whereas “non-
negative” means “≥ 0”. So the positive integers are
exactly the same as the natural numbers, and the non-
negative integers are the natural numbers together
with 0.

Theorem 28.

1. The sum of two positive integers is a positive integer.

2. The product of two positive integers is a positive integer.

3. The sum of two negative integers is a negative integer.

4. The product of two negative integers is a positive integer.

5. The product of a positive integers and a negatiue integer is a negative
integer.
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Proof. These statements are so trivial that they do not need really a proof.
But we will give one all the same.

The first and second statement are true because we already know that
the sum and the product of two natural numbers is a natural number, and
“positive integer” means exactly the same as “natural number”. The third
and fourth statements are true because, if a and b are negative integers, then
−a ∈ IN and −b ∈ IN, so

• (−a) + (−b) ∈ IN and (−a)× (−b) ∈ IN. But (−a) + (−b) = −(a+ b),
so −(a+ b) ∈ IN, and then a+ b is negative.

• (−a)× (−b) = ab, so ab ∈ IN, i.e., ab is positive.

The fifth statement is true because, if a is a positive integer and b is a negative
integer, then a ∈ IN and −b ∈ IN, so a× (−b) ∈ IN. But a× (−b) = −ab, so
−ab ∈ IN, and then ab is negative. �

Problem 17. Prove the following laws for manipulating inequalities:

1. If a, b, c, d are integers, a ≤ b and c < d, then a+ c < b+ d.

2. If a, b, c, d are integers, a ≤ b and c ≤ d, then a+ c ≤ b+ d.

3. If a, b, c, d are integers, a < b, c < d, a ≥ 0, and c ≥ 0 then ac < bd.

4. If a, b are integers, a < b, and a ≥ 0 then a2 < b2.

NOTE: The square of an integer a is defined by

a2 = a× a .

Naturally, this definition makes sense on any system of objects in which an
operation of multiplication is defined, such as, for example, the rational num-
bers, the real numbers, the complex numbers, square matrices, or functions.
�

6.2 When is the product of two integers equal to zero?

Is it possible for the product of two nonzero integers to be equal to zero?
The answer is “no”, and the proof of this fact is very easy, now that we know
about the ordering of the integers, so we give it now.
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Theorem 29. If a, b are integers such that ab = 0, then a = 0 or b = 0.

Proof.
Let a, b be arbitrary integers.

Assume that ab = 0.

We want to prove that a = 0 or b = 0.

We will do a proof by contradiction .

Assume that it is not true that a = 0 ∨ b = 0.

Then a 6= 0 and b 6= 0.

Since a 6= 0, either a > 0 or a < 0.

Similarly, either b > 0 or b < 0, because b 6= 0.

So there are four possibilities:

1. a > 0 and b > 0.

2. a > 0 and b < 0.

3. a < 0 and b > 0.

4. a < 0 and b < 0.

In cases 1 and 4, Theorem 28 tells us that ab > 0. So ab 6= 0.

In cases 2 and 3, Theorem 28 tells us that ab < 0. So ab 6= 0.

So we have proved that ab 6= 0 in all four cases.

Hence ab 6= 0.

But we know that ab = 0.

So ab 6= 0 ∧ ab = 0, which is clearly a contradiction.

We have derived a contradiction from the assumption that the sen-
tence “a = 0 ∨ b = 0” is not true. So the sentence is true, that is,
a = 0 ∨ b = 0 . Q.E.D.
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6.3 The cancellation law for multiplication

Now that we know how to order the integers, we can use this to prove the
cancellation law for multiplication:

Theorem 30. If a, b, c are arbitrary integers such that c 6= 0 and ac = bc,
then it follows that a = b. That is,

(∀a ∈ Z)(∀b ∈ Z)(∀c ∈ Z)((c 6= 0 ∧ ac = bc) =⇒ a = b) . (6.2)

Proof.

Let a, b, c be arbitrary integers.

Assume that c 6= 0 and ac = bc.

Then ac− bc = 0.

But ac− bc = (a− b)c.

So (a− b)c = 0.

Then Theorem 29 tells us that a− b = 0 or c = 0.

But c 6= 0.

Hence a− b = 0.

So a = b.

We have proved “a = b” assuming that c 6= 0 ∧ ac = bc.

So we have proved “if c 6= 0 ∧ ac = bc then a = b.”, that is, “(c 6=
0 ∧ ac = bc) =⇒ a = b.”

We have proved “(c 6= 0 ∧ ac = bc) =⇒ a = b” for arbitrary integers a, b, c.
So we can conclude, thanks to the rule for proving universal sentences, that

(∀a ∈ Z)(∀b ∈ Z)(∀c ∈ Z)((c 6= 0 ∧ ac = bc) =⇒ a = b).

Q.E.D.
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7 *Examples of proofs by contradiction and

by induction

7.1 Solutions of some Diophantine equations

A Diophantine equation is an equation in one or several variables for which
we are only seeking solutions that are integers.

