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13 An example of an application of the divi-

sion theorem: sums of two squares

13.1 The quotient and the remainder

If a, b are integers, and b 6= 0, then the division theorem tells us that there
exist unique integers q, r such that a = bq + r and 0 ≤ r < |b|.

Those integers have a name.

Definition 24. Let a, b be integers such that b 6= 0. Let q, r be the unique
integers such that a = bq + r and 0 ≤ r < |b|. Then q is called the quotient
of dividing a by b, and r is called the remainder of dividing a by b. �

13.2 Which integers are sums of two squares?

Which integers can be expressed as the sum of the squares of two integers?
That is, for which integers n is it true that

(∃x ∈ Z)(∃y ∈ Z)x2 + y2 = n ? (13.1)

Clearly, the sum x2 + y2 is always nonnegative, so the only integers n for
which (13.1) can possible be true are the nonnegative integers.

Furthermore, (13.1) is clearly true for n = 0, because 0 = 02 + 02.
So the missing case is the one when n ∈ IN. And for that reason we will

from now on confine our search to natural numbers n. And we will start by
looking at a simple example.

13.2.1 A simple example

Problem 41. Prove that the number 345, 902, 753, 743 is not equal to the
sum of two squares of integers. That is, prove that

∼ (∃x ∈ Z)(∃y ∈ Z)x2 + y2 = 345, 902, 753, 743 .

Solution. Suppose1 that there exist integers x, y that satisfy the equation
x2 + y2 = 345, 902, 753, 743 .

Pick a pair (x∗, y∗) of such integers, so

x∗ ∈ Z , y∗ ∈ Z , and x2

∗
+ y2

∗
= 345, 902, 753, 743 .

1Of course, here we are starting a proof by contradiction .
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Let us apply the division theorem to divide the numbers x∗ and y∗ by 4.
The theorem tells us that we may pick integers p, q, r, s such that

x∗ = 4p+ r ,

y∗ = 4q + s ,

0 ≤ r < 4 ,

0 ≤ s < 4 .

Since r is an integer and 0 ≤ r < 4, r must actually be equal to 0, 1, 2,
or 3. Then:

xr = (4q + r)2

= 16q2 + 8qr + r2

= 4(4q2 + 2qr) + r2 .

Therefore

• If r = 0, then x2

∗
= 4k, where k = 4q2 + 2qr = 4q2.

• If r = 1, then x2

∗
= 4k + 1, where k = 4q2 + 2qr = 4q2 + 2q.

• If r = 2, then r2 = 4, so

x2

∗
= 4(4q2 + 2qr) + 4

= 4(4q2 + 2qr + 1)

= 4(4q2 + 4q + 1) ,

so x2

∗
= 4k, where k = 4q2 + 4q + 1.

• If r = 3, then r2 = 9, so

x2

∗
= 4(4q2 + 2qr) + 9

= 4(4q2 + 2qr) + 8 + 1

= 4(4q2 + 2qr + 2) + 1

= 4(4q2 + 6q + 2) + 1 ,

so x2

∗
= 4k + 1, where k = 4q2 + 6q + 2.
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So we see that in all four cases (r = 0, r = 1, r = 2, r = 3) we have

x2

∗
= 4k + ρ , where k ∈ Z and ρ = 0 ∨ ρ = 1 . (13.2)

Similarly,

y2
∗
= 4ℓ+ σ , where ℓ ∈ Z and σ = 0 ∨ σ = 1 . (13.3)

Therefore x2

∗
+ y2

∗
= 4(k + ℓ) + ρ+ σ, and ρ+ σ can be equal to 0, 1, or 2.

That is,

x2

∗
+ y2

∗
= 4j + τ , where j ∈ Z and τ = 0 ∨ τ = 1 ∨ τ = 2 . (13.4)

In other words, the remainder of dividing x2

∗
+ y2

∗
by 4 is either 0, 1,

or 2.
On the other hand, the remainder of dividing 345, 902, 753, 743 by 4 is

clearly 3, because 345, 902, 753, 740 is divisible by 4.
It follows that x2

∗
+ y2

∗
cannot be equal to 345, 902, 753, 743. �

Remark 15. In the solution of Problem 41, the key point was the unique-

ness part of the division theorem. Indeed, we proved that the number
345, 902, 753, 743, divided by 4, yields a quotient m that we don’t care about,
and a remainder of 3. If it was also possible to divide the same number by
4 with a different remainder, then there would be no contradiction between
the facts that (i) the remainder of dividing x2

∗
+ y2

∗
by 4 is either 0, 1, or 2,

and (ii) x2

∗
+ y2

∗
= 345, 902, 753, 743.

What makes our argument work is that it is not possible to divide the
same number by 4 with a different remainder. And this is so because of the
uniqueness of the quotient and the remainder. �

Remark 16. In the argument that we used to solve Problem 41, the only
thing that mattered about the number 345, 902, 753, 743 was that the re-
mainder of dividing it by 4 is 3.

So, in fact, using exactly the same argument as in Problem 41, we have
proved the following result.

Theorem 48. If a natural number n is such that n = 4k+3 for some integer
k, then it is not possible to express n as the sum of two squares of integers.
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Problem 42. Prove that if n is a natural number such that n = 8k + r
for some integers k, r such that r = 3 or r = 6 or r = 7, then n cannot
be expressed as the sum of the squares of two integers. (NOTE: If r = 3
then n = 4(2k) + 3. and if r = 7 then n = 4(2k + 1) + 3, so in these two
cases the fact that n is not the sum of two squares follows from Theorem 48.
So the new case here is the one corresponding to r = 6. The result of this
problem would tell you, for example, that numbers such as 46 and 126 cannot
be expressed as the sum of two squares.) �

13.2.2 Which prime numbers are sums of two squares?

Natural numbers are products of prime numbers2. So maybe in order to
figure out how to solve the problem of representing a natural number as a
sum of two squares we can divide the problem into two steps.

1. See what happens when n is a prime number.

2. See what happens when you multiply two numbers that are sums of
two squares.

Let us look at the first question. First of all, here is a fact that is easy to
prove.

Theorem 49. Every prime number which is different from 2 is odd.