7.1.1 Pythagorean triples

A famous example of a Diophantine equation, motivated by Pythagoras’s
theorem, is the equation

x2 + y2 = z2 . (7.3)

An integer solution of (7.3) is a triple (a, b, c) of integers such that a2+b2 = c2.
An integer solution of (7.3) is called a Pythagorean triple.

A well known example of a Pythagorean triple is (3, 4, 5). This is an
integer solution of (7.3) because 32 + 42 = 9 + 16 = 25 = 52.

Beginning with the Babylonians some 3,000 years ago, mathematicians
have asked the following questions:

1. Are there infinitely many Pythagorean triples?

2. Is there a simple way to generate all the Pythagorean triples?

The asnwer to the first question as stated, is “yes”, but for a very stupid
reason: just take the triple (3, 4, 5) and multiply all three numbers by a
natural number n. Then you get the triple (3n, 4n, 5n), and this is also a
Pythagorean triples because (3n)2 + (4n)2 = 9n2 + 16n2 = 25n2 = (5n)2.

So in this way we can generate an infinite number of Pythagorean triples:
(6, 8, 10), (9, 12, 15), (12, 16, 20), and so on. But notice that all these triples
have a common factor larger than 1. For example, (6, 8, 10) has the common
factor 2, (9, 12, 15) has the common factor 3, and so on.

A much more interesting questions is whether there are infinitely many
Pythagorean triples without a common factor.

Definition 17. An irreducible Pythagorean triple is a Pythagorean triple
(a, b, c) such that a, b and c do not have a nontrivial common factor. (That
is, there does not exist an integer k, different from 1 and −1, such that k|a,
k|b, and k|c.) �
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The triple (3, 4, 5) is irreducible, Another famous example of an irre-
ducible Pythagorean triple is (5, 12, 13). (This is a Pythagorean triple be-
cause 52 = 25, 122 = 144, 132 = 169, and 25 + 144 = 169.)

Problem 18. Prove that there exist infinitely many irreducible Pythagorean
triples. (HINT: (n+ 1)2 = n2 + 2n+ 1.) �

7.1.2 Expressing an integer as the difference of two squares

Let us look at the Diophantine equations

x2 − y2 = 27 , (7.4)

x2 − y2 = 28 , (7.5)

x2 − y2 = 29 , (7.6)

x2 − y2 = 30 , (7.7)

(7.8)

and let us not forget that we are interested in integer solutions.
For Equation (7.4) here are two solutions:

• First solution: x = 6 and y = 3. (This works because 62−32 = 36−9 =
27.)

• Second solution: x = 14 and y = 13. (This works because 142 = 196
and 132 = 169, so 142 − 33 = 196− 169 = 27.)

(And, of course, there are also six other solutions, namely, x = −8 and
y = 6, x = 8 and y = −6, x = −8 and y = −6, x = −14 and y = 13,
x = 14 and y = −13, x = −14 and y = −13. But these solutions are
not very interesting, so we will from now on look for solutions x, y that are
nonnegatve integers.)

And we could ask

Q1: Does Equation (7.4) have other solutions besides the two we have shown?

For Equation (7.5) here is a solution:

• Let x = 8, y = 6. (This works because 83 − 62 = 64− 36 = 28.)

And we could ask
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Q2: Does Equation (7.5) have other solutions besides the one we have shown?

For Equation (7.6) here is a solution:

• Let x = 8, y = 6. (This works because 83 − 62 = 64− 36 = 28.)

And, once again, we could ask

Q3: Does Equation (7.6) have other solutions besides the one we have shown?

Finally, let us look at Equation (7.7). Try as hard as you can, you will not
find a solution.

So it would be natural to ask

Q4: Does Equation (7.7) have any solutions at all?

Just because you have spent a lot of time trying to find a solution and failed,
this does not prove that the equation does not have a solution. To prove
that, we need reasoning. We have to give a proof that the solution does
not exist. And here is the proof.

Theorem 31. Equation (7.7) does not have any integer solutions. That is,
there do not exist integers x, y such that x2 − y2 = 30.

Proof. We prove our result by contradiction .

Assume there exist integers x, y such that x2 − y2 = 30.

Pick a pair of such integers and call them a, b.

So a ∈ Z, b ∈ Z, and a2 − b2 = 30.

It is well known that a2 − b2 = (a− b)(a+ b).

So (a− b)(a+ b) = 30.

On the other hand, the numbers a, b are both odd or both even. (Rea-
son: Suppose7 a was even and b odd. Then a2 would be even and b2

would be odd, so a2 − b2 would be odd. But a2 − b2 = 30, and 30 is
even. A similar argument8 proves that it cannot be the case that a is
odd and b is even.)

7Here we have a proof by contradiction .
8And another proof by contradiction ,
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Since a and b are both odd or both even, the numbers a− b and a+ b
are even.