Proof. YOU DO THIS ONE.

Problem 43. Prove Theorem 49.

What is a prime number?

Definition 25. A prime number is a natural number p
such that

1. p > 1,

2. The only natural numbers that divide p are 1 and
p. �

2We haven’t proved that yet, but we will, very soon
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In view of Theorem 49, the prime numbers are all od, except for the number
2. So if p is a prime number and p 6= 2, then the remainder r of dividing p
by 4 must be 1 or 3, because if r was 0 or 2 then p would be even.

In order words, the prime numbers other than 2 are of two kinds:

(I) Primes that are of the form 4q + 1, for an integer q,

(II) Primes that are of the form 4q + 3, for an integer q.

For the primes p of the form 4q+3, we already know that the answer is “no,
p cannot be written as the sum of two squares”, because of Theorem 48

Let us look at all the primes p in order, starting with p = 2, and let us
ask in each case whether p is or is not a sum of two squares.

• If p = 2, then the answer is “yes”, because 2 = 1 + 1 = 12 + 12.

• If p = 3, then the answer is “no”, because of Theorem 48.

• If p = 5, then the answer is “yes”, because 5 = 4 + 1 = 22 + 12.

• If p = 7, then the answer is “no”, because of Theorem 48.

• If p = 11, then the answer is “no”, because of Theorem 48.

• If p = 13, then the answer is “yes”, because 13 = 9 + 4 = 32 + 22.

• If p = 17, then the answer is “yes”, because 17 = 16 + 1 = 42 + 12.

• If p = 19, then the answer is “no”, because of Theorem 48.

• If p = 23, then the answer is “no”, because of Theorem 48.

• If p = 29, then the answer is “yes”, because 29 = 25 + 4 = 52 + 22.

• If p = 31, then the answer is “no”, because of Theorem 48.

• If p = 37, then the answer is “yes”, because 37 = 36 + 1 = 62 + 12.

• If p = 41, then the answer is “yes”, because 41 = 25 + 16 = 52 + 42.

• If p = 43, then the answer is “no”, because of Theorem 48.

• If p = 47, then the answer is “no”, because of Theorem 48.
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• If p = 53, then the answer is “yes”, because 53 = 49 + 4 = 72 + 22.

• If p = 59, then the answer is “no”, because of Theorem 48.

• If p = 61, then the answer is “yes”, because 61 = 36 + 25 = 62 + 52.

• If p = 67, then the answer is “no”, because of Theorem 48.

• If p = 71, then the answer is “no”, because of Theorem 48.

• If p = 73, then the answer is “yes”, because 73 = 64 + 9 = 82 + 32.

• If p = 79, then the answer is “no”, because of Theorem 48.

• If p = 83, then the answer is “no”, because of Theorem 48.

• If p = 89, then the answer is “yes”, because 89 = 64 + 25 = 82 + 52.

• If p = 97, then the answer is “yes”, because 97 = 81 + 16 = 92 + 42.

• If p = 101, then the answer is “yes”, because 101 = 100+1 = 102+12.

So it would appear that all the primes of the form 4k + 1 are sums of two
squares. In fact, this is true for the first 12 such primes.

At this point, students will be tempted to say something like “it is clear
that every prime of the form 4k + 1 is the sum of two squares”.

But this is not necessarily so!

13.2.3 You cannot prove a universal statement by giving examples

Just because a universal statement
(∀n ∈ IN)P (n) is true for a few examples,

it doesn’t mean that it is true in
general!

Even if the statement is true for 12 examples, or 50, or 10 million,
that still does not prove that it is true in general.
Look, for example, at Problem 35. The statement that “n2 + n+41
is prime” is true for n = 1, n = 2, n = 3, n = 4, and so on. Actually,
it is true for all n up to n = 39. That is, the statement is true for
39 examples, namely, for the first 39 natural numbers. And yet, the
statement is not true for all n.
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Problem 44. Write a sentence P (n) about a variable natural number n,
such that

1. P (n) is true for the first 1010 (i.e., 10, 000, 000, 000) natural numbers
n,

2. (∀n ∈ IN)P (n) is not true. �

13.2.4 One way con men exploit the gullibility of people

A standard error that people make when they think is precisely to believe
that a few examples can prove a general statement.

The fact that people often make this mistake is exploited by con men,
tricksters, and liars of various sorts, to persuade people of the truth of some
universal statement by presenting a few examples. The trickster who does
that knows that people are gullible, and will accept a few stories and a few
examples as proof.

For example, a politician who wants to incite people to hate immigrants,
may appear at a political convention and bring with him some people who
have had a close relative or friend killed by an immigrant, and present these
people to the audience. He knows that the audience is gullible, and will draw
the conclusion that “immigrants are murderers”. In reality, all the politician
has done is prove that a few immigrants have committed crimes. Had he
wanted instead to persuade his audience that Americans are criminals, he
could have chosen to present examples of victims of crimes committed by
Americans3.

Math 300 students should not be gullible:

You must never accept as valid a proof

based on a few examples.
And you must never submit such a
proof as part of your work and claim
that you actually have a proof.

3And he would have had a lot to choose from: Charles Manson, Ted Bundy, Timothy
McVeigh, Adam Lanza, Dylan Roof, . . . I’ts a very long list!
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13.2.5 A surprising fact

Now let us return to the study of primes that are sums of two squares.
What we have seen is that:

• Primes of the form 4k+3 are not sums of two squares. (This is so not
because we have seen that it is so in lots of examples. It is so because
we have proved it, in Theorem 48.)

• It appears to be the case that primes of the form 4k + 1 are sums of
two squares, but the examples we have given so far do not prove it.

It turns out, quite remarkably, that it is indeed true that every prime

number which is not of the form4 4k+3 is the sum of two squares

of integers.

This result was first published by Albert Girard in 1625, and for that
reason it is sometimes know as “Girard’s Theorem”. Later, Fermat stated a
more detailed version in 1640, but did not give a proof. The first real proof
was given by Euler in 1747.

But this is a hard theorem. The proof belongs in an elementary number
theory course, and is a little bit too complicated to be given in this course.