So we may pick integers j, k such that a− b = 2j and a+ b = 2k.

Then 30 = (a− b)(a+ b) = (2j)× (2k) = 4jk.

So 30 is divisible by 4.

But 30 is not divisible by 4.

Therefore 30 is divisible by 4 and 30 is not divisible by 4 , which is a
contradiction..

So the assumption that there exist integers x, y such that x2 − y2 = 30 has
led us to a contradiction.

Therefore there do not exist integers x, y such that x2 − y2 = 30 . Q.E.D.

The method used in the proof of Theorem 31 can be generalized, and one
can prove the following:

Theorem 32. Let n be an integer. Then there exist integers x, y such that
x2 − y2 = n if and only if n is either odd or divisible by 4.

Proof.

YOU DO IT.

Problem 19. Prove Theorem 32.

HINTS:

1. Study carefully the proof of Theorem 31, and use a similar method.

2. Read Subsection 7.2 to find out how to prove “if and only if” statements.

�
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7.2 Biconditionals (i.e., “if and only if”)

The biconditional symbol ⇐⇒ is read as “if and only if”.
A sentence of the form “A ⇐⇒ B” is a biconditional sentence. We

read it as “A if and only if B”. For example, if A is the sentence “x ≥ 0”,
and B is the statement “x has a square root”, then we can read A ⇐⇒ B as
“x ≥ 0 if and only if x has a square root”.

The meaning of the biconditional symbol. “A if and only if B” means
“if A then B and if B then A”.

That is, “A ⇐⇒ B” means “(A =⇒ B) ∧ (B =⇒ A)”.

The truth value of a biconditional. If A and B are both true or both
false then A ⇔ B is true. If one of A, B is true and the other one is false,
then A ⇔ B is false. So the truth value of A ⇔ B is given in terms of the
truth values of A and B by the following truth table:

A B A ⇔ B

T T T
T F F
F T F
F F T

7.2.1 How to prove a biconditional sentence

The rule for proving biconditionals. In order to prove “A ⇐⇒ B”, you
prove “A =⇒ B” and “B =⇒ A”.

As an example, let us prove:

Proposition 1. If n is an integer, then n is divisible by 6 if and only if n is
divisible by 2 and by 3.

Proof.
We want to prove that

(∀n ∈ Z)
(

6|n ⇐⇒ (2|n ∧ 3|2)
)

. (7.9)

Let n be an arbitrary integer.
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We want to prove that
6|n =⇒ (2|n ∧ 3|n) (7.10)

and that
(2|n ∧ 3|n) =⇒ 6|n . (7.11)

Proof of (7.10):

Assume that 6|n.

Then we can pick an integer k such that n = 6k.

Therefore, n = 3× (2k) and, since 2k ∈ Z, it follows that 3|n.

Also, n = 2× (3k) and, since 3k ∈ Z, it follows that 2|n.

So 2|n and 3|n .

So we have proved (7.10).
Proof of (7.11):

Assume that 2|n and 3|n.

Then we can pick integers j, k such that n = 2j and n = 3k.

Then

n = n× 1

= n× (3− 2)

= 3n− 2n

= 3× (2j)− 2× (3k)

= 6j − 6k

= 6(j − k) .

So 6|n .

So we have proved (7.11).
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Since we have proved (7.10) and (7.11), the rule for proving biconditionals
tells us that we can conclude that

6|n ⇐⇒ (2|n ∧ 3|n) . (7.12)

Since we have proved (7.12) for an arbitrary integer n, we can conclude that

(∀n ∈ Z)
(

6|n ⇐⇒ (2|n ∧ 3|n)
)

. (7.13)

Q.E.D.

7.3 An inequality

Let us use induction to prove an inequality:

Theorem 33. If x is a positive real number, and n is a natural number, then

(1 + x)n ≥ 1 + nx . (7.14)

Proof. We want to prove that

(∀x ∈ IR)

(

x > 0 =⇒
(

(∀n ∈ IN)(1 + x)n ≥ 1 + nx
)

)

. (7.15)

Let x be an arbitrary real number.

We want to prove that

x > 0 =⇒
(

(∀n ∈ IN)(1 + x)n ≥ 1 + nx
)

. (7.16)

Assume that x > 0.

We want to prove that

(∀n ∈ IN)(1 + x)n ≥ 1 + nx . (7.17)

We prove this by induction.

Let P (n) be the statement “(1 + x)n ≥ 1 + nx”.

Base step. We have to prove P (1).
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But P (1) says “1 + x ≥ 1 + x”, and this is obviously true.

So P (1) is true, and we are done with the base case.

Inductive step. We have to prove

(∀n ∈ IN)(P (n) =⇒ P (n+ 1)) . (7.18)

Let n be an arbitrary natural number.

Assume P (n).