13.2.6 Another surprising fact

And here is another surprising fact:

Theorem 50. The product of two natural numbers that are sums of two
squares of integers is a sum of squares of two integers. That is

(∀a, b ∈ IN)

[(

(

(∃u, v ∈ Z)a = u2 + v2
)

∧
(

(∃u, v ∈ Z)b = u2 + v2
)

)

=⇒ (∃u, v ∈ Z)ab = u2 + v2

]

. (13.5)

Proof.

Let a, b be arbitrary integers.

4That means, every prime number which is either 2 or of the form 4k + 1.
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Assume that a and b are sums of two squares of integers.

Pick integers u, v such that u2 + v2 = a.

Pick integers x, y such that x2 + y2 = b. [Here, and in the pre-
vious step, I am applying Rule ∃use, the rule for using existential
sentences. This rule tells me that if (∃x)P (x), then I can pick one
such x and give it a name, but the name cannot be something that
is already the name of something else. That is why in the second
step I cannot call the integeres I pick “u” and “v”, because “u”
and “v” are already the names of the two integers that I picked
in the previous step.]

Let m = ux− vy, and let n = uy + vx.

Then m and n are integers.

Furthermore,

m2 + n2 = (ux− vy)2 + (uy + vx)2

= u2x2 + v2y2 − 2uxvy + u2y2 + v2x2 + 2uyvx

= u2x2 + v2y2 + u2y2 + v2x2

= u2x2 + u2y2 + v2y2 + v2x2

= u2(x2 + y2) + v2(y2 + x2)

= u2b+ v2b

= (u2 + v2)b

= ab .

So ab is the sum of two squares.

Hence we have proved that “if a and b are the sum of two squares, then
ab is the sum of two squares”. (Rule =⇒prove.)

And this was proved for arbitrary integers a, b. So we have proved (13.5),
thanks to Rule ∀prove. Q.E.D.

13.3 So, finally, which natural numbers are sums of

two squares?

Let us put together all the facts we know so far.
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• We know (though we haven’t proved it) that every prime number that
is not of the form 4k + 3 is the sum of two squares.

• We know that the product of two sums of two squares is a sum of two
squares.

• And there is, in addition, a very simple fact: if we take a number a that
is a sum of two squares and multiply it by a square, then the result
is the sum of two squares. (Reason: Suppose a = u2 + v2. Let b be
another integer. Then ab2 = b2(u2 + v2) = (bu)2 + (bv)2, so ab2 is also
the sum of two squares.

• And we know (and will prove soon) that vevery natural nmber greater
than 1 is a product of primes.

If we combine all these facts, we get the following. Suppose a is a natural
number and

a = pk1
1
pk2
2
· · · pknn

where p1, p2, . . . , pn are distinct primes.
Suppose that for all the primes pj that are of the form k + 3 the corre-

sponding exponet kj is even. Then a is the sum of two squares.
And, remarkably, these numbers are exactly those that are sums of two

squares. That is, if a is a sum of two squares, then the exponents kj corre-
sponding to the primes pj of the form 4k + 3 must be even.

This compleetly solves the problem if determining which natural numbers
are sums of two squares although, as I said, the proof of these results is too
hard for this course. But the point I wanted to make is this: the fact that

gace us the first clue about the solution was our simple application

of the division theorem. Naturally, a lot of work is needed after that,
but the division theorem by itself has shown itself to be a very powerful tool

13.4 Some problems

Problem 45. Prove that

1. If p is a prime number then one and only one of the following three
possibilities occurs:

(a) p = 2,
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(b) p = 4k + 1 for some k ∈ IN,

(c) p = 4k + 3 for some k ∈ IN.

2. If p is a prime number then one and only one of the following four
possibilties occurs:

(a) p = 2,

(b) p = 3,

(c) p = 6k + 1 for some k ∈ Z,

(d) p = 6k + 5 for some k ∈ Z.

Problem 46. Prove by induction that if n ∈ IN, a1, a2, . . . , an are integers,
j ∈ IN, and 1 ≤ j ≤ n, then aj divides the product

∏n

k=1
ak. �

Problem 47. Euclid’s lemma says that if p is a prime number and a, b are
integers such that p divides ab, then p divides a or p divides b.

Using Euclid’s Lemma, prove by induction the following statement:

(*) If p is a prime number, n is a natural number, and a1, a2, . . . , an are
integers such that p divides the product

∏n

j=1
aj, then p divides one of

the factors, that is, (∃j ∈ IN)(j ≤ n ∧ p|aj).
Problem 48. If n ∈ IN, k ∈ Z, and 0 ≤ k ≤ n, then the binomial coefficient
(

n

k

)

is defined as follows:
(

n

k

)

=
n!

k!(n− k)!
.

1. Prove that, if n ∈ IN, k ∈ Z, and 1 ≤ k ≤ n, then
(

n+ 1

k

)

=

(

n

k − 1

)

+

(

n

k

)

.

2. Using the result of Part 1, prove by induction that
(

n

k

)

is an integer
for every n ∈ IN and every k ∈ Z such that 0 ≤ k ≤ n.

Be careful about how you choose the sentence P (n) that you will

use for the induction. It cannot be something like “
(

n

k

)

is an integer”,
because this sentence has k, as well as n, as an open variable, and that is not
premitted. So k has to be quatified somehow.

NOTE: It is not at all obvious that
(

n

k

)

is an integer. The number
(

n

k

)

is defined as a quotient of two integers, and such a quotient need not be an
integer. �
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14 Sets

The language of sets was introduced into mathematics in the 19th cen-
tury, when the great mathematicianGeorge Cantor (1845-1918) almost
single-handedly created Set theory.

You should read the article “A history of set the-
ory”, in MacTutor.

Today, set theory is not only an important branch of mathematics, but the
foundational pillar on which all of mathematics rests. Most mathematicians
no longer ask questions that they used to ask, such as “what is a natural
numebr?”, or “what is a real number?”, or “what is a function?”, because
they think that all these objects are just special kinds of sets.

This does not mean that they have answered those questions. It just
means that they have reduced those questions to just one question: what
is a set? Once you know what a set is, then all the other questions are
answered.