Then
(1 + x)n ≥ 1 + nx . (7.19)

Multiplying both sides of (7.19) by 1 + x (which is possible
because 1 + x > 0), we get

(1 + x)n+1 ≥ (1 + x)(1 + nx) . (7.20)

But

(1 + x)(1 + nx) = 1 + x+ nx+ nx2

= 1 + (n+ 1)x+ nx2

≥ 1 + (n+ 1)x .

(The fact that 1+(n+1)x+nx2 ≥ 1+(n+1)x follows because
nx2 ≥ 0 and then, adding 1 + (n + 1)x to both sides, we get
1 + (n+ 1)x+ nx2 ≥ 1 + (n+ 1)x.)

So
(1 + x)n+1 ≥ 1 + (n+ 1)x . (7.21)

That is, P (n+ 1) holds.

So we have proved (7.18). Since we have also proved P (1), we can
use the PMI to conclude that (7.16) holds, i.e., that

(∀n ∈ IN)(1 + x)n ≥ 1 + nx . (7.22)

Since we have proved (7.22) assuming that x > 0, we can cnnclude that

x > 0 =⇒
(

(∀n ∈ IN)(1 + x)n ≥ 1 + nx
)

. (7.23)
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Since we have proved (7.23) for an arbitrary real number x, we can conclude
that

(∀x ∈ IR)

(

x > 0 =⇒
(

(∀n ∈ IN)(1 + x)n ≥ 1 + nx
)

)

, (7.24)

which is exactly what we wanted to prove. Q.E.D.

With a little bit more work, it is possible to prove a stronger theorem:

Theorem 34. If x is a positive real number, and n is a natural number, then

(1 + x)n ≥ 1 + nx+
n(n− 1)

2
x2 . (7.25)

Proof.

YOU DO THIS ONE. �

Problem 20. Prove Theorem 34. �

7.3.1 An application of Theorem 34

Let us prove that
lim
n→∞

n

√
n = 1 . (7.26)

Define
αn = n

√
n− 1 .

To prove (7.26), we have to prove that

lim
n→∞

αn = 0 . (7.27)

It is clear that αn ≥ 0. (Reason: n

√
n ≥ 1, because if n

√
n was < 1, it would

follow that
(

n

√
n
)n

< 1, but
(

n

√
n
)n

= n, and n ≥ 1.)

Also, 1 + αn = n

√
n, so

(1 + αn)
n = n . (7.28)

Using the inequality of Theorem 34, we get

(1 + αn)
n ≥ 1 + nαn +

n(n− 1)

2
α2
n . (7.29)
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So

n = (1 + αn)
n

≥ 1 + nαn +
n(n− 1)

2
α2
n

≥ n(n− 1)

2
α2
n .

Hence

n ≥ n(n− 1)

2
α2
n ,

so

1 ≥ n− 1

2
α2
n ,

and then

α2
n ≤ 2

n− 1
,

so

αn ≤
√

2

n− 1
.

Hence the numbers αn satisfy

0 ≤ αn ≤
√

2

n− 1
.

So the αn are ‘sandwiched” between two sequences that converge to 0. Hence
limn→∞ αn = 0 by the sandwiching theorem.

7.4 Some formulas for sums

In this section we use the notation “
∑n

k=1 ak” for “a1 + a2 + · · ·+ an”.

Theorem 35. If n is an arbitrary natural number, then

n
∑

k=1

k =
n(n+ 1)

2
. (7.30)

(That is, 1 + 2 + · · ·+ n = n(n+1)
2

.)

Proof. Let P (n) be the statement “
∑n

k=1 =
n(n+1)

2
”.
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We prove (∀n ∈ IN)P (n) by induction.

Base step. P (1) says “1 = 1(1+1)
2

”, which is obviously true. So P (1) is true.

Inductive step.

We prove (∀n ∈ IN)(P (n) =⇒ P (n+ 1)).

Let n be an arbitrary natural number.

Assume that P (n) is true.

Then
∑n

k=1 k = n(n+1)
2

.

Therefore

n+1
∑

k=1

k = (
n
∑

k=1

k) + (n+ 1)

=
n(n+ 1)

2
+ (n+ 1)

= (n+ 1)
[n

2
+ 1
]

= (n+ 1)× n+ 2

2

=
(n+ 1)(n+ 2)

2
.

So
n+1
∑

k=1

k =
(n+ 1)(n+ 2)

2
.

That is, P (n+ 1) holds.

We have proved P (n+ 1) assuming P (n). Hence P (n) =⇒ P (n+ 1) .

We have preved P (n) =⇒ P (n + 1) for an arbitrary natural number n.
Therefore (∀n ∈ IN)(P (n) =⇒ P (n + 1)), which completes the inductive
step.
Hence, by the PMI, (∀n ∈ IN)P (n), that is,

(∀n ∈ IN)
n
∑

k=1

k =
n(n+ 1)

2
.
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Q.E.D.