As for the fundamental question “what is a set?”, I am not going to
answer it here. What I am going to do is start telling you about sets, until
you get used to working with them and talking about them. The question
about the ultimate nature of sets will remain unanswered.

14.1 What kind of thing is a set?

Sets are things that we invent in order to combine several objects and form
with them a single thing, so that we can talk about the objects as one thing,
a “collective entity”.

This “grouping” operation, of forming a single thing out of several things,
is something we perform very often, using different words, called “collective
nouns”, to create these collective objects.

Here are some examples.

1. Crowds. When you see a number of people standing together and
shouting something (say, “long live the Queen”), you create a single
thing, called “the crowd”, so that, instead of saying

the people are shouting “long live the Queen”

you can use the collective noun “crowd” and say
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the crowd is shouting “long live the Queen”

Notice that “the people” have become a single object, “the crowd”. So,
instead of using the verb in plural (“the people are shouting”) when
you talk about the people, you use the verb in singular (“the crowd is

shouting”) when we talk about the crowd.

2. Flocka of birds. When we see a number of birds flying in formation,
we create an entity called “the flock”, so that, instead of saying

I see several birds, and they are flying East,

we can use the collective noun “flock” and say

I see a flock of birds, and it is flying East.

Notice that “the birds” have become a single object, “the flock”. So,
instead of using the verb in plural (“the birds are flying”) when we talk
about the birds, we use the verb in singular (“the flock is flying”) when
we talk about the flock.

3. Orchestras. When several musicians are playing together, we intro-
duce into our discourse the collective noun “orchestra”, so that, instead
of saying

The musicians are playing

we can use the collective noun “orchestra” and say

The orchestra is playing.

Once again, “the musicians” have become a single object, “the band”.
So, instead of using the verb in plural (“the musicians are playing”)
when we talk about the musicians, we use the verb in singular (“the
orchestra is playing”) when we talk about the orchestra.
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4. Juries. When several people are brought together to sit in judgemebnt
and decide if a defendant is guilty, the people are called jurors, and
are said to be members of the jury.

And we say things like

The jurors find the defendant guilty

or

The jury finds the defendant guilty.

Once again, when we talk about “the jurors” we use the verb in plural
(“find”) but when we talk about “the jury” itself we use the verb in
singular (“finds”) because the jury is a single object.

5. The sets IN, Z, and IR. When numbers of a certain kind are discussed
together, we create entities called IN (“the set of all natural numbers”),
Z (“the set of all natural integers”), IR (“the set of all real numbers”),
so that, instead of saying

there are infinitely many natural numbers

we can use the collective noun “IN” and say

the set IN is infinite.

Similarly, instead of saying

all integers are real numbers,

we can use the collective nouns “IN” and “Z” and say

Z is a subset of IR.

And, instead of saying
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the real numbers form a complete ordered field,

we can use the collective noun “IR” and say

IR is a complete ordered field.

Notice that “the natural numbers”, “the integers”, and “the real num-
bers” have become single objecta, “IN”. “Z”. “IR”. So, instead of using
verbs in plural (“there are infinitely many natural numbers”, “all in-
tegers are real numbers”, “the real numbers form...”), when we talk
about the numbers, we use verbs in singular (“the set IN is infinite”,
“Z is a subset of IR”, “IR is a complete ordered field”) when we talk
about the sets.

14.1.1 Sets with structure

Most of these collective entities have a structure; that is,

1. The members are not all equal and interchangeable. On the contrary,
some play special roles.

2. The pairs of members are not all equal and interchangeable. On the
contrary, some pairs of members are different from others.

3. The triples of members are not all equal and interchangeable. On the
contrary, some triples of members are different from others.

For example,

1. A flock of birds flying in formation has a special member, the leader.
And, even more importantly, each bird has neighbors, that is, a few
other birds that are right next to it, to the left or to the right or in front
or behind, and the bird communicates with its neighbors. The flock
stays in formation because each bird, knowing which way its neighbors
are moving, tries to move in the same way. “Being neighbors” is what
we have called in these notes a binary relation. If we use “xNy” for
“x is a neighbor of y”, then the “neighbor” relation N singles out some
pairs (x, y) of birds as different from other pairs.
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2. A number system such as IN, or Z, or IR has

• special members (1 for IN, 0 and 1 for Z and IR),

• special sets of members (for example, for Z or for IR, the set of all
positive members of the set),

• special pairs of members of the set (for example, for IN, Z, or IR,
the pairs (x, y) such that x < y are different from the other pairs),

• special triples (x, y, z) of members. (For example, the triples
(x, y, z) such that z = x + y play a special role: they determine
the operation of addition, in the sense that if you know the set
S of all the triples (x, y, z) such that x + y = z then you know
the operation of addition, because, if I give you numbers x, y, then
you can compute x, y by looking in the set S until you find a triple
(x, y, z) that is in S, and then the sum x+ y is z.)

14.1.2 How sets are different from other collective entities

Usually, you cannot form collective entities by putting together any objects
you want, because the objects have to be related in some way. For example,

• You would never form a “crowd” consisting of yourself, the prime min-
ister of Australia, and five people living in Wyoming.

• And you would never take a bunch of wolves living in Wyoming together
with some other wolves who live in Sweden and call that a “pack”. To
form a pack, the wolves have to be together, run together, and hunt
together.

Sets are different, in that they are collective entities that can be formed to
put together into a single object any objects you want. The things you
put together to form a set do not have to be related in any way. For example,

1. You can form a set whose members are all the wolves in Wyoming.

2. You can form a set whose members are all the wolves in Wyoming
together with all the wolves in Sweden.

3. You can form a set whose members are three wolves you like who live in
Wyoming, together with the musicians of the New York Philharmonic,
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your uncle Billy, the planets Earth, Mars and Jupiter, the numbers 5, 7
and 23, the numbers π and 3+

√
5, and all the integers that are larger

than 377.

The only thing you need in order to be able to form a set S, is a “mem-
bership criterion”, i.e., a sentence C(x) that specifies the condition that an
object x has to satisfy in order to qualify as a member of the set. And any
sentence will do5.

14.1.3 Terms and sentences with variables: a review

In mathematical writing, there are two kinds of meaningful phrases6, namely,
terms and sentences.

• Terms are phrases that stand for things or people: for example, “Obama”,
“Alice”, “Ronald Reagan”, “the table”, “the case where I put my sun-
glasses yesterday”, “2 + 3”, are terms, because they stand for specific
things.7

• Sentences are phrases that make an assertion that can be true or false:
for example, “cows eat grass”, “I have no idea where I left the case
where I put my sunglasses yesterday”, “the planets move around the
Sun”, “cows like to attack lions and fight them to death”, “2+ 3 = 5”,
“2+3 = 6, and “every odd number is prime”) are sentences. (Actually,
“cows eat grass” is true, “the planets move around the Sun” is true,
“cows like to attack lions and fight them to death” is false, “2+3 = 5”
is true, “2 + 3 = 6” is false, and “every odd number is prime” is true.)

Remark 17. Terms are basically the same as “noun phrases”, that is, phrases
that can serve as the subject of an “is” sentence. So, for example,

5At least for now. Later we will se that we cannot allow absolutely any sentence,
because if you do allow that serious trouble ensues, in the form of the “Russell paradox”.
So we will have to put some limitations. But we are not there yet.

6A “phrase” in a particular language is, according to the dictionary, “a small group of
words standing together as a conceptual unit”. (The “small group” could be just a single
word. Most phrases are meaningless. For example, the words “Obama” and “Alice” and
the longer phrases “Ronald Reagan”, “the table”, “the case where I put my sunglasses
yesterday”, “cows eat grass”, “the planets move around the Sun”, “cows like to attack
lions and fight them to death”, “2 + 3”, “2 + 3 = 5”, “2 + 3 = 6”, “every odd number is
prime”, are all phrases.

7These things may be concrete,material objects or people, or abstract entities such as
numbers. For example, “2 + 3” stands for a number, that happens to be the number 5.
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• In the sentence “2 + 3 is an odd number”, the subject is “2 + 2”, so
“2 + 2” is a term.

• In the sentence “the case where I put my sunglasses yesterday is on the
table”, the subject is “the case where I put my sunglasses yesterday”,
so “the case where I put my sunglasses yesterday” is a term. �

Terms and sentence can contain variables, that is, letters or expressions
that do not stand for a definite object, but represent slots where the name
of a person or object can be inserted. Then, when you actually put specific
names of persons or objects in the slots,

• A term has a value, i.e., becomes the name of a specific object.

• A sentence has a truth value, i.e., becomes true or false.

But if you leave some of the the slots unfilled (i.e., if you keep some “free
variables”) then the terms do not have a definite value and the sentences
do not have a truth value. In that case, we say that he term or sentence is
meaningless, because it does not stand for a specific object or assertion.

Example 42. The term (i.e., noun phrase) “his mother” contains the posses-
sive adjective “his”, which is a variable. If you plug in “Barack Obama” for
“his” the term becomes “Barack Obama’s mother”, which stands for a defi-
nite person. (In mathematical language, we would talk about “x’s mother”.
And, again, when we plug in “Barack Obama” for “x” the term becomes
“Barack Obama’s mother”, which stands for a definite person.) �

Example 43. The sentence “he is a friend of mine” contains the pronoun
“he”. If you do not tell me who “he” is, then I don’t know what you are
talking about. But if you tell me who “he” is, that is, if you assign a

value to the variable “he” (by saying, for example, that “he” stands for
“Bill Clinton”) then the sentence becomes “Bill Clinton is a friend of mine”,
which has a definite truth value. (In mathematical language, we would say
“x is a friend of mine”, and then, when we plug in “Bill Clinton” for “x”,
we get when we plug in “Barack Obama” for “x” the term becomes “Barack
Obama’s mother”, which stands for a definite person.) �

Example 44. The term “x + 3y” contains the letters “x” and “y”. If you
do not tell me which numbers the letters x and y stand for, then I cannot
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make sense of which object (in this case, a number) this term stands for. If,
on the other hand, you assign specific values to x and y then I can figure out
the value of the term. (For example, if you let x = 4, y = −6, then I can tell
that “x+ 3y” has the value −14, i.e., that x+ 3y = −14. �

Example 45. The sentence “x+3y > 6” contains the letters “x” and “y”. If
you do not tell me which numbers the letters x and y stand for, then I cannot
make sense of which assertion the sentence is making, and cannot decide if
it is true or false, If, on the other hand, you assign specific values to x and y
then I can figure out the truth value of the sentence. (for example, if you let
x = 4, y = −6, then I can tell that “x+ 3y = 6” has the truth value “false”,
because x+ 3y = 4− 3× 6 = −14, and ∼ −14 > 6. But if x = 3 and y = 2,
then x+ 3y = 9, and 9 > 6, so “x+ 3y = 6” is true.. �

14.1.4 Forming sets

As long as you can write a sentence C(x) about a variable object x, you can
form the set

{x : C(x)}
that is, the set of all x for which C(x) is true. And you could give this set a
name. For example, suppose you want to form the set {x : C(x)} and give
it the name S. You would do that by writing

Let S = {x : C(x)}.

Let us formulate this rule for forming sets as an axiom:
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The näıve axiom of set formation

Given any sentence C(x) having x as an open vari-
able, we can form the set whose members are all
the objects x for which C(x) is true.

A name for such a set is

{x : C(x)} .
And we read this as

The set of all x such that C(x) .

Remark 18. Why did I call the set formation axiom “näıve”? The reason is
this: in a few days, we will discover that the set formation axiom, as we have
formulated it, causes serious problems that can only be solved by changing
the statement of the axiom. Instead of a “näıve” axiom that allows us to take
any sentence C(x) whatsovever and form the ser {x : C(x)}, we will have to
adopt a “sophisticated” axiom in which nto all sentences are permitted. �

14.1.5 The membership criterion

Suppose we use the sentence “x is a cow”, to form a set S, so

S = {x : x is a cow }

that is, S is “the set of all x such that x is a cow”, or, in much better English,
S is the set of all cows.