Using the same method, many other formulas for sums can be proved.
Here is an exmaple of a rather remarkable one:

Theorem 36. If n is a natural number, then

n
∑

k=1

k3 =
[n(n+ 1)

2

]2

, (7.31)

that is:

13 + 23 + 33 + 43 + · · ·+ n3 =
[n(n+ 1)

2

]2

.

Proof. YOU DO THIS ONE.

Problem 21.

1. Compute the sum
∑n

k=1 k
3 for n = 1, 2, 3, 4, 5 and 6.

2. Verify that in each case the sum you got is a perfect square (i.e., the
square of an integer).

3. Prove Theorem 36. �

Problem 22.

1. Compute the sum
∑n

k=1 k
2 for n = 1, 2, 3, 4, 5 and 6.

2. Verify that in each case the sum you got agrees with the formula

n
∑

k=1

k2 =
n+ 3n2 + 2n3

6
. (7.32)

3. Prove that Formula (7.32) holds for every natural number n. �
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7.5 Irrational numbers

In this section we use the definition of “rational number”, plus two facts that
have not been proved yet, but will be proved later.

Definition 18. A rational number is a real number r such that there exist
integers m,n for which:

1. n 6= 0

2. r = m
n
. �

Fact 1. Every rational number is equal to a quotient m
n
of two in-

tegers that have no nontrivial common factor.

Fact 2. (Euclid’s Lemma.) If a, b, p are integers, p is a prime
number, and p|ab, then p|a or p|b.

7.5.1 Real numbers vs. natural numbers

Since ancient times, it was understood that there were two kinds of “num-
bers”:

1. The “counting numbers”, that we now call “natural numbers”. These
are the numbers that we use to count: 1, 2, 3, 4, 5, . . ..

2. “Geometric magnitudes”, that we use to measure amounts that can
vary continuously, such as lengths, areas, volumes, weights.

Geometric magnitudes can be subdivided indefinitely: for example,

• You can take a segment of length 1 (assuming we have fixed a unit of
lenght), and divide it into seven equal segments, each one of which has
length 1

7
. And then you can draw segments whose lenghts are 3

7
, or 4

7
,

or 9
7
, or 23

7
, thus getting fractional lengths.

• And, instead of 7, you can use any denominator you want, and get
lengths such as 5

2
, 12

5
, 29

17
, 236,907

189,276
, and so on.

• Hence, if n and m are any natural numbers, then we can (at least in
principle) construct segments of length m

n
. That is, we can construct

segments of length f , for any fraction f .
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At first, it was believed that fractions were sufficient to measure all possi-
ble lenghts. This meant that any two lenghts were commensurable9:
given and two lengths a and b, you can take a sufficiently small
lenght u (the unit of lenght) and find natural numbers m, n such
that a = mu and b = mu. That is, if a, b are any two lenghts, then
b = m

n
× a, or, equivalently, b = fa for some fraction f .

But then a momentous discovery of far-reaching consequences was made:
it is not true that any two lenghts are commensurable.

Precisely: it is possible to construct geometricallly a segment whose
length r satisfies r2 = 2. For example, if we draw a square whose sides
have lenght 1, then the length r of the diagonal of the square will satisfy
r2 = 2, by Pythagoras’ theorem.

r

1

1

=1 +1   = 2
22

r
2

9“Conmensurable” means “measurable together”, that is, you can use a ruler of the
same lenght u to “measure a and b together”, that is, to express both lengths a and b as
integer multiples mu, nu of the unit of lenght u.
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But it was discovered that there is no fraction r such that r2 = 2.
This means that

I. If you believe that “number” means “fraction”, then there is no number
that measures the length of the diagonal of a square whose sides have
lengt 1.

II. If you are willing to accept that there could be “numbers” that are not
fractions, then maybe there is a number r that measures the length of
the diagonal of a square whose sides have lengt 1, but that number L,
that we could call “

√
2”, is not a fraction.

Today we would say that

• Those numbers that are not fractions, such as
√
2, do indeed exist, and

we call them “real numbers”.

• The fractions, called “rational10 numbers”, are real numbers, but many
real numbers are “irrational” numbers, that is, numbers that are not
rational.

• Actually, most11 real numbers are not rational.

• It took mathematicians more than 2,000 years after the discovery of
the irrationaly of

√
2 to come up with a truly rigorous definition of the

concept of “real number”. (The name “real number” was introduced by
Descartes in the 17th century. The first rigorous definition was given
by George Cantor in 1871, and the most widely used definitions were
proposed by Karl Weierstrass and Richard Dedekind.

10The word “rational” here has nothing to do with “rationality” in the sense of “in
accordance withb reason or logic”. It comes from the word “ratio”, which means “quo-
tient”. An “irrational number” is a number that is not the quotient (“‘ratio”) of two
integers. If you hear somebody say something like “scientists have shown that nature is
irrational: mathematicians have shown that irrrationality is everywhere present, because
most numbers are irrational”, then you shoud realize that thit is an ignorant statement by
somebody who does not understand what “irratioanl numbers” are. The “irrationality” of
irrational numbers has nothing to do with their being unreasonable, absurd, or illogical;
it just means that they are not quotients of two integers.

11If this statement does not strike you as incomprehensible because you don’t know
what it means, you should think again, and ask yourself “what could it possibly mean to
say that most real numbers are irrational”? It turns out that this can be made precise,
but making it precise is hard.
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Problem 23. Explain how, if you are given two distinct points A, B, and
the segment from A to B is declared to be the unit of length (i.e. to have
length 1), you could subdivide the segment AB into three equal parts using
a ruler and a compass and nothing else. (By “subdividing AB into
three equal parts” I mean “finding four points P0, P1.P2, P3 lying on the
segment AB such that P0 = A, P3 = B, and the segments P0P1, P1P2, P2P3,
have length 1

3
.”

B

=PA

P

P

=P

0

1

2

3

Dividing a segment into three equal parts

The following are allowed:

• Given two points A, B, you can draw the straight line segment joining
them, and you can prolong this line and draw the entire line going
through A and B.

• Given two points A, B, you can draw the circle with center A going
through B.

• Once you have two lines S and T , or a line S and a circle T , or two
circles S, T , you can find (i.e., mark on the paper) the point or points
of intersection, of S and T , if S and T intersect.

For example, suppose I give you two distinct points A, B, and a third point
C not lying on the line that joins A to B, and I ask you to construct the line
through C that is parallel to the line from A to B. Here is how you would do
that:
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1. You draw the line L that goes through A and B.

2. You draw the circle centered at C that goes through12 A and call it M .

3. You mark the point of intersection of M and L other than A, an call
it A′.

4. You draw the circle centered at A that goes through C and call it H.

5. You draw the circle centered at A′ that goes through C, and call it H ′

6. You mark the point of intersection of H and H ′ other than C, and call
it D.

7. You draw the line through C and D, and call it K. Then K is a line
perpendicular to L and going through C.

8. You mark the two points of intersection of the line K and the circle M ,
and call them X and Y .

9. You draw the circle centered at X that goes through Y and call it P .

10. You draw the circle centered at Y that goes through X and call it Q.

11. You mark the two points of intersection of the circles P and Q, and
call them U and V .

12. You draw the line joining U and V and call it S.

13. Then S is the solution. That is, S is a line through C parallel to L.�

12Or you could draw the circle centered at C that goes through B.
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A BL

C

A’

S

D

Y

X

M

H’ H

K
P

Q

U V

Construction of a line parallel to a given line
through a given point

Problem 24. Prove that for every natural number n it is possible to subdi-
vide a given segment into n equal segments. (Precisely: for every n ∈ IN, if
we are given two distinct points A, B, then it is possible to cinstruct, using
a ruler and a compass and nothing else, points A0, A1, . . ., An, lying on the
segment AB, such that A0 = A, An = B, and all the segments Aj−1Aj, for
j = 1. . . . , n, have the same length (which will, of course, be equal to 1

n
times

the lenght of the segment AB). �

Problem 25. Prove by induction that for every natural number n, if we are
given two distinct points A, B, then it is possible to construct, using a ruler
and a compass and nothing else, a point C, lying on the line from A to B,
such that the length of the segment AC is

√
n times the length of AB. �

7.5.2 Why was the irrationality of
√
2 so important?

The discovery of the inconmensurability of
√
2 was made, according to legend,

by Hippasus of Metapontum, who lived in the 5th century B.C.E and
was a member of the religious sect of the Pythagoreans, i.e., the followers of
the philosopher and mathematician Pythagoras13. And the legend also says
that the discovery was so shocking to the Pythagoreans that Hippasus was
drowned at sea, as punishment for having divulged the secret. (But this is a
legend, and there is no evidence that it is true.)

13Yes, that’s the same Pythagoras of Pythagoras’s theorem.
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Why was the existence of inconmensurable magnitudes so upsetting to
the Pythagoreans? The reason is this: the Pythagoreans were a mystical-
religious cult.

The Pythagoreans honored the effort put into mathematics,
and coordinated it with the observation of the cosmos in var-
ious ways, for example: by including number in their reason-
ing from the revolutions and their difference between them,
by theorizing what is possible and impossible in the organi-
zation of the cosmos from what is mathematically possible
and impossible, by conceiving the heavenly cycles according
to commensurate numbers with a cause, and by determining
measures of the heaven according to certain mathematical ra-
tios, as well as putting together the natural science which
is predictive on the basis of mathematics, and putting the
mathematical objects before the other observable objects in
the cosmos, as their principles.

From the Wikipedia article on Pythagore-

anism, which quotes the Protrepticus, by

D. S. Hutchinson and M. R. Johnson, a

2015 reconstruction of a lost dialogue of

Aristotle.
In other words, for the Pythagoreans everything in the world was determined
by ratios (i.e. quotients) of “numbers”, and for them “number” meant “nat-
ural number”. The discovery that some lengths were not ratios of “numbers”
undermined the Pythagorean system to such an extent that the members of
the sect felt it necessary to conceal this fact from the general public.

But it is important to put all this in proper perspective: there is no real
proof that Hippasus truly was the discoverer of the irrationality of

√
2, or

that he was drowned at sea for that discovery.

7.5.3 What is a “real number”, really?

The discovery that there are lenghts that are inconmensurable with one an-
other naturally forced mathematicians to ask a fundamental question: what
is a “number”, really?

And, as we have explained, it took more than 2,000 years until mathe-
maticians found a satisfactory answer.
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7.5.4 Proof of the irrationality of
√
2

We could state the theorem on the irrationality of
√
2 by saying that “

√
2

is irrational”. This, however, would mean that there is a “number
√
2”, i.e.,

a number whose square is 2. But the issue whether such a number exists is
different from the one that concerns us here, namely, whether there exists a
rational number r such that r2 = 2. So I prefer to state the theorem in a
way that does not imply any commitment to the existence of a “number” r
such that r2 = 2.

Theorem 37. There does not exist a rational number r such that r2 = 2.

Proof.
We give a proof by contradiction .

Assume that there exists a rational number r such that r2 = 2.

Pick one such number and call it r.

Using Fact 1, we may pick integers m,n such that

(1) n 6= 0,
(2) r = m

n
,

(3) m and n have no nontrivial common factors.

Since r2 = 2, we have m2

n2 = 2.

Therefore m2 = 2n2.

So m2 is even.

But then m is even. (Reason: Assume14 that m is not even. We know
that every integer is even or odd; so, since m is not even, m must be
odd. And we know that the product of two odd integers is odd. So,
since m is odd, it follows that m2 is odd as well. But we have proved
that m2 is even. And we know that an integer cannot be both even
and odd. So m2 is not odd. Therefore m2 is odd and m2 is not odd,
which is a contradiction.)

Since m is even, m is divisible by 2.

So we may pick an integer k such that m = 2k.

Then m2 = 4k2.

But m2 = 2n2.
14Notice that we have a proof by contradiction within our main proof by contradiction.
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Hence 2n2 = 4k2 = 2× (2k2), so

2n2 = 2× 2k2 . (7.33)

Using the cancellation law for multiplication (i.e., Theorem 30), we can
cancel the factor “2” in (7.33), and conclude that n2 = 2k2.

So n2 is even.

But then n is even. (Reason: Assume15 that n is not even. We know
that every integer is even or odd; so, since n is not even, n must be
odd. And we know that the product of two odd integers is odd. So,
since n is odd, it follows that n2 is odd as well. But we have proved
that n2 is even. And we know that an integer cannot be both even and
odd. So n2 is not odd. Therefore n2 is odd and n2 is not odd, which is
a contradiction.)

So m is even and n is even.

Therefore 2|m and 2|n.
But m and n do not have a nontrivial common factor.

So 2 cannot be a common factor of m and n.

In other words, it is not true that “2|m and 2|n”.
So the sentence “2|m and 2|n” is true and is not true, which is a
contradcition.

So the assumption that there exists a rational number r such that r2 = 2 has
led us to a contradiction,

Therefore there does exist a rational number r such that r2 = 2 . Q.E.D.

7.6 More irrationality proofs

We now use the same tecbnique to prove that
√
3 is irrational. The key point

here is to realize that “even vs. odd” now has to be replaced by “divisible
by 3 vs. not divisible by 3”.

Theorem 38. There does not exist a rational number r such that r2 = 3.

Proof. We will do a proof by contradiction .

15Another proof by contradiction !
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Assume that there exists a rational number r such that r2 = 3.

Pick one such number and call it r.

Using Fact 1, we may pick integers m,n such that

(1) n 6= 0,

(2) r = m
n
,

(3) m and n have no nontrivial common factors.

Since r2 = 3, we have m2

n2 = 3.

Therefore m2 = 3n2.

So 3|m2.

But then 3|m. (Reason: By Euclid’s Lemma (i.e. Fact 2) since 3 divides
the product m.m, it follows that 3 must divide one of the factors. So
3|m.)

Since 3|m, we may pick an integer k such that m = 3k.

Then m2 = 9k2.

But m2 = 3n2.

Hence 3n2 = 9k2 = 3× (3k2), so

3n2 = 3× 3k2 . (7.34)

Using the cancellation law for multiplication, we can cancel the factor
“3” in (7.34), and conclude that n2 = 3k2.

So 3|n2.

But then 3|n. (Reason: By Euclid’s Lemma (i.e. Fact 2) since 3 divides
the product n.n, it follows that 3 must divide one of the factors. So
3|n.)

So 3 is a factor of m and 3 is a factor of n.

Hence m and n have a nontrivial common factor.
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But m and n do not have a nontrivial common factor.

Therefore

m and n have a nontrivial common factor, and m and n do
not have a nontrivial common factor,

which is a contradiction,

So the assumeption that there exists a rational number r such that r2 = 3
has led us to a contradiction,

Therefore there does not exist a rational number r such that r2 = 3 .Q.E.D.

Problem 26. Prove that each of the following numbers is irrational:

1.
√
5,

2. 3
√
2,

3.
√

2 +
√
2.

4. 3
√
9. �

Problem 27. Prove or disprove16 each of the following statements:

1. The sum of two rational numbers is a rational number.

2. The product of two rational numbers is a rational number.

3. The sum of two irrational numbers is a rational number.

4. The product of two irrational numbers is a rational number.

5. The sum of two irrational numbers is an irrational number.

6. The product of two irrational numbers is an irrational number.

7. The sum of a rational number and an irrational number is an irrational
number.

16To disprove a stetement means “to prove that the statement is false”. For example,
when we proced that 1 is not even we disproved the statement ‘1 is even”.
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8. The product of a rational number and an irrational number is an irra-
tional number. �

Problem 28.

1. Explain why the following “proof” that
√
2+

√
3 is irrational is wrong:

We know that
√
2 is irrational.

We know that
√
3 is irrational.

Hence the sum
√
2 +

√
3 is irrational. Q.E.D.

2. Explain why the following “proof” that
√
6 is irrational is wrong:

We know that
√
2 is irrational.

We know that
√
3 is irrational.

Hence the product
√
2.
√
3 is irrational.

So
√
6 is irrational. Q.E.D.

3. Give a correct proof that
√
2 +

√
3 is irrational.

4. Give a correct proof that
√
6 is irrational.

5. Prove that 3
√
2 is irrational.

6. Prove that
√
2 +

√
3 +

√
5 is irrational. (NOTE: This requires some

hard thinking on your part.)

7. Prove that
√
2 +

√
3 +

√
5 +

√
7 is irrational. (NOTE: This requires

a lot of thinking on your part.) �

Problem 29. Prove that, if n ∈ IN, and p1, p2, . . . , pn are n distinct primes,
then

√
p1 +

√
p2 + · · ·+√

pn is irrational. �

7.7 The seven bridges of Königsberg

In 1736, the great mathematician Leonhard Euler (1707-1783) wrote a paper
on the Königsberg bridge problem: Is it possible to walk through the city
of Königsberg crossing each of the town’s seven bridges once and only once?
The city was divided into two parts by a river crossing it, and in addition
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there were two islands, so the city truly had four parts, joined by seven
bridges, as shown in the picture.

Euler’s solution of the bridges of Königsberg problem marhed the birth of
a new field of mathematics, now known as graph theory, which has evolved
into a major area of research, with an enormous variety of applications.

A

D

B

C

The seven bridges of Königsberg

Euler’s answer was that it is impossible to walk as proposed in the problem:
there is no way to walk through all seven bridges, crossing each bridge once
and only once. Furthermore, Euler’s proof is by contradiction, so it is most
appropriate to include it here, to show you an example of how a proof by
contradiction works.

Theorem 39. There is no way to walk through all the seven bridges of
Königsberg crossing each of the bridges once and only once.

Proof.
We give a proof by contradiction.

Assume there is a way to walk through all the seven bridges, crossing
each bridge once and only once.
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This walk starts in one of the four parts A, B, C, D into which the
city is divided by the river.

Call this starting part S, so S is either A or B or C or D.

Furthermore, the walk ends in one of the four parts A, B, C, D.

Call this part E, so E is either A or B or C or D, and E could be the
same as S, or not.

Let P be one of the four parts which is not S or E. (Such a part must
exist, because there are four parts, and at most two of them can be S
or E.)

Then our walk does not start or end at P , so it must enter P at some
point through one of the bridges connecting P to the other parts, and
then it must leave P through a different bridge. And, if it ever enters
P again, it must be through a third bridge. And then it must leave P
through a fourth bridge. And so on. So the total number of bridges
connecting P to other parts that are crossed by our walk has to be even,
because for every bridge used to enter P there must ne a different bridge
used to leave P .

But our walk crosses all the bridges. And this implies that

the number of bridges connecting P to one of the other parts is even .

On the other hand, for each the four parts the number of bridges con-
necting that part to the others is odd. (For part A the number is 3, for
part B it is 5, for part C it is 3, and for part D it is also 3.)

Let n be the number of bridges connecting P to one of the other parts.

Then n is odd.

But we have proved that n is even.

So n is odd and n is not odd , which is clearly a contradiction.

Hence the assumption that it is possible to walk through Königsberg crossing
each bridge once and only once has led us to a contradiction.

Therefore such a walk is impossible . Q.E.D.