Then we can decide whether or not an object a belongs to the set S (that
is, whether or not a ∈ S) by applying the following simple test

1. Find out if a is a cow or not.

2. If a is a cow, then a belongs to S.

3. If a is not a cow, then a does not belong to S.
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In other words, the sentence “x is a cow” is the membership criterion,
or membership condition, for S. A particular object a belongs to the set
{x : x is a cow } if a is a cow, and doesn’t belong to the set of a is not a
cow.

For a general sentence C(x):

Suppose C(x) is a sentence having x

as an open variable, and you define a

set S by writing

Let S = {x : C(x)} .

Then

• The sentence C(x) is called

the membership criterion, or

membership condition, for the

set S.

• An object a belongs to S if

C(a) is true, and doesn’t be-

long to S if C(a) is not true.

14.1.6 Forming sets of members of a given set

Suppose we want to form the set of all natural numbers n that are even, i.e.,
such that 2|n, and we want to call this set A.

Then we can say:

Let A = {n : n ∈ IN ∧ 2|n} ,
and we can also say

Let A = {n ∈ IN : 2|n} .
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The first ssentence is read as “Let A be the set of all things that are natural
numbers and are even”, whereas the second sentence is read as “Let A be
the set of all natural numbers that are even”.

And, clearly, both define the same set.

Suppose U is a set, C(x) is a sentence

having x as an open variable, and you

define a set S by writing

Let S = {x : x ∈ U ∧ C(x) } .
Then the membership criterion is the
sentence “x ∈ U ∧ C(x)”.

And you can also write

Let S = {x ∈ U : C(x) } .

Example 46. Suppose the membership criterion C(x) is the sentence “x is a
natural number that can be written as the sum of the squares of two natural
numbers”. Let

S = {x : C(x)} .
Clearly, C(x) is the sentence

x ∈ IN ∧ (∃m ∈ IN)(∃n ∈ IN)x = m2 + n2 ,

so we could have written the definition of S as follows:

S = {x : x ∈ IN ∧ (∃m ∈ IN)(∃n ∈ IN)x = m2 + n2} ,

or as
S = {x ∈ IN : (∃m ∈ IN)(∃n ∈ IN)x = m2 + n2} , (14.6)

(We read this as “S is the set of all natural numbers x such that there exist
natural numbers m,n for which m2 + n2 = x”. And an even better reading
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is “S is the set of all natural numbers that are the sum of two squares of
natural numbers”.)

Let us consider several possible values of x, and in each case let us figure
out whether this x belongs to the set S.

1. Suppose x is the Math 300 textbook. Then x is a book, not a natural
number. So x /∈ S, that is, x is not a member of S.

2. Suppose x = 5. Then x is a natural number. And x is the sum of
the squares of two natural numbers, because x = 22 + 12. Therefore
x satisfies the criterion for membership in S. So x is a member of S,
that is, x ∈ S.

3. Suppose x = −5. Then x is not a natural number. So C(x) is not true.
That is, x does not satisfy the criterion for membership in S. So x is
not a member of S.

4. Suppose x = 7. Then x is a natural number. Can x be written as the
sum of the squares of two natural numbers? The answer is “no”. How
do we know that? Well, for example, we know that a number that is
of the form k + 3, k ∈ Z, is not the sum of two squares. And 7 is of
the form k + 3, because 7 = 4 + 3. So x /∈ S. �
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14.1.7 How to read the symbol “∈”

How to read the “∈” symbol

If S is a set and a is an object, we write

a ∈ S
to indicate that a is a member of S.

And we write

a /∈ S
to indicate that a is not a member of S.
The expression “a ∈ S” is read in any of the following
ways:

- a belongs to S,

- a is a member of S,

- a is in S.

The expression “a /∈ S” is read in any of the following
ways:

- a does not belong to S,

- a is not a member of S,

- a is not in S.

Remark 19. Sometimes, “a ∈ S” is read as “a belonging to S”, or “a in S”,
rather than “a belongs to S”, or “a is in S.” For example, if we write

Pick an a ∈ S,
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then it would be very bad to say “pick an a belongs to S”. But “pick an a
belonging to S”, “pick an a in S”, is fine. �

Never read “∈” as “is contained in”, or ”is
included in”. The words “contained” and “in-
cluded” have different meanings, that will be dis-
cussed later.

14.2 When are two sets equal?

As we have explained, sets have members. And, even more imprtantly,
knowledge of the members of the set determines the set. Two

sets that have the same members are the same set.

Let us make this precise:

The axiom of set equality

Two sets are equal if and only if they have the same
members.
In semiformal language:
If A, B are sets, then A = B if and only if

(∀x)(x ∈ A ⇐⇒ x ∈ B) .

And, in formal language,

(∀A)(∀B)
(

A = B ⇐⇒ (∀x)(x ∈ A ⇐⇒ x ∈ B)
)

.

Example 47. Let

A = {x ∈ IR : x ≥ 0} ,
B = {x ∈ IR : (∃y ∈ IR)y2 = x} .

Let us prove that A = B.
To prove that A = B, we have to prove that (∀x)(x ∈ A ⇐⇒ x ∈ B).
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So, let x be arbitrary. We have to prove that x ∈ A ⇐⇒ x ∈ B.

To prove this, we have to prove that x ∈ A =⇒ x ∈ B and that
x ∈ B =⇒ x ∈ A.

Let us first prove that x ∈ A =⇒ x ∈ B.

Assume that x ∈ A.

Then x ∈ IR and x ≥ 0. (Reason: “x ∈ IR ∧ x ≥ 0” is the
membership criterion for A.)

But every nonnegative real number has a square root.

So x has a square root. That is, (∃y ∈ IR)y2 = x.

So x satisfies the membership criterion for B.

Hence x ∈ B.

Therefore x ∈ A =⇒ x ∈ B.

We now prove that x ∈ B =⇒ x ∈ A.

Assume that x ∈ B.

Then x ∈ IR and (∃y ∈ IR)y2 = x. (Reason: “x ∈ IR ∧ (∃y ∈
IR)y2 = x” is the membership criterion for B.)

Pick y ∈ IR such that y2 = x.

Then y2 ≥ 0. (Reason: (∀u ∈ IR)u2 ≥ 0.)

So x ≥ 0.

So x satisfies the membership criterion for A.

Hence x ∈ A.

Therefore x ∈ B =⇒ x ∈ A.

So x ∈ A ⇐⇒ x ∈ B. Since x is arbitrary, we can conclude that (∀x)(x ∈
A ⇐⇒ x ∈ B). Hence A = B. Q.E.D.

Example 48. Let

A = {x ∈ IR : x > 0} ,
B = {x ∈ IR : (∃y ∈ IR)y2 = x} .
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Let us prove that A 6= B.
To prove that A 6= B, we have to prove that it is not true that (∀x)(x ∈

A ⇐⇒ x ∈ B).

Suppose8 (∀x)(x ∈ A ⇐⇒ x ∈ B).

Then we can specialize to x = 0, and conclude that 0 ∈ A ⇐⇒ 0 ∈ B.

But “0 ∈ B” means that “(∃y ∈ IR)y2 = 0, which is true, because
72 = 0.

On the other hand, “0 ∈ A” means that “0 > 0”, which is false.

Hence it is not true that 0 ∈ A ⇐⇒ 0 ∈ B.

So (0 ∈ A ⇐⇒ 0 ∈ B) ∧
(

∼ (0 ∈ A ⇐⇒ 0 ∈ B)
)

, which is a

contradiction .

Hence A 6= B. Q.E.D.

Example 49. Let A = {n ∈ IR : 6|n}, and let B = {n ∈ Z : 2|n ∧ 3|n}.
Let us prove that A = B.
To prove that A = B, we have to prove that (∀x)(x ∈ A ⇐⇒ x ∈ B).

So, let x be arbitrary. We have to prove that x ∈ A ⇐⇒ x ∈ B.

To prove this, we have to prove that x ∈ A =⇒ x ∈ B and that
x ∈ B =⇒ x ∈ A.

Let us first prove that x ∈ A =⇒ x ∈ B.

Assume that x ∈ A.

Then x ∈ Z and 6|x.
Since 6|x, we may pick k ∈ Z such that x = 6k.

Then x = 2× (3k), and 3k ∈ Z, so 2|x.
Also, x = 3× (2k), and 2k ∈ Z, so 3|x.
Hence 2|x ∧ 3|x.
So x ∈ B.

8A proof by contradiction , of course.
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Therefore x ∈ A =⇒ x ∈ B.

We now prove that x ∈ B =⇒ x ∈ A.

Assume that x ∈ B.

Then x ∈ Z, 2|x, and 3|x.
Since 2|x, we may pick j ∈ Z such that x = 2j.

Since 3|x, we may pick k ∈ Z such that x = 3k.

Then x = 1.x = (3−2)x = 3x−2x = 3×(2j)−2×(3k) = 6(j−k).

So 6|x.
Hence x ∈ A.

Therefore x ∈ B =⇒ x ∈ A.

So x ∈ A ⇐⇒ x ∈ B. Since x is arbitrary, we can conclude that (∀x)(x ∈
A ⇐⇒ x ∈ B). Hence A = B. Q.E.D.

Problem 49. Let

A = {x ∈ IR : x3 > x} ,
B = {x ∈ IR : −1 < x < 0 ∨ x > 1}
C = {x ∈ IR : −1 < x} .

Prove or disprove each of the following:

• A = B,

• A = C.

14.2.1 Subsets

Definition 26. Let A, B be sets. We say that A is a subset of B, and write

A ⊆ B ,
if every member of A is a member of B.
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In semiformal language, A is a subset of B if and only if

(∀x)(x ∈ A =⇒ x ∈ B) .

In completely formal language:

(∀A)(∀B)
(

A ⊆ B ⇐⇒ (∀x)(x ∈ A =⇒ x ∈ B)
)

.�

Example 50. The following are true:

• IN ⊆ Z ,

• Z ⊆ Q ,

• Q ⊆ IR ,

• {x ∈ IR : 0 < x < 1} ⊆ {x ∈ IR : 0 ≤ x ≤ 1}. �

Example 51.
The following are true:

• {x ∈ IR : −1 < x < 0} ⊆ {x ∈ IR : x3 > x}.

• {n ∈ IN : n is prime ∧ n 6= 2} ⊆ {n ∈ IN : 2|n− 1}.

• {n ∈ Z : 4|n} ⊆ {n ∈ Z : 2|n} ,

• {x ∈ IR : 0 < x < 1} ⊆ {x ∈ IR : 0 ≤ x ≤ 1} , �
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WARNING!

“is a subset of” is a binary relation. It does not make
sense to say things like “A is a subset”. What does make
sense is to say “A is a subset of B”.
If, in an exam, I ask you to define “subset”, and you
say “a set A is a subset if ....”, then that is completely
wrong and you get zero credita

The definition of “subset” must start with the words:
“Let A, B be sets. We say that A is a subzset of B if
. . ..

aAnd if your definition starts with horrendous words “subset is when . . .”
then you lose 10, 000, 000 points, on a sclae from 0 to 10.
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ALWAYS UNDERLINE THE
DEFINIENDUM

In a definition, the term being defined is called the
definiendum. The definiendum must always be under-
lined, or highlighted in some way, in order to indicate
that we are writing a definition of that term, not just
making a true statement.
For example:

• If I write “elephants are four-legged animals”, then
I am making a true statement about elephants.

• If, on the other hand, I write “elephants are four-
legged animals”, then I am saying that I am defin-
ing the word “elephant” to mean “four-legged an-
imal”, and this is of course wrong, because “ele-
phant” does not mean “four-legged animal”: there
are lots of four-legged animals that are not ele-
phants.

• If I write “an even integer is an integer that is di-
visible by 2”, then I am making a true statement.
but I am not saying that this is what “even integer”
means.

• If I want to explain what “even integer” means, i.e.,
give a definition of “even integer”, then I have to
say “an even integer is an integer that is divisible
by 2”. By underlining “even integer” I am convey-
ing the message that this is my definition of “even
inteeger”.

• If in an exam you are asked to give a definition and
you do not underline the definiendum, you will lose
points.
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Question 5. In the first sentence of the previous box, why is the word “definien-
dum” underlined? �

Problem 50. Prove the four statements of Example 51.
The structure of your proofs should be as follows:

We want to prove that A ⊆ B.

For that purpose, we prove that (∀x)(x ∈ A =⇒ x ∈ B).

Let x be arbitrary. We want to prove “x ∈ A =⇒ x ∈ B”.

Assume x ∈ A.
...

x ∈ B.

So x ∈ A =⇒ x ∈ B.

Therefore (∀x)(x ∈ A =⇒ x ∈ B).

So A ⊆ B. Q.E.D.

Problem 51. Prove that the binary relation “⊆” is reflexive, antisymmet-
ric, and transitive. (In the definition of these properties given in the notes,
a set S is mentioned. Here you may think of S as “the set of all sets”, which
means that you can forget about S. Then, for example, the property that “⊆”

is antisymmetric means “(∀A)(∀B)
(

(A ⊆ B ∧B ⊆ A) =⇒ A = B
)

”.)

14.2.2 The empty set

An important example of a set is the empty set, that is, the set that has
no members at all.

The symbol for the empty set is

∅ .
One possible way to define this set is by the following formula:
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∅ = {x : x 6= x} .

This means that the members of ∅ are the things x that satisfy x 6= x.
But our Equality Axiom says that (∀x)x = x. So “x = x” is true for every x.
This means that no x can be a member of ∅. So, indeed. ∅ has no members.

Let us make this precise:

Theorem 51. The empty set has no members. That is.

(∀x)x /∈ ∅ .
Proof.

Let x be arbitrary. We want to prove that x /∈ ∅.

Assume9 that x ∈ ∅.
Then x satisfies the membership criterion for ∅, i.e.,

x 6= x .

But (∀x)x = x, by the Equality Axiom.

So x = x, by the rule for using universal sentences.

Therefore x = x ∧ x 6= x, which is a contradiction.

So x /∈ ∅.
Therefore (∀x)x /∈ ∅. Q.E.D.

14.2.3 The empty set is a subset of every set

If you have a set A and a subset B of A, and you remove some members
from B, producing a subset C of B, then it is clear that C is still a subset
of A. This ought to be true even in the extreme case when you remove all
the members of B, so that C is the empty set. In other words, the empty set
should be a subset of A, for every set A.

Let us prove a precise theorem:

9A proof by contradiction !.
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Theorem 52. The empty set is a subset of every set. That is,

(∀A)∅ ⊆ A .

Proof.

Let A be an arbitrary set. We want to prove that ∅ ⊆ A.

Assume10 that ∅ is not a subset of A.

That is, assume that it is not true that every member of ∅ is in A.

That means that some members of ∅ are not in A.

In other words, there exists an object x such that x ∈ ∅ and x /∈ A.

Pick one such object and call it a.

Then a ∈ ∅ and a /∈ A.

So in particular a ∈ ∅.
But we know from Theorem 51 that (∀x)x /∈ ∅.
So a /∈ ∅.
Hence a ∈ ∅ ∧ a /∈ ∅.

So we have proved a contradiction.

Therefore ∅ ⊆ A.

So (∀A)∅ ⊆ A. Q.E.D.

14.2.4 Sets with one, two, three or four members

If a is any thing, we can form a set that has a as a member, and no other
members. This name of this set is

{a} ,

which we read as “singleton of a.”
The precise definition of {a} is as follows.

10A proof by contradiction !
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Definition 27. Let a be any object. Then the singleton of a is the set {a}
given by

{a} = {x : x = a} .

In other words: to be a member of the set {a} you have to be a. If you are
a then you are a member, and if you are not a then you are not a member.

We can do a similar thing with two objects, say a and b. We can form the
set {a, b} whose members are a, b, and nothing else. The set {a, b} is the
unordered pair of a and b.

Definition 28. Let a, b be any two objects. Then the unordered pair of a
and b is the set {a, b} given by

{a, b} = {x : x = a ∨ x = b} .

Remark 20. Warning: The set {a, b} is not necessarily a set with two
members. That depends on who a and b are. For example; if a happens to
be equal to b, then {a, b} has only one member. �

Naturally, we can do the same thing with three, four, or any number of
objects. For example:

Definition 29. Let a, b, c be any three objects. Then the unordered triple
of a, b and c is the set {a, b, c} given by

{a, b, c} = {x : x = a ∨ x = b ∨ x = c} .

Definition 30. Let a, b, c, d be any four objects.
Then the unordered quadruple of a, b, c and d is the set {a, b, c, d} given

by
{a, b, c, d} = {x : x = a ∨ x = b ∨ x = c ∨ x = d} .

And, in principle, you could go on like this and define sets with five
members, sets with 6 members, and so on.

But as soon as the number of members gets large, this way of constructing
sets becomes very complicated, so it is better to do it differently.

Example 52. Suppose you want to define a set whose members are the first
five presidents of the U.S., and call this set A. That’s easy to do. We say:
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Let A = {George Washington,John Adams,Thomas Jefferson,James Madi-
son,James Monroe}.

Now suppose you want to define a set whose members are the first 30 U.S.
presidents, and call this set B. That is going to be much more complicated
right? And what if you do not know the names of all those presidents?

Hhere is how you can do it. You can say:
Let

B =
{

x : (∃j ∈ IN)(j ≤ 30 ∧ x = pj)
}

,

where, for each j ∈ IN, pj is the j-th president of the U.S.
This works perfectly! Indeed, let us see what has to be true of an object

x for x to qualify as a member of A. If you are given an object x, and you
have to decide whether x ∈ B or not, you have to find out if there exists a
natural number j such that j ≤ 30 and x is the j-th U.S. president. And
that’s exactly what we want! �

Problem 52. How many members does the set B of Example 52 have?
If you think that the answer is 30, think again! Go to a history book (or

to a history Web site) and read about Grover Cleveland, who was both the
22nd and the 24th president of the United States. �

Problem 53. Let A = {1, 2, 3, 4}. Write a list of all the subsets of A.
(HINT: There are 16 of them.) �

Problem 54. Write a definition, in the style of Example 52, of the set X
whose members are the first 325 prime numbers p such that p− 3 is divisible
by 4. �


