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19 The great theorems of elementary integer

arithmetic

Elementary integer arithmetic

Integer arithmetic is the study of the integers.
Elementary integer arithmetic is the study of the most
basic facts about the integers. It is a body of theory that

• involves a number of important concepts, such as

(**) divisibility,

(**) prime numbers,

(! !) greatest common divisor,

• contains interesting and sometimes surprising results,
such as

(* !) the fundamental theorem of arithmetic,

(! !) Bézout’s lemma,

(! !) Euclid’s lemma,

(! !) Euclid’s theorem on the existence of infinitely
many prime numbers,

and uses several powerful tools, such as

(**) the principle of mathematical induction (PMI),

(**) the well-ordering principle (WOP),

(**) the division theorem.

(The items marked “(**)” have already been discussed in these
notes. The items marked “(! !)” will be discussed in this sec-
tion. One item is marked “(* !)”, because we have already
proved one half of it, whereas the other half has not yet been
proved, but will be proved in this section.
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We now explain the concepts and results from the above list that have
not been discussed yet, and prove the theorems.

19.1 The greatest common divisor of two integers

The first item in the list that is new to us is the concept of “greatest common
divisor”, so we begin by explainimg what this means.

Remark 24. We are about to define “greatest common divisor”. If in an
exam you are asked to define “greatest common divisor”, then the first two
questions that you have to ask yourself are is “greatest common divisor”
a term or a predicate?, and what are the arguments?. There are two
equally correct possible answers1:

FIRST ANSWER:

1. “the greatest common divisor of” is a term: we talk about “the great-
est common divisor of two integers a, b”, which is an integer; so “the
greatest common divisor of a and b” is a term, because it is the name
of a thing (specifically, an integer),

2. “the greatest common divisor of” has two arguments: we talk about
the greatest common divisor of two integers a and b.

SECOND ANSWER:

1. “is the greatest common divisor of ” is a predicate: we say things such
as “g is the greatest common divisor of the integers a, b”, and this is a
statement that can be true or false, depending on who a, b, and g are;
so “is the greatest common divisor of” is a predicate, because it has a
true-false truth value,

2. “is the greatest common divisor of” has three arguments: we write
sentences such as g is the greatest common divisor of a and b.

So, even before you specify exactly what “greatest common divisor” means,
you already know how the definition should start:

1There is not contradiction between those two answers. The words “greatest common
divisor” are part of both the two-argument term “the greatest common divisor of a and
b”, and the three-argument predicate “g is the greatest common divisor of a and b”.
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1. If you choose Answer No. 1, then your definition should start with the
words

Let a, b be integers. The greatest common divisor of a
and b is . . . .

2. If you choose Answer No. 2, your definition should start with the words

Let a, b, g be integers. We say that g is a
greatest common divisor of a and b if . . . . �

We are going to choose Answer No. 2. That is, we are going to define the
three-argument predicate “g is a greatest common divisor of a and b”. And
then we will prove that if a greatest common divisor of a and b exists, then it
is unique. And this will allow us to talk about the greatest common divisor
of a and b.

In order to define “geatest common divisor”,

1. We will first define “common divisor”. This is going to be a three-
argument predicate (because “c is a common divisor of a and b” is a
statement about a, b and c that can be true or false depending on who
a, b, c are).

2. Having defined “common divisor”, the definition of “greatest common
divisor” will just say the most obvious thing: a greatest common divisor
of a and b is a common divisor that is the largest of all commmon
divisors.

And here, finally, are the definitions:

Definition 42. Let a, b, g be integers. We say that c is a common divisor
(or common factor) of a and b if c divides a and c divides b. �

In other words,

c is a common divisor of a and b ⇐⇒ (c|a ∧ c|b) . (19.1)

Definition 43. Let a, b, g be integers. We say that g is a greatest common
divisor of a and b if

1. g is a common divisor of a and b.
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2. If c is any common divisor of a and b, then c ≤ g. �

In other words: a greatest common divisor of the integers a, b, is
a common divisor that is greater that or equal to every common
divisor of a and b.

We are going to use “GCD” as an abbreviation for “greatest common
divisor. Then

g is a GCD of a and b ⇐⇒
(

g|a ∧ g|b ∧ (∀c ∈ Z)
(

(c|a ∧ c|b) =⇒ c ≤ g
)

)

. (19.2)

19.1.1 When do we use “a” and when do we use “the”?

Can we talk about “the” greatest common divisor of a and b? The answer
would be

• “no”, if there is more than one gcd. For example:

– We do not say “Piscataway is the town in New Jersey”, because
there are lots of towns in New Jersey; we say “Piscataway is a
town in New Jersey”,

– We do not say “B is the subset of A”, because a set typically has
lots of subsets; we say “B is a subset of A”,

– We do not say “John McCain is the U.S. Senator”, because there
are many U.S. Senators; we say “John McCain is a U.S. Senator”.

– We do not say “2 is the factor of 6”, because 6 has several factors
(eight of them, to be precise: 1, −1, 2, −2, 3, −3, 6, and −6). We
say “2 is a factor of 6”, .

– We do not say “c is the common divisor of a and b”, because two
integers typically have lots of common divisors2; we say “c is a
common divisor of a and b”.

• “the”, if there is only one gcd. For example:

2They always have at least two comoon divisors, namely, 1 and −1. And in most cases
they have many more: for example, 12 and 18 have eight common divisors: 1, −1, 2, −2,
3, −3, 6, and −6.
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– We do not say “Paris is a capital of France”, because France has
only one capital; we say “Paris is the capital of France”.

– We do not say “P(A) is a power set of A”, because a set only has
one power set; we say “P(A) is the power set of A”.

– We do not say “p is a product of a and b”, because two integers
have only one product; we say “p is the product of a and b”.

– We do not say “A×B is a Cartesian product of A and B”, because
two sets have only one Cartesian product; we say “A × B is the
Cartesian product of A and B”.

In general: whatever a “shmoo” might be, we talk about “the shmoo” if
there is only one shmoo, and we talk about “a shmoo” if there is more that
one shmoo.

19.1.2 Uniqueness of the greatest common divisor

So which one is it? Shall we talk about “the” greatest common divisor of
two integers, or about “a” greatest common divisor?

So far, in Definition 43, I talked about a greatest common divisor, because
we didn’t know yet if there is only one or more than one greatest common
divisor of two given integers.

But now we are going to prove that the greatest common divisor, if it
exists, is unique. And once we know that, we will be able to talk about the
greatest common divisor of two integers.

Proposition 3. Let a, b be integers. Then, if a greatest common divisor of
a and b exists, it follows that a and b have only one greatest common divisor.

Proof. To prove that there is only one GCD of a and b, we assume that g1
and g2 are GCDs of a and b, and prove that g1 = g2.

Since g1 is a GCD of a and b, the definition of “GCD” tells us that g1|a
and g1|b.

Since g2 is a GCD of a and b, the definition of “GCD” tells us that if c is
any integer such that c|a and c|b, then c ≤ g2. And we can apply this with
g1 in the role of c. Since g1|a and g1|b, it follows that g1 ≤ g2.

Exactly the same argument works to prove that g2 ≤ g1.
Since g1 ≤ g2 and g2 ≤ g1, it follows that g1 = g2. Q.E.D.
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So from now on we can talk about “the GDC of a and b”. And we can give
it a name. So we shall call it “GCD(a, b)”.

If a, b are integers, and the greatest common
divisor of a and b exists, then “GDC(a, b)” is
the name of the GCD of a and b.

Example 29.

1. GCD(5, 7) = 1. Reason: The only common divisors of 5 and 7 are 1
and −1. And 1 is the largest of the two, so 1 = GCD(5, 7).

2. GCD(5, 15) = 5. Reason: The common divisors of 5 and 15 are 1, −1, 5
and −5. And 5 is the largest of these four integers, so 5 = GCD(5, 15).

3. GCD(18, 30) = 6. Reason: The common divisors of 18 and 30 are 1,
−1, 2, −2, 3, −3, 6, and −6. And 6 is the largest of these integers, so
6 = GCD(18, 30).

4. GCD(28, 73) = 1. Reason: 73 is prime. So the only factors of 73 are
1, −1, 73 and −73. But 73 and −73 are not factors of 28. So the only
common divisors of 28 and 73 are 1 and −1. And 1 is the largest one.
So 1 = GCD(28, 73).

5. GCD(28, 0) = 28. Reason: Every integer k is a factor of 0, because
0 = 0 × k, so (∃u ∈ Z)0 = uk, so k|0. So the common factors of 28
and 0 are the factors of 28. And the largest of those factors is 28. So
28 = GCD(28, 0).

6. GCD(−28, 0) = 28. Reason: Every integer k is a factor of 0, as ex-
plained before. So the common factors of −28 and 0 are the factors of
−28. And the largest of those factors is 28. So 28 = GCD(−28, 0).

In all the examples in the previous list, the GDC turned out to be positive.
We can prove easily that this is a general fact:

Proposition 4. Let a, b be integers such that the greatest common divisor
GCD(a, b) exists. Then

GCD(a, b) ≥ 1 .

Proof. GCD(a, b) is greater than or equal to every common factor of a and
b. And 1 is a common factor of a and b. So GCD(a, b) ≥ 1. Q.E.D.
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19.1.3 Bézout’s lemma; the statement

An extremely important, and rather surprining, fact about geratest common
divisors is Bézout’s lemma:

Bézout’s lemma

If a and b are two integers that are not both equal to
zero, then GCD(a, b) is equal to the sum of a multiple
of a and a multiple of b. That is, there exist integers
u, v such that

GCD(a, b) = ua+ vb . (19.3)

19.1.4 The proof of Bézout’s lemma

In order to prove Bézout’s lemma we will have to work all the time with
numbers that are sums ua + vb of a multiple of a and a multiple of b. So it
will be convenient to give those numbers a name.

Definition 44. Assume that a, b, and c are integers. Then we say that c

is an integer linear combination of a and b if c is the sum of a multiple of a
and a multiple of b.

In other words: c is an integer linear combination of a and b if

(∃u ∈ Z)(∃v ∈ Z) c = ua+ vb .

In order to avoid having to write the words “c is an integer linear combination
of a and b” all the time, we give a name to the set of all numbers c such that
c is an integer linear combination of a and b. We call this set “ILC(a, b)”.

So the set ILC(a, b) is defined as follows:

ILC(a, b) = { c ∈ Z : (∃u ∈ Z)(∃v ∈ Z)c = ua+ bv } . (19.4)

And now that we have defined the set ILC(a, b), we can say “c ∈ ILC(a, b)”
instead of “c is an integer linear combination of a and b”.

And now we are ready to state the main theorem of this section, which
is a result that contains Bézout’s lemma as a special case.
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Theorem 60. Let a, b be integers. Then:

1. If a = 0 and b = 0, then a greatest common divisor in the sense of
Definition 43 does not exist.

2. If a 6= 0 or b 6= 0, then

(a) The greatst common divisor GCD(a, b) of a and b exists,

(b) GCD(a, b) is the smallest of all positive integrs that are integer
linear combinations of a and b. (In other words, GCD(a, b) is the
smallest member of the set ILC(a, b) ∩ IN.)

Proof. First let us look at the case when a = 0 and b = 0. In this case,
every integer is a common factor of a and b, because every integer divides 0.
So there is no largest integer that is a common factor of a and b. That is,
the GDC of a and b does not exist.

Now let us look at the case when a 6= 0 or b 6= 0. In this case, one of the
four numbers a,−a, b,−b must be positive. (If a 6= 0 then either a > 0 or
−a > 0. If b 6= 0 then either b > 0 or −b > 0.) And all four numbers belong
to ILC(a, b). So one of the four numbers belongs to ILC(a, b) ∩ IN. Hence

ILC(a, b) ∩ IN 6= ∅ .

So ILC(a, b)∩ IN is a nonempty set of natural numbers. By the well-ordering
principle, ILC(a, b) ∩ IN has a smallest member. And, in addition, we know
that the smallest member of a subset of IR, if it exists, is unique. So we can
talk about the smallest member of ILC(a, b) ∩ IN.

Let us give a name to this smallest member; let us call it g. So

g ∈ ILC(a, b) ∩ IN

and (∀n ∈ Z)(n ∈ ILC(a, b) ∩ IN =⇒ g ≤ n) .

We want to prove that

(*) g is the greatest common divisor of a and b.

In order to prove (*), the definition of “greatest common divisor” tells us
that we have to prove the following two things:

(*1) g is a common divisor of a and b; that is,

g|a ∧ g|b . (19.5)
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(*2) g is the largest of all common divisors of a and b; that is,

(∀c ∈ Z)
(

(c|a ∧ c|b) =⇒ c ≤ g
)

. (19.6)

Since g ∈ ILC(a, b), we can pick integers u, v such that

g = ua+ vb . (19.7)

Proof of (*1). Using the division theorem, we can divide a by g with a
remainder r. That is, we can pick integers q, r such that

a = gq + r and 0 ≤ r < g . (19.8)

(The division theorem says “0 ≤ r < |g|”. But in our case we know that
g ∈ IN, so |g| = g.)

Then

r = a− gq

= a− (ua+ vb)q

= a− uqa− vqb

= (1− uq)a+ (−vq)b .

So
r ∈ ILC(a, b) . (19.9)

We know that r ≥ 0. Let us prove that r = 0, by contradition.

Assume that r 6= 0.

Since r ≥ 0, it follows that r > 0.

So r is an integer and r > 0.

Hence r ∈ IN.

Since r ∈ ILC(a, b), it follows that r ∈ ILC(a, b) ∩ IN.

In addition, (19.8) tells us that r < g.

So g is not the smallest member of ILC(a, b)∩IN, because r is a member
of ILC(a, b) ∩ IN and r < g.
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But g is the smallest member of ILC(a, b) ∩ IN.

Hence

g is the smallest member of ILC(a, b) ∩ IN and g is not the
smallest member of ILC(a, b) ∩ IN,

which is a contradiction.

So we have derived a contradiction from the assumption that r 6= 0.

Hence r = 0.

Since r = 0 and a = gq + r, we can conclude that a = gq.

Therefore g|a.

The proof that g|b is identical, and we omit it.

So g|a ∧ g|b , and this completes the proof of (*1).

Proof of (*2). We want to prove the universal sentence (19.6).

Let c ∈ Z be arbitrary.

Assume that c|a ∧ c|b.

Then we can pick integers j, k such that

a = cj and b = ck .

Since g = ua+ vb, we get

g = ua+ vb

= ucj + vck

= c(uj + vk) .

Furthermore, uj + vk is an integer, because u, v, j and k are inte-
gers.

Hence c divides g.

Our goal is to prove that c ≤ g. And for that purpose we distin-
guish two cases: either c ≤ 0 or c > 0.
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Case 1: c ≤ 0. In this case, the conclusion that c ≤ g is obvious,
because c ≤ 0 and g > 0, since g ∈ IN.

Case 2: c > 0. In this case, we have

g = ℓc ,

where ℓ = uj + vk. Then ℓ is an integer.

Then ℓ must be > 0. (Reason: if ℓ was ≤ 0 then ℓc would be ≤ 0,
since c > 0. But ℓc = g, and g > 0. So ℓ cannot be ≤ 0. So
ℓ > 0.)

Since ℓ is an integer, and ℓ > 0, it follows that ℓ is a natural
number. Hence ℓ ≥ 1.

Since ℓ ≥ 1 and ℓc = g, it must be the case that c ≤ g . (Reason:
if c > g, then it would follow that ℓc > g, because ℓc ≥ c—since
ℓ ≥ 1—and c > g. But ℓc = g.)

So we have shown that c ≤ g. And this completes our proof.
Q.E.D.

19.2 Prime numbers

Definition 45. A prime number is a natural number p such that

I. p > 1,

II. p does not have any natural number factors other than 1 and p. �

And here is another way of saying the same thing, in case you do not want
to talk about “factors”.

Definition 46. A prime number is a natural number p such that

I. p > 1,

II. There do not exist natural numbers j, k such that j > 1, k > 1, and
p = jk. �
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19.2.1 Why isn’t 1 prime?

If you look at the definition of “prime number”, you will notice that, for a
number p to qualify as a prime number, it has to satisfy p > 1. In
other words, the number 1 is not prime. Isn’t that weird? After all, the
only natural number factor of 1 is 1, so the only factors of 1 are 1 and itself,
and this seems to suggest that 1 is prime.

Well, if we had defined a number p to be prime if p has no natural number
factors other than 1 and itself, then 1 would be prime. But we were very
careful not to do that. Why?

The reason is, simply, that there is a very nice theorem called the “unique
factorization theorem”, that says that every natural number greater than 1
either is prime or can be written as a product of primes in a unique way.
(For example: 6 = 3 · 2, 84 = 7 · 3 · 2 · 2, etc.)

If 1 was a prime, then the result would not be true as stated. (For
example, here are two different ways to write 6 as a product of primes:
6 = 3 · 2 and 6 = 3 · 2 · 1.) And mathematicians like the theorem to be true
as stated, so we have decided not to call 1 a prime.

If you do not like this, just keep in mind that we can use words any way
we like, as long as we all agree on what they are going to mean. If we decide
that 1 is not prime, then 1 is not prime, and that’s it. If you think that for
you 1 is really prime, just ask yourself why and you will see that you do not
have a proof that 1 is prime.

19.2.2 Euclid’s lemma: an important application of Bézout’s lemma

Euclid’s lemma is one of the most important technical results in elemen-
tary integer arithmetic. For example, Euclid’s lemma is the key fact
needed to prove the missing half of the Fundamental Theorem of
Arithmetic (FTA), that is, the uniqueness of the prime factor-
ization.

And, as you will see, the key fact that makes the proof of Euclid’s lemma
work is Bézout’s lemma.

Euclid’s lemma is about the following question:

Question 5. Suppose an integer p divides the product ab of two integers a,
b. Does it follow that p must divide a or p must divide b? �

The answer is “no” if a, b and p are arbitrary integers.
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Example 30. 6 divides 2× 3 (because 6 = 2× 3) but 6 doesn’t divide 2 and
6 does not divide 3. �

But it turns out that the answer s “yes” if p is prime, and this is what Euclid’s
lemma says:

Theorem 61. (Euclid’s lemma) If a, b, p are integers, such that p is
prime and p divides the product ab, then p divides a or p divides b.

Proof. To prove that p|a ∨ p|b, we prove3 that (∼ p|a) =⇒ p|b. i.e., that if
p does not divide a then p divides b.

Assume that p does not divide a. Since p is prime, the only natural
numbers that are factors of p are 1 and p. And p is not a factor of a, because
we are assuming that p does not divide a.

Therefore the greatest common divisor of p and a is equal to 1.
It then follows from Bézout’s lemma that 1 is equal to the sum of a

multiple of p and a multiple of a. That is, we can pick integers u, v such that

1 = up+ va .

On the other hand, since p divides ab, we may pick an integer k such that

ab = pk .

Then

b = b× 1

= b× (up+ va)

= ubp+ vab

= ubp+ vpk

= (ub+ vk)p ,

3Why do we do that? This is so because of Rule ∨prove, the rule for proving “∨”
sentences: if, assuming ∼ A, you prove B, then you can go to A ∨B. And the reason for
Rule ∨prove is this: suppose we want to prove A∨B. There are two possibilities: either A
is true or A is not true. If A is true then A∨B is true, and we are done. If A is false then,
since we know how to prove B assuming ∼ A, B follows, so “A ∨ B” is true in this case
as well. Here is another way to see this: “A ∨B” is false if and only if both A and B are
false. And the implication “(∼ A) =⇒ B” is false only if and only if the premise is true
and the conclusion is false, that is, if and only if A is false and B is false. So “A ∨ B” is
false if and only if “(∼ A) =⇒ B” is false. So “A∨B” is true if and only if “(∼ A) =⇒ B”
is true. So proving “A ∨ B” amounts to the same thing as proving “(∼ A) =⇒ B”. And
to prove “(∼ A) =⇒ B” we assume ∼ A and prove B.
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so p divides b. Q.E.D.

19.2.3 An important notational convention: the sets INk

In what follows we will be making lots of statements about “the natural
numbers 1, 2, . . . , k”, that is “all the natural numbers j such that j ≤ k”. So
it will be convenient to give a name to the set of all such js.

If k ∈ IN ∪ {0} (that is, k is a nonnegative integer,

i.e., k is a natural number or zero), we let

INk = {j ∈ IN : j ≤ k} .

Then INk is the set of the first k natural

numbers.
For example:

IN0 = ∅ , IN1 = {1} , IN2 = {1, 2} ,
IN3 = {1, 2, 3} , IN4 = {1, 2, 3, 4} , IN5 = {1, 2, 3, 4, 5} .

Then

j ∈ INk

is just another way of saying “j ∈ IN and j ≤ k”.

19.2.4 The generalized Euclid lemma

Theorem 61 (that is, Euclid’s lemma) tells us that If p is a prime and a, b,
are integers such that p is prime and p divides the product ab, then p divides
a or p divides b.

The generalized Euclid lemma answers the following more general
question:
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Question 6. What happens if instead of two integers a, b we have three in-
tegers a, b, c? Is it still true that if p|abc then p|a or p|b or p|c?

What if we have four integers a, b, c, d. Is it still true that if p|abcd then
p|a or p|b or p|c or p|d? �

The answer is “yes”, for three, four, or any number of integers, as we now
prove.

Theorem 62. Let k be a natural number, and let p, a1, a2, . . . , ak be integers
such that

1. p is a prime number,

2. p divides the product
∏k

j=1
aj.

Then p divides one of the factors. That is, (∃j ∈ INk)p|aj,

Proof. We will prove this by induction.
We want to prove

(∀k ∈ IN)(∀p, a1, a2, . . . , ak ∈ Z)
(

(

p is a prime number ∧ p

∣

∣

∣

k
∏

j=1

aj

)

=⇒ (∃j ∈ INk)p|aj

)

. (19.10)

Sentence (19.10) is a closed sentence. i.e., a sentence with no open variables,
because the sentence contains the variables k, p, a1, a2, . . . , ak and j, but they
are all quantified, so no variables are open.

We can express sentence (19.10) as “(∀k ∈ IN)P (k)”, where P (k) be the
sentence

(∀p, a1, a2, . . . , ak ∈ Z)
(

(

p is a prime number ∧ p

∣

∣

∣

k
∏

j=1

aj

)

=⇒ (∃j ∈ INk)p|aj

)

. (19.11)

Then P (k) is a sentence with one open variable, and the open variable is k.
So P (k) is exactly the kind of sentence for which we can expect to be able
to prove “(∀k ∈ IN)P (k)” by induction.

Now let us prove “(∀k ∈ IN)P (k)” by induction.
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Base step. We have to prove P (1). But P (1) says

(∀p, a1∈Z)

(

(

p is a prime number∧ p

∣

∣

∣

1
∏

j=1

aj

)

=⇒(∃j∈ IN1)p|aj

)

. (19.12)

But IN1 is just the set {1}, so “(∃j ∈ IN1)p|aj” just amounts to saying “p|a1”.
Furthermore.

∏

1

j=1
aj = a1. So P (1) actually says

(∀p, a1 ∈ Z)

(

(

p is a prime number ∧ p|a1
)

=⇒ p|a1

)

. (19.13)

And this is clearly true. So (19.13) is true.
Hence P (1) is true.

Inductive step. We want to prove that

(∀k ∈ IN)(P (k) =⇒ P (k + 1)) . (19.14)

Let k ∈ IN be arbitrary.

Assume that P (k) is true.

Then

(∀p, a1, a2, . . . , ak ∈ Z)
(

(

p is a prime number ∧ p

∣

∣

∣

k
∏

j=1

aj

)

=⇒ (∃j ∈ INk)p|aj

)

. (19.15)

We want to prove P (k + 1), that is,

(∀p, a1, a2, . . . , ak, ak+1 ∈ Z)
(

(

p is a prime number ∧ p

∣

∣

∣

k+1
∏

j=1

aj

)

=⇒ (∃j ∈ INk+1)p|aj

)

. (19.16)

So let p, a1, a2, . . . , ak, ak+1 be arbitrary integers such that

1. p is a prime number.

2. p divides
∏k+1

j=1
aj.
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We want to prove that (∃j ∈ INk+1)p|aj. i.e., that p|aj for some
j ∈ INk+1.

The inductive definition of “
∏

” tells us that

k+1
∏

j=1

aj =
(

k
∏

j=1

aj

)

ak+1 .

So

p

∣

∣

∣

(

k
∏

j=1

aj

)

ak+1 .

Euclid’s lemma tells us, since p is prime, that if p divides a product
uv of two integers then p|u or p|v. In our case, if we take
u =

∏k

j=1
aj and v = ak+1, the lemma tells us that either

(i) p divides
∏k

j=1
aj

or

(ii) p divides ak+1..

We now see what happens in each of these two cases.

Case (i): Assume that p divides
∏k

j=1
aj. Then we can use P (k)

and conclude that p divides one of the factors, that is, we can
conlude that (∃j ∈ INk)p|aj. So we may pick j in INk such that

p|aj. Then obviously j ∈ INk+1, so (∃j ∈ INk+1)p|aj .

Case (ii): Assume that p divides ak+1. Then it is is also true that

(∃j ∈ INk+1)p|aj .

So in both cases (∃j ∈ INk+1)p|aj, so we have established the

conclusion that (∃j ∈ INk+1)p|aj .

We have proved this for arbitrary integers p, a1, a2, . . . , ak, ak+1 such
that p is a prime number and p divides

∏k+1

j=1
aj.

Hence we have proved P (k + 1).

Since we have proved P (k+1) assuming P (k), we have proved the implication
P (k) =⇒ P (k + 1).
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Since we have proved P (k) =⇒ P (k+1) for arbitray k ∈ IN, we have proved
(∀k ∈ IN)(P (k) =⇒ P (k + 1)).

This completes the inductiove step.

So we have proved (∀k ∈ IN)P (k). Q.E.D.

19.2.5 Coprime integers

Definition 47. If a, b are integers, we say that a and b are coprime (or that
“a is coprime with b”, or that “b is coprime with a”) if a and b have no
nontrivial common factors (that is, if the only integers f such that f |a and
f |b are 1 and −1). �

If a and b are coprime, then they cannot both be zero, because if a = 0
and b = 0 then every integer is a common factor of a and b (because every
integer n is a factor of 0, since 0 = 0× n), so a and b have lots of nontrivial
common factors.

And if a and b are not both 0, then the greatest common divisorGCD(a, b)
exists. If a and b are coprime, then GCD(a, b) must be equal to 1, because
GCD(a, b) is a common factor of a and b.

On the other hand, if GCD(a, b) = 1 then a and b must be coprime.
(Reason: if a and b were not coprime, then they would have a common
factor f such that f > 1, and since f ≤ GCD(a, b), we would conclude that
GCD(a, b) > 1.)

So we have proved:

Proposition 5. Let a and b are integers, then a and b are coprime if and
only if they are not both equal to zero and GCD(a, b) = 1. �

We now introduce a symbol for coprimeness:
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If a and b are integers, we write

a ⊥ b

for “a and b are coprime”.

For example:

3 ⊥ 7 −12 ⊥ 55 1 ⊥ 0

∼ 22 ⊥ 14 ∼ 78 ⊥ −15 ∼ 49 ⊥ 77
.

19.2.6 Divisibility of an integer by the product of two integers

In this section we look at the following question:

Question 7. If an integer n is divisible by two integers a, b, when can we
conclude that n is divisible by the product ab? �

It is clear that the answer is “not always”.

Example 31. If a = 6 and b = 4, then it is not true that every integer that
is divisible by a and by b is divisible by ab. For example, 12 is divisible by a

and by b, but it is clearly not divisible by ab, since ab = 24. �

The answer to Question 7 is: if a|n and b|n, then we can conclude that
n is divisible by the product ab if a and b are coprime.

Indeed, we can prove:

Theorem 63. If

1. a, b, n are integers,

2. a divides n,

3. b divides n,

4. a and b are coprime,
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then ab divides n.

Proof. Since a and b are coprime, we may pick integers u, v such that

1 = ua+ vb .

Since n is divisible by a and by b, we can pick integers j, k such that

n = aj and n = bk .

Then

n = n× 1

= n× (ua+ vb)

= nua+ nvb

= (bk)ua+ (aj)vb

= ab(ku+ jv) .

So ab divides n. Q.E.D.

19.2.7 Coprime integers and divisibility: an extension of Euclid’s
lemma

In this section we look at the following question:

Question 8. If

1. p, a, b are integers,

2. p divides ab,

3. p does not divide a,

can we conclude that p must divide b?

Euclid’s lemma tells us that the answer is “yes” if p is prime.
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But if p is not prime the answer could be “no”, as we showed in Example 30.
It turns out that, using exactly the same strategy—nased on Bézout’s

lemma—that we used to prove Euclid’s lemma, we can extend Euclid’s lemma
by proving that the answer is “yes” not only when p is prime but also in some
cases when p is not prime.

What is needed is that p and a should be coprime. This will always
be the case when p is prime, because when p is prime and p does not divide
a it follows that p and a are coprime.

Theorem 64. If

• a, b, p, are integers,

• p is coprime with a,

• p divides the product ab,

then p divides b.

Proof. Since p ⊥ a, the greatest common divisor GCD(p, a) is equal to 1.
Using Bézout’s lemma, we can pick integers u, v such that

ua+ vp = 1 . (19.17)

Then, if we multiply both sides of (19.17) by b, we get

uab+ vpb = b .

Since p divides ab, we can pick an integer k such that

ab = kp .

Then

b = uab+ vpb

= ukp+ vpb

= (uk + vb)p ,

so p divides b. Q.E.D.
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We said before that Theorem 64 is an extension of Euclid’s lemma. To
see this, let me show how, once you have Theorem 64, Euclid’s lemma follows
easily:

An easy derivation of Euclid’s lemma from Theorem 64: Suppose p

is prime and p divides the product ab of two integers a, b. We want to prove
that p|a or p|b. For this purpose, we assume that p does not divide a and
prove that p divides b.

Since p is prime and p does not divide a, p is coprime with a. Then
Theorem 64 tells us that p divides b, which is exactly what we want to prove
in order to prove Euclid’s Lemma. Q.E.D.

19.2.8 Another extension of Euclid’s lemma

In addition to providing an easy way to prove Euclid’s lemma, Theorem 64
has another important consequence:

Theorem 65. If a, b, p, are integers, and p is coprime with a and with b,
then p is coprime with the product ab.

Theorem 64 is easy to remember: it says that

If p ⊥ a and p ⊥ b then p ⊥ ab .

Proof of Theorem 65.

Assume that p is not coprime with ab. Then p and ab have a common factor
m such that m > 1.

Since m|p, and p ⊥ a, m must be coprime with a as well. (Reason: any
common factor of m and a would be a common factor of p and a, since m|p.
Since p and a do not have nontrivial common factors, m and a cannot have
nontrivial common factors either.)

On the other hand, m divides ab, because m|p and p|ab.
So m divides ab and m is coprime with a. By Theorem 64, m divides b.
Hence m|b, m|p, and m > 1. Therefore p and b have a nontrivial common

factor.
It follows that p and b are not coprime .
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But p and b are coprime .
So we have reached a contradiction, and this was the result of assuming

that p is not coprime with ab.
Hence p is coprime with ab. Q.E.D.

Why is Theorem 65 “an extension of Euclid’s lemma”? The reason is, once
again, that from Theorem 65 one can easily derive Euclid’s lemma.

An easy derivation of Euclid’s lemma from Theorem 65: Suppose p

is prime and p divides the product ab of two integers a, b. We want to prove
that p|a or p|b. For this purpose, we assume that it is not true that p|a∨ p|b.
Then p does not divide a and p does not divide b. Since p is prime and p

does not divide a, p is coprime with a. Since p is prime and p does not divide
b, p is coprime with b. Then Theorem 65 tells us that p is coprime with ab .

On the other hand, we are assuming that p|ab, so p and ab have a non-

trivial common factor, namely, p. So p is not coprime with ab .
So we have reached a contradiction, and this happened because we as-

sumed that it is not true that p|a ∨ p|b. Hence p|a ∨ p|b . Q.E.D.

19.2.9 Another extension of Euclid’s lemma

Theorem 65 tells us that if an integer p is coprime with two integers a, b,
then it is coprime with the product ab.

We now consider the following question:

Question 9. What happens if instead of two integers a, b we have three in-
tegers a, b, c? Is it still true that if p ⊥ a, p ⊥ b, and p ⊥ c, then p ⊥ abc?

What if we have four integers a, b, c, d. Is it still true that if p ⊥ a, p ⊥ b,
p ⊥ c, and p ⊥ d, then p ⊥ abcd? �

The answer is “yes”, for three, four, or any number of integers, as we now
prove.

Theorem 66. Let k be a natural number, and let p, a1, a2, . . . , ak be integers
such that p is coprime with aj for every j ∈ INk. Then p is coprime with the

product
∏k

j=1
aj.

Proof. We will do a proof by induction.
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Let P (k) be the sentence

(%) If p, a1, a2, . . . , ak are integers such that p ⊥ aj for every j ∈ INk, then

p ⊥
∏k

j=1
aj.

In formal language, P (k) is the sentence

(∀p, a1, a2, . . . , ak ∈ Z)
(

(∀j ∈ INk)p ⊥ aj =⇒ p ⊥
k
∏

j=1

aj

)

. (19.18)

Remark 25. Formula (19.18) contains the variables p, j, k, a1, a2, . . . , ak. But
all these variables, except k, are quantified. So k is the only open variable.
Hence (19.18) is a one-variable predicate, and the open variable is k. That’s
why we can call the predicate (19.18) P (k), and try to prove by induction
on k that (∀k ∈ IN)P (k). �

We will prove (∀k ∈ IN)P (k), by induction.

Base step. We have to prove that P (1) is true. But P (1) says

(∀p ∈ Z)(∀a1 ∈ Z)
(

p ⊥ a1 =⇒ p ⊥
1
∏

j=1

aj

)

, (19.19)

and the inductive definition of “
∏

” says that

1
∏

j=1

aj = a1 .

Therefore P (1) says

(∀p ∈ Z)(∀a1 ∈ Z)
(

p ⊥ a1 =⇒ p ⊥ a1

)

. (19.20)

Since “p ⊥ a1 =⇒ p ⊥ a1” is clearly true for every p and every a1, P (1) is
true.

Inductive step. We have to prove (∀k ∈ IN)(P (k) =⇒ P (k + 1)).

Let k ∈ IN be arbitrary.

We want to prove that P (k) =⇒ P (k + 1).
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Assume that P (k) holds.

We want to prove P (k + 1). That is, we want to prove

(*) if p, a1, a2, . . . , ak+1 are integers such that p ⊥ aj for every

j ∈ INk+1, then p ⊥
∏k+1

j=1
aj.

Let p, a1, a2, . . . , ak+1 be arbitrary integers.

Assume

(♦) p ⊥ aj for every j ∈ INk+1 .

Then

(&) a1, a2, . . . , ak are integers such that p ⊥ aj for every j ∈ INk.

Since we are assuming that P (k) is true, we can conclude that
p ⊥

∏k

j=1
aj.

Let b =
∏k

j=1
aj.

It then follows that
k+1
∏

j=1

aj = bak+1 ,

p ⊥ b ,

and (since we are assuming (♦) ),

p ⊥ ak+1 .

So Theorem 65 implies that p ⊥ bak+1, i.e., that

p ⊥
k+1
∏

j=1

aj . (19.21)

We have proved (19.21) assuming (♦).

Hence (♦) implies (19.21).

And this has been proved for arbitrary integers p, a1, a2, . . . , ak+1.

So (*) holds. That is, P (k + 1) is true.

We have proved P (k + 1) assuming P (k), so we have proved the implication
P (k) =⇒ P (k + 1).
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And “P (k) =⇒ P (k + 1)” has been proved for arbitrary k ∈ IN.

So we have proved (∀k ∈ IN)(P (k) =⇒ P (k + 1)). This completes the
inductive step.

It then follows from the PMI that P (k) is true for all k ∈ IN, which is what
we wanted to prove. Q.E.D.

19.2.10 Another proof of the generalized Euclid lemma

Theorem 61 (that is, Euclid’s lemma) tells us that If p is a prime and a, b,
are integers such that p is prime and p divides the product ab, then p divides
a or p divides b.

The generalized Euclid lemma answers the more general question
“what happens if instead of two integers a, b we have three integers a, b, c?
Or four integers a, b, c, d” Or, more generally, any number n of integers.

We answered this question by proving the generalized Euclid lemma (The-
orem 62). Here I am giving you another proof of Theorem 62, based on
Theorem 62).
Proof of Theorem 62 using Theorem 62.

Let p, a1, a2, . . . , ak be integers such that p is prime and p divides
∏k

j=1
aj.

We want to prove that p divides one of the aj.

Assume that p does not divide any of the aj .

Then, for each j, p is coprime with aj. (Reason: since p is prime the only
natural numbers that divide p are 1 and p. Since p does not divide aj, the
only natural number that divides both p and aj is 1. So the greatest common
divisor of p and aj is 1. Then p is coprime with aj.)

According to Theorem 66, it follows that p is coprime with the product
∏k

j=1
aj.

But then p does not divide the product
∏k

j=1
aj .

But p divides the product
∏k

j=1
aj .

So we have reached a contradiction. And this happened because we as-
sumed that p does not divide any of the aj.

So p must divide one of the aj. Q.E.D.
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19.2.11 Divisibility of an integer by the product of several integers

Supose an integer n is divisible by three integers a, b, c. Can we conclude
that n is divisible by the product abc?

What if n is divisible by four integers a, b, c, d? Can we conclude that n
is divisible by the product abcd?

In general, let us look at the following question:

Question 10. Suppose that

1. n is an integer,

2. k is a natural number,

3. a1, a2, . . . , ak are integers,

4. n is divisible by all the aj; that is,

aj|n for each j ∈ INk ,

or, in more formal language,

(∀j ∈ INk)aj|n .

Can we conclude that the product
∏k

j=1
divides n? �

For the case of two integers a1, a2, we know that the answer is “yes” if a1
and a2 are coprime. The answer for several integers a1, a2, . . . , ak is similar:
we have to require that a1, a2, . . . , ak be pairwise coprime. This means
that a1 ⊥ a2, a1 ⊥ a3, a2 ⊥ a3, a1 ⊥ a4, a2 ⊥ a4, and so on. Every pair ai, aj
has to be coprime (except of course when i = j; we do not want to demand,
for example, that a1 be coprime with a1, because that would amount to
requiring that a1 be equal to 1). .

Definition 48. Let k ∈ IN, and let a1, a2, . . . , ak be integers. We say that
a1, a2, . . . , ak are pairwise coprime if for every i ∈ INk and every j ∈ INk, if
i 6= j then ai and aj are coprime. �

Theorem 67. Assume that n, a1, a2, . . . , ak are integers, k is a natural num-
ber, and
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1. n is divisible by all the aj; that is,

aj|n for each j ∈ INk ,

or, in more formal language,

(∀j ∈ INk)aj|n .

2. a1, a2, . . . , ak are pairwise coprime, that is,

ai ⊥ aj whenever i, j ∈ INk , i 6= j ,

or, in more formal language,

(∀i, j ∈ INk)(i 6= j =⇒ ai ⊥ aj) .

Then the product
∏k

j=1
aj divides n.

Proof. We prove this by induction on k. Let P (k) be the statement

(♦) If n, a1, a2, . . . , ak are integers such that each aj divides n, and the aj

are pairwise coprime, then the product
∏k

j=1
aj divides n,

or, in formal language

(∀n, a1, a2, . . . , ak ∈ Z)
(

(

(∀j ∈ INk)aj|n ∧ (∀i, j ∈ INk)(i 6= j =⇒ ai ⊥ aj)
)

=⇒
k
∏

j=1

aj|n

)

.(19.22)

Remark 26. Formula (19.22) contains the variables n, i, j, k, a1, a2, . . . , ak.
But all these variables, except k, are quantified. So k is the only open
variable. Hence (19.22) is a one-variable predicate, and the open variable is
k. That’s why we can call the predicate (19.22) P (k), and try to prove by
induction on k that (∀k ∈ IN)P (k). �

We will prove (∀k ∈ IN)P (k), by induction.
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Base step. We have to prove that P (1) is true. But P (1) says

(∀n, a1 ∈ Z)
(

a1|n =⇒
1
∏

j=1

aj|n
)

, (19.23)

and the inductive definition of “
∏

” tells us that

1
∏

j=1

aj = a1 ,

so P (1) says

(∀n, a1 ∈ Z)
(

a1|n =⇒ a1|n
)

. (19.24)

Since “a1|n =⇒ a1|n” is clearly true for all n and all a1, P (1) us true.

Inductive step. We have to prove that (∀k ∈ IN)(P (k) =⇒ P (k + 1)).

Let k ∈ IN be arbitrary.

We want to prove that P (k) =⇒ P (k + 1).

Assume P (k). That is, assume that

(*) if a1, a2, . . . , ak are integers that are pairwise coprime, n is an
integer, and every aj, for j ∈ INk, divides n, then

∏k

j=1
aj

divides n.

We want to prove

(**) if a1, a2, . . . , ak+1 are integers that are pairwise coprime, and
every aj, for j ∈ INk+1, divides an integer n, then

∏k+1

j=1
aj

divides n.

In order to prove (**), let n, a1, a2, . . . , ak+1 be integers such that
a1, a2, . . . , ak+1 are pairwise coprime, and aj|n for every j ∈ INk+1.

It then follows that

(&) a1, a2, . . . , ak are integers that are pairwise coprime, and every
aj, for j ∈ INk, divides n.

Since we are assuming that P (k) is true, i.e., that (*) holds, we
can conclude that the product b =

∏k

j=1
aj divides n.
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Then
k+1
∏

j=1

aj = bak+1 .

We are assuming that the aj, for j ∈ INk+1, are pairwise coprime.

Hence ak+1 ⊥ aj for every i ∈ INk.

And this implies, thanks to Theorem (66), that ak+1 is coprime
with b.

So now we know that ak+1 ⊥ b, b|n, and ak+1|n.

Then Theorem 63 tells us that bak+1 divides n, that is, that

k+1
∏

j=1

aj

∣

∣

∣
n .

So we have proved (**), that is, P (k + 1), assuming P (k),

Hence ∀k ∈ IN)(P (k) =⇒ P (k + 1)). And this completes the inductive step.
Q.E.D.
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19.3 The fundamental theorem of arithmetic

19.3.1 Introduction to the fundamental theorem of arithmetic

The fundamental theorem of arithmetic (FTA) says, roughly, that

(I) Every natural number n such that n ≥ 2 is a product of prime numbers.

(II) The expression of n as a product of prime numbers is unique.

Statement (I) is an existence result: it says that

(E) For every n ∈ IN such that n ≥ 2 there exists a list

L = (p1, p2, . . . , pk)

such that p1, p2, . . . , pk are prime numbers, and

n =
k
∏

j=

pj . (19.25)

And we have already proved this, in Theorem 59.

The second half of the FTA is Statement (II), the uniqueness assertion: the
list L such that (19.25) holds is unique.

We now have to prove (II). But before we do that, we have to make it
precise. One possible meaning of (II) would be this:

(II1) If n ∈ IN and n ≥ 2, then, if

L = (p1, p2, . . . , pk)

and
M = (q1, q2, . . . , qm)

are two lists of prime numbers such that

n =
k
∏

j=1

pj and n =
m
∏

i=1

qi , (19.26)

then L = M . (That means “m = k, and qj = pj for every j ∈ INk” ,
that is, q1 = p1, q2 = p2, . . ., qk = pk.)
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But it is easy to see that statement (II1) cannot be true.

Example 32. Let n = 6, p1 = 2, p2 = 3, q1 = 3, q2 = 2. Then

6 = 2× 3 and 6 = 3× 2 ,

so that
6 = p1p2 and 6 = q1q2 ,

but it is not true that p1 = q1 and p2 = q2. �

In this example, it is clear what is really going on: it is not necessarily
true that p1 = q1 and p2 = q2. It could be the case that p1 = q2 and
p2 = q1. In other words, “the pjs have to be the same as the qjs, but not
necessarily in the same order”.

How can we say this precisely? Let us try a second option:

(II2) If n ∈ IN and n ≥ 2, then, if

L = (p1, p2, . . . , pk)

and
M = (q1, q2, . . . , qm)

are two lists of prime numbers such that

n =
k
∏

j=1

pj and n =
m
∏

j=1

qj , (19.27)

then m = k and the set P whose members are the pj; that is, the set

P = {p ∈ IN : (∃j ∈ INk)p = pj} , (19.28)

is the same as the set Q whose members are the qj, that is, the set

Q = {q ∈ IN : (∃j ∈ INm)q = qj} . (19.29)

But it is easy to see that this cannot be the right formulation either.
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Example 33. Let

n = 72 , that is n = 2× 2× 2× 3× 3 . (19.30)

Then Formula (19.30) gives us a factorization of n as product of primes,
namely,

n = p1p2p3p4p5 , where p1 = 2 , p2 = 2 , p3 = 2 , p4 = 3 , p5 = 3 .

We would like to say that, if we have any other factorization

n = q1q2 · · · qm ,

then the qjs must be “the same” as the pjs, meaning first of all, that m = 5,
and second, that three of the qjs must be equal to 2, and two of the qjs must
be equal to 3.

And just saying that the set of the pj is the same as the set of the qj is
not enough. The set P defined by Equation (19.28) is just the set {2, 3}, i.e.,
the set whose members are 2 and 3. (Remember that, for a set P , an object
p is a member of P or is not a member of P ; there is no such thing as “being
a member of P twice”, or “being a member of P three times”.)

We want the qjs to be “the same” as the pjs not just in the set sense (that
is, the set Q is also the set {2, 3}), but in the much stronger sense that “there
are five qjs; three of them are 2s and two of them are 3s”. And Formulation
(II2) does not capture that. �

So, how shall we say what we want to say? Let us go back to our examples.

Example 34. For the factorization

6 = p1p2 where p1 = 2 and p2 = 3 ,

we want to say that if q1, q2, · · · , qm are primes and 6 = q1q2 · · · qm, then

• m must be 2, so the equation “6 = q1q2 · · · qm”becomes “6 = q1q2”.

• q1 must be 2 and q2 must be 3.

We can achieve this if we limit ourselves to ordered factorizations of 6,
i.e., factorizations of 6 in which 6 is expressed as a product q1q2 · · · qm of
primes, but the qj are required to be in increasing order, that is, to be
such that q1 ≤ q2 ≤ q3 ≤ · · · ≤ qm. This excludes the factorization 6 = 3×2,
and leaves 6 = 2× 3 as the only possible prime factorization of 6. �
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Example 35. For the factorization

72 = p1p2p3p4p5 where p1 = 2 , p2 = 2 , p3 = 2 , p4 = 3 , p5 = 3 ,

we want to say that if q1, q2, · · · , qm are primes and 72 = q1q2 · · · qm, then m

must be 5, three of the qj must be 2, and two of the qj must be 3. Again,
we can achieve that if we limit ourselves to ordered factorizations of 72,
i.e., factorizations of 72 in which 72 is expressed as a product q1q2 · · · qm of
primes, but the qj are required to be in increasing order, that is, to be such
that q1 ≤ q2 ≤ q3 ≤ · · · ≤ qm. This excludes other factorizations such as
72 = 3×3×2×2×2, or 72 = 3×2×2×3×2, and leaves 72 = 2×2×2×3×3
as the only possible prime factorization of 72. �

Examples 34 and 35 show us the path: we have to define ”ordered factor-
ization” precisely, and then the statement of the FTA will be: every natural
number n such that n ≥ 2 has a unique ordered factorization as a product of
prime numbers.

19.3.2 Precise statetement of the fundamental theorem of arith-
metic

19.3.3 Is a prime factorization a set of primes?

If we are going to say that “every natural number n such that n ≥ 2 has
a unique prime factorization”, then, to begin with, we have to answer the
following question:

Question 11. What do we mean, exactly, by a prime factorization of an
integer n? �

A prime factorization is, of course, something like “several primes that mul-
tiplied together result in n”.

But such vague language will not do. We have to give a precise definition.

1. First of all, “prime factorization” is not an entity4, like water, or poli-
tics. We can say things like

Water is a transparent and nearly colorless chemical substance

4According to the Merriam-Webster dictionary, an entity is “something that has sepa-
rate and distinct existence and objective or conceptual reality”.
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or

Politics is the process of achieving and exercising posi-
tions of governance or organized control over a human
community, particularly a state.

But we cannot say “prime factorization is . . .”.

2. “Prime factorization” is like “subset”, or “factor”, or “divisible”, or
“absolute value”: it is a relational concept, it has arguments:

(a) You cannot say “factor is . . .”, because “factor”, by itself, is not
something that can be or not be anything.

(b) But you can say things like “a is a factor of b”.

(c) You cannot say “divisible is . . .” (or, even worse, “divisible is when
. . .”), because “divisible”, by itself, is not something that can be
or not be anything.

(d) But you can say things like “a is divisible by b”.

(e) You cannot say “absolute value is . . .”, because “absolute value”,
by itself, is not something that can be or not be anything.

(f) But you can talk about “the absolute value of x”.

3. More precisely, “prime factorization” is a two-argument predicate:
we say things like “P is a prime factorization of n”. The arguments
are n and P. And, clearly, n must be a number.

4. And we haven’t yet answered the question what kind of a thing
shall P be?

5. A prime factorization P should be a single object, not “several things”.

6. And we have seen that it is not a good idea to think of a prime factor-
ization as a set of primes, because, for example, the factorization of 72
given by 72 = 2× 2× 2× 3× 3 contains more information than the set
{2, 3}. It contains the fact that 2 “occurs three times”, and 3 “occurs
twice”.

The conclusion of all this is that a “prime factorization” should not be a set:
it should be a finite list.

And, to make this precise, we need to say a few words about finite lists.
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19.3.4 Finite lists

Definition 49. Let n be a natural number.

1. A finite list of length n consists of the specification, for each natural
number j in the set INn, of an object aj.

2. The aj are called the entries of the list:

(a) a1 is the first entry,

(b) a2 is the second entry,

(c) a3 is the third entry,

and so on, so that, for example, a283 is the 283rd entry.

3. The entries aj of a finite list L could be numbers of any kind (integers,
real numbers, complex numbers), or points, or lines, or planes, or sets,
or functions, or lists, or matrices, or planets, or animals, or people, or
books, or viruses, or mice, or atoms, or ghosts, or unicorns, or angels,
objects of any kind whatsoever, concrete or abstract, real or imaginary.

4. Actually, the entries of a list do not all have to be objects of the same
kind (whatever “kind” means). So for or example, you can perfectly
well have a finite list L = (a1, a2, a3, a4, a5) in which a1 is the number
5, a2 is Mickey Mouse, a3 is Abraham Lincoln, a4 is the word “cow”,
and a5 is the Pacific Ocean.

Remark 27. There are finite lists and infinite lists. In this sec-
tion, we will only be talking about finite lists. But infinite lists
are very important, and we will come back to them later. �

We will use various symbols, such as capital letters or boldface lower-case
letters, for lists.

And here are some examples of list creation.

Example 36. Suppose, for example, that we want to create a list of length
3, whose entries are the first three prime numbers, and we want to call it a.
We could write

Let a = (2, 3, 5) , (19.31)

or we could write

Let a = (a1, a2, a3) , where a1 = 2, a2 = 3, a3 = 5 . (19.32)
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Example 37. Now suppose we want to write the list of all the presidents of
the U.S., in chronological order, from George Washington to Donald Trump.
and we want to call it a.

We could write something like (19.31) or (19.32). But there are several
problems with this:

1. It is going to be a very long list.

2. We may not remember, for example, the name of the 13th president,
so we cannot write the definition of a using the same style as in (19.31)
or (19.32).

But we can write

Let a=(aj)
45

j=1, where, for j∈ IN45, aj is the j−th U.S. president. (19.33)

And, even if we do not know that there have been exactly 45 U.S. presi-
dents from George Washington to Donald Trump, we can still write

Let
a = (aj)

N
j=1 , (19.34)

where

(1) N is the number of U.S. presidents from G. Washington to
D.J.Trump,

(2) for j ∈ INN , aj is the j-th U.S. president.

Example 38. Suppose we want to introduce the list of the first 500 prime
numbers and give it a name. We could write

Let
p = (pj)

500

j=1

where, for j ∈ IN500, pj is the j-th prime number.

Example 39. Suppose we want to introduce the list of all the U.S. presidents
from George Washington to Donald Trump, in backward chronological order,
that is, starting from D. J. Trump and going backwards all the way to G.
Washington.

We could do this by writing

Let a = (a46−j)
45

j=1 , where, for j ∈ IN45 , aj is the j−th president . �
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Remark 28. Often, one writes

a = (a1, . . . , an) ,

or
a = (a1, a2, . . . , an) ,

instead of a = (aj)
n
j=1. I strongly prefer the (aj)

n
j=1 notation, but I will accept

the other one. �

Remark 29. Pay attention to the following:

1. Sets have members, not entries.

2. Finite lists have entries, not members.

3. In the set notation, we use braces, as in “the
set {x ∈ IR : x > 0}”, or “the set {1, 2, 3, 4}′′.

4. In the finite list notation, we use parentheses,
as in “the list (pj)

n
j=1”, or “the list (2, 3, 5)”.

5. In a set S, an object a either is a member or
is not a member. There is no such thing as
“being a member of the set S twice”.

6. In a finite list L = (aj)
n
j=1 it is possible for

an object a to be the first entry of L (that
is a = a1) and also the second entry (that is,
a = a2) and the 25th entry (that is, a = a25).

7. So a finite list can have repeated entries,
but a set cannot have repeated members.
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and to the following:

8. If L is a finite list, then we can associate to L

a set Set(L), called the set of entries of the
list.

9. The set of entries of the list L = (aj)
n
j=1 is the

set Set(L) given by

Set(L) = {x : (∃j ∈ INn)x = aj} .

This set is a totally different object from the
list L.

Remark 30. Not all books and journals use the same notation. So if you
are reading a mathematics book or article you have to make sure to check
which notations are being used. For example, some books use braces for
lists, so they would write “the list {pj}

n
j=1”. I strongly prefer the parenthesis

notation, and in this course this is the official notation, so we write “the list
(2, 2, 3, 4)”, or “the list p = (pj)

n
j=1”, which are very different from “the set

{2, 2, 3, 4}”, or “the set {p : (∃j ∈ INn)p = pj}”. �

19.3.5 Equality of lists

We know that two sets A, B are equal if they have the same members. That
is

A = B ⇐⇒ (∀x)(x ∈ A ⇐⇒ x ∈ B) .

When are two finite lists equal?
Here is the asnwer:



Math. 300, Fall 2017 304

Two lists

p = (pj)
n
j=1 , q = (qj)

m
j=1 ,

are equal if

1. n = m,

and

2. pj = qj for every j ∈ INn. (That is,
(∀j ∈ INn)pj = qj.)

Example 40. The lists p = (2, 2, 3) and q = (3, 2, 2) are not equal because,
for example, the first entry of the first list is not equal to the first entry of
the second list.

But, of course, the sets {2, 2, 3} and {3, 2, 2} are equal, because they are
both equal to the set {2, 3}. �

Example 41. Let P = (pj)
45
j=1 be the list of all U.S. presidents from George

Washington to Donald Trump. Then, for each j ∈ IN45, pj stands for “the
j-th president of the United States”.

Then P has 45 entries. Let S be the associated set Set(P). Then S is the
set of all U.S. presidents from George Washington to Donald Trump. That
is,

S = {x : (∃j ∈ IN45)x = pj} .

How many members does S have?
If you guessed “45”, you are wrong!
The correct answer is 44.
The reason for this is that Grover Cleveland was U.S. president from 1885

to 1889, and then again from 1893 to 1897. During his first presidency, he was
the 22nd president. Then Benjamin Harrison served as the 23rd president,
from 1889 to 1893, and after that Grover Cleveland was elected president
again, and Congress decided that he would be counted at the 24th president,
in addition to being counted as the 22nd president.
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So the list P has a repeated entry: p22 is the same as p24. The set
Set(P) does not know this, because all a set knows is whether something (or
somebody) is a member or not. So the set Set(P) has only 44 members. �

19.3.6 The sum, the product and the maximum and minimum of
a finite list of real numbers

If a is a finite list of real numbers, then we can define several numbers asso-
ciated to a, using inductive definitions:.

Specifically, we will define

1. the sum
∑

a of the entries of a,

2. the product
∏

a of the entries of a,

3. the maximum Max a of the entries of a.

4. the minimum Min a of the entries of a.

In each of the cases, we start from a binary operation on IR, that is, an
operation that can be performed on two real numbers, and extend it to finite
lists.

The sum
∑

a will be defined starting with the addition operation, i.e.,
the operation that for two real numbers x, y produces the number x+ y.

The product
∏

a will be defined starting with the multiplication oper-
ation, i.e., the operation that for two real numbers x, y produces the number
x · y.

The maximum Max a will be defined starting with the maximum oper-
ation, i.e., the operation that for two real numbers x, y produces the number
max(x, y) (the “maximum of a and b”) defined as follows:

max(x, y) =

{

x if x ≥ y

y if y ≥ x
. (19.35)

The minimum Min a will be defined starting with the minimum opera-
tion, i.e., the operation that for two real numbers x, y produces the number
min(x, y) (the “minimum of a and b”) defined as follows:

min(x, y) =

{

y if x ≥ y

x if y ≥ x
. (19.36)
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Problem 46. The absolute value of a real number is defined as follows: if
x ∈ IR, then the absolute value of x is the number |x| given by

|x| =

{

x if x ≥ 0
−x if x ≤ 0

. (19.37)

Prove that

(∀x ∈ IR)(∀y ∈ IR)max(x, y) =
x+ y + |x− y|

2

and

(∀x ∈ IR)(∀y ∈ IR)min(x, y) =
x+ y − |x− y|

2
.

The four operations
∑

,
∏

, Max, Min are defined as follows:

Definition 50. Let a = (aj)
n
j=1 be a finite list of real numbers.

1. The sum
∑

a, or
∑n

j=1
aj, is defined inductively as follows:

0
∑

j=1

aj = 0 , (19.38)

1
∑

j=1

aj = a1 , (19.39)

n+1
∑

j=1

aj =
(

n
∑

j=1

aj

)

+ an+1 if n ∈ IN . (19.40)

2. The product
∏

a, or
∏n

j=1
aj, is defined inductively as follows:

0
∏

j=1

aj = 1 , (19.41)

1
∏

j=1

aj = a1 , (19.42)

n+1
∏

j=1

aj =
(

n
∏

j=1

aj

)

× an+1 if n ∈ IN , (19.43)

(19.44)
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3. The maximum Max a, or Maxnj=1aj, is defined inductively as follows:

Max1j=1aj = a1 , (19.45)

Maxn+1

j=1aj = max
(

Maxnj=1aj, an+1

)

if n ∈ IN . (19.46)

4. The minimum Min a, or Minn
j=1aj, is defined inductively as follows:

Min1

j=1aj = a1 , (19.47)

Minn+1

j=1aj = max
(

Minn
j=1aj, an+1

)

if n ∈ IN . (19.48)

There are several facts about these operations that are fairly obvious, and
whose proofs are very easy but very boring. I would urge you to practice
by doing a few of these proofs, just to make sure that you can do them if
you are asked to. Naturally, since the operations are defined inductively, the
proofs will have to be by induction.

Before I tell you what these obvious facts are, let me define the concate-
nation of two lists: Roughly, the concatenation a#b is the list obtained by
listing the entries of a first, and then the entries of b.

Example 42.

1. Let

a = (3, 6, 1, 3, 5) ,

b = (1, 0, 1, 3, 7) .

Then
a#b = (3, 6, 1, 3, 5, 1, 0, 1, 3, 7) .

2. Let p = (pj)
16
j=1 be the list of the first 16 U.S. presidents, in chronolog-

ical order. Let q = (qj)
10
j=1 be the list in chronological order of the first

10 presidents after the 16th one, that is, the list defined by

qj = the (16 + j)−th U.S. president for j ∈ IN10 .

(So, for example, q1 =Andrew Johnson, q2 =Ulysses Grant, and so on.)

Then p#q is the list of the first 26 U.S. presidents, in chronological
order. �
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And here is the precise definition:

Definition 51. Let a = (aj)
m
j=1 and b = (bj)

n
j=1 be two finite lists. The

concatenation of a = (aj)
m
j=1 and b = (bj)

n
j=1 is the finite list a#b given by

a#b = (cj)
m+n
j=1 , where cj =

{

aj if j ∈ INm

bj−m if j ∈ IN ∧m+ 1 ≤ j ≤ m+ n
.

And here are some of the obvious theorems I announced.

Theorem 68. If a and b are finite lists of real numbers. Then:
∑

(a#b) = (
∑

a) + (
∑

b) , (19.49)
∏

(a#b) = (
∏

a)× (
∏

b) , (19.50)

Max (a#b) = max
(

Max a,Maxb
)

, (19.51)

Min (a#b) = min
(

Min a,Minb
)

. (19.52)

Proof. YOU PROVE THIS.

Problem 47. Prove Theorem 68. �

Theorem 69. Let a = (aj)
n
j=1, b = (bj)

n
j=1, be finite lists of real numbers of

the same length. Then,

1. If
(∀j ∈ INn)aj ≤ bj

then
∑

a ≤
∑

b

Max a ≤ Maxb

Min a ≤ Minb .

2. If all the aj and all the bj are integers, and

(∀j ∈ INn)aj|bj

then
∏

a

∣

∣

∣

∣

∣

∏

b .
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Proof. YOU PROVE THIS.

Problem 48. Prove Theorem 69. �

Theorem 70. Let a = (aj)
n
j=1 be a finite list of real numbers. Then

1. Min a ≤ aj ≤ Max a for every j ∈ INn.

2. There exist indices j−, j+ in INn, such that Min a = aj− and Max a =
aj+.

Proof. YOU PROVE THIS.

Problem 49. Prove Theorem 69. �

19.3.7 Prime factorizations

Definition 52. A prime factorization of a natural number n is a finite list
p = (pj)

m
j=1 such that

(1) pj is a prime number for every j ∈ INm. (That is, all the entries in the
list are prime numbers.)

(2)
∏m

j=1
pj = n. �

Example 43. The list (2, 2, 3) is a prime factorization of the number 12,
because each of the three entries (2, 2, and 3) is a prime number, and the
product 2× 2× 3 is equal to 12. �

Example 44. The list (3, 2, 2) is also a prime factorization of 12, and is
different from the prime factorization (2, 2, 3) of Example 43. �

So the number 12 has at least two different prime factorizations. And yet we
want the prime factorization of a natural number to be unique!

To solve this problem we have to introduce the concept of an “ordered
prime factorization”.

Definition 53. A finite list p = (pj)
m
j=1 whose entries are real numbers is

ordered if

(ORD) pj ≤ pj+1 for every j ∈ INm−1. �

Definition 54. An ordered prime factorization of a natural number n is a
prime factorization p = (pj)

m
j=1 of n which is an ordered list. �

Example 45. The list (2, 2, 3) is an ordered prime factorization of 12, but
the list (3, 2, 2) is not. �
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19.3.8 A correct (and nearly perfect) statement of the FTA

Here, finally, is a correct, nearly perfect5 statement of the FTA:

Theorem 71. (A nearly perfect version of

the fundamental theorem of arithmetic.)

Every natural number n such that n ≥ 2

has a unique ordered prime factorization.

19.3.9 The proof

We have to prove existence and uniqueness of the ordered prime factorization.
The existence of a prime factorization of any natural number n such that

n ≥ 2 has been proved before, in the lecture notes on well-ordering (Theorem
59, on page 260).

But here we need to prove the existence of an ordered prime factorization.
Intuitively, this is obvious, because we can take any prime factorization and
rearrange the entries putting them in increasing order. More precisely: Let
n ∈ IN be such that n ≥ 2. Take a prime factorization p = (pj)

m
j=1 of n.

(We know that such a factorization exists. Then Rule ∃use enables us to
pick one such factorization and call it p.) Then reorder p, by forming a new
list q = (qj)

m
j=1 that has the same entries as p, but in increasing order. This

gives us an ordered prime factorization of n, proving that such a factorization
exists. This is not a completely rigorous proof, but the conclusion
is fairly obvious, so I will omit the proof at this point. But if you
really care about this, and are not satisfied with a nonrigorous
proof6, you can find the proof in subsection 19.3.11, on page 318.

So the existence part of the FTA has been proved.

The uniqueness proof. This is the most delicate part. We have to prove
that if we have two ordered prime factorizations p, q, of a natural number
n, it follows that p = q. In other words: we have to assume that

5I say “nearly perfect” because the statement can be made even nicer and more elegant,
thus obtaining a truly “perfect” statement. We will do this later.

6If you take this issue seriously, and want to see a real proof, then I congratulate you:
you are thinking like a true mathematician!
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(♦) We have two finite lists

p = (pj)
k
j=1 , q = (qj)

ℓ
j=1 ,

such that

(1) all the pj and all the qj are prime numbers,

(2) p and q are ordered lists (that is, pj ≤ pj+1 whenever j ∈ INk−1,
and qj ≤ qj+1 whenever j ∈ INℓ−1),

(3)
∏k

j=1
pj =

∏ℓ

j=1
qj,

and we want to conclude that p = q.
To prove that p = q, we have to show that

(∀k ∈ IN)(∀ℓ ∈ IN)(∀p)(∀q)A(k, ℓ,p,q) , (19.53)

where A(k, ℓ,p,q) is the statement:

If p and q are ordered lists of primes of lengths k, ℓ, p = (pj)
k
j=1,

q = (qj)
ℓ
j=1, and

∏k

j=1
pj =

∏ℓ

j=1
q, then p = q.

We would like to do a proof by induction. But one can only do
induction with respect to one natural number variable.
One cannot do induction with respect to two or more variables, or to variables
that are not natural numbers, such as integers or real numbers or sets or finite
lists.

So we have to express what we want to prove as a statement of the form
(∀k ∈ IN)P (k). But this is easy to do:

Statement (19.53) says

(∀k ∈ IN)P (k) , (19.54)

where P (k) is the statement:

(∀ℓ ∈ IN)(∀p)(∀q)A(k, ℓ,p,q) .

To prove (19.53) we will prove (19.54). And, since (19.54) is of the form
that lends itself to a proof by induction, we will prove (19.54) by induction.
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The base case. We have to prove P (1). But P (1) says that “if p is an
ordered list of just one prime, q is an ordered list of primes, p = (pj)

1
j=1,

q = (qj)
ℓ
j=1, and

∏

1

j=1
pj =

∏ℓ

j=1
qj, then p = q”.

Equivalently, P (1) says that “if p1 is a prime number, q = (qj)
ℓ
j=1 is an

ordered list of primes, and p1 =
∏ℓ

j=1
qj, then q has length one, so it consists

of a single prime q1, and q1 = p1”.
But this is obviously true, because, if q = (qj)

ℓ
j=1, and p1 =

∏ℓ

j=1
qj, then

ℓ must be equal to 1, because p1 is prime, and a prime number cannot be
written as a product of two or more primes7. And then

∏ℓ

j=1
qj =

∏

1

j=1
qj =

q1, so q1 = p1, and then p = q.
So P (1) is true, and the proof of the base case is complete.

The inductive step. We have to prove that

(∀k ∈ IN)
(

P (k) =⇒ P (k + 1)
)

. (19.55)

Let k ∈ IN be arbitrary. We want to prove that P (k) =⇒ P (k + 1).

Assume P (k) is true.

We want to prove P (k + 1).

That is, we want to prove that

(*) If

(1) p =
∏k+1

j=1
pj is an ordered list of primes of length k + 1,

(2) q =
∏ℓ

j=1
qj is an ordered list of primes of length ℓ,

(3)
∏k+1

j=1
pj =

∏ℓ

j=1
qj,

then p = q.

To prove (*), assume that (1), (2), (3) hold.

We want to prove that p = q.

The inductive definition of
∏

tells us that

k+1
∏

j=1

pj =
(

k
∏

j=1

pj

)

pk+1 .

7Notice that in this step we are using in a very crucial way the fact that 1
is not a prime number!. If 1 was a prime number, then it would be possible to write
a prime number as a product of several prime numbers. For example, we could write
3 = 3× 1, or 3 = 1× 1× 1× 3.
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It follows that

pk+1

∣

∣

∣

k+1
∏

j=1

pj .

Since
∏k+1

j=1
p1 =

∏ℓ

j=1
qj, we can conclude that

pk+1

∣

∣

∣

ℓ
∏

j=1

qj .

By the generalized Euclid lemma (i.e., Theorem 62, on page 279),
pk+1 must divide one of the numbers qj.

So we may pick an index j∗ ∈ INℓ such that

pk+1|qj∗ .

Then, since pk+1 and qj∗ are natural numbers, it follows that

pk+1 ≤ qj∗ .

Since the list q is ordered, qj∗ ≤ qℓ. Hence

pk+1 ≤ qℓ . (19.56)

So we have proved that “the last of the p’s is less than or equal to
the last of the q’s”.

Clearly, we can use exactly the same argument to prove that “the
last of the q’s is less than or equal to the last of the p’s”, that is,
that

qℓ ≤ pk+1 . (19.57)

It then follows from (19.56) and (19.57) that

pk+1 = qℓ . (19.58)

Then

(

ℓ−1
∏

j=1

qj

)

qℓ =
ℓ
∏

j=1

qj =
k+1
∏

j=1

pj =
(

k
∏

j=1

pj

)

pk+1 =
(

k
∏

j=1

pj

)

qℓ ,
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so
(

ℓ−1
∏

j=1

qj

)

qℓ =
(

k
∏

j=1

pj

)

qℓ ,

and then
ℓ−1
∏

j=1

qj =
k
∏

j=1

pj .

So, if we define lists p′, q′, by letting

p′ = (pj)
k
j=1 , q′ = (qj)

ℓ−1

j=1 ,

we have:

(1’) p′ is an ordered list of primes of length k,

(2’) q′ is an ordered list of primes of length ℓ− 1,

(3’)
∏k

j=1
pj =

∏ℓ−1

j=1
qj.

Our inductive hypothesis says that P (k) is true, and this tells us
that

p′ = q′ .

In particular, the lists p′, q′ have the same length, that is,

k = ℓ− 1 .

But then
k + 1 = ℓ , (19.59)

so the lists p, q have the same length.

Furthermore, since p′ = q′, we have

(∀j ∈ INk)pj = qj .

But we have proved that pk+1 = qℓ, i.e., that pk+1 = qk+1 (because
we now know that ℓ = k + 1). Hence the equality “pj = qj”, that
we know holds for all j ∈ INk, also holds for j = k + 1. So

(∀j ∈ INk+1)pj = qj . (19.60)

Equations (19.59) and (19.60) say, precisely, that p = q

So we have proved that p = q assuming (1), (2), and (3).
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Hence we have proved (*).

That is, we have proved P (k + 1).

Since we proved P (k + 1) assuming P (k), we have proved the implication
P (k) =⇒ P (k + 1).

Since this was proved for an arbitrary k ∈ IN, we have proved the universal
sentence

(∀k ∈ IN)(P (k) =⇒ P (k + 1)) .

This completes the inductive step.

By the Principle of Mathematical induction, we can conclude that

(∀k ∈ IN)P (k) ,

This completes our proof. Q.E.D.

19.3.10 The perfect statement of the FTA

Mathematicians like to have their theorems as simple and general as possible.
The FTA, as we have stated it, has a condition that makes it inelegant,
namely, the requirement that n ≥.

Wouldn’t it be nicer if we could just say

Theorem 72. (The fundamental theorem

of arithmetic.) Every natural number has

a unique ordered prime factorization.

?

This would clearly be more elegant, wouldn’t it? It’s much simpler than our
previous version, and it is also more general, because it applies to all natural
numbers, even to the number 1.

But, of course, just because a statement is nice, it doesn’t mean that it
is true.

Is our new statement of the FTA true? The answer is “yes”, but we have
to be careful about what this means.

Notice that the only difference between the previous statement of the
FTA and our new statement is that the new statement says that the number



Math. 300, Fall 2017 316

1 also has a unique ordered prime factorization. And we have to ask the
obvious question: what is that factorization?

The answer is: the ordered prime factorization of 1 is the empty list. Let
me explain.

First of all, until now we said that every list has a length, and that this
length is a natural number. We now change that, and add a new list: the
empty list.

The empty list is a list of length zero, that has no entries whatsoever. We
use the symbol ∅ to denote this list8.

And we can also think of the empty list as the list (aj)
0
j=1, because there

are no values of j such that 1 ≤ j and j ≤ 0, so the list (aj)
0
j=1 has no entries.

Then the following is true:

Proposition 6. The empty list is an ordered list of primes.

This can be rigoruously proved as follows.

Proof. First, we want to prove that ∅ is a list of primes.
Write the empty liist ∅ as (pj)

0
j=1.

We have to prove that

(∀j)(j ∈ IN0 =⇒ pj is a prime number) (19.61)

where “pj” stands for “the j-entry of the empty list”.
So let j be arbitrary. We want to prove that

j ∈ IN0 =⇒ pj is a prime number . (19.62)

But IN0 is the empty set, so IN0 has no members, and then “j ∈ IN0” is false,
no matter who j might be.

Since “j ∈ IN0” is false, the implication (19.62) is true.
So we have proved (19.62), for arbitrary j, And then we have proved

(19.61).
We can use a similar argument to prove that ∅ is an ordered list. (Sketch

of the argument: we have to prove that “if j ∈ IN0 and j + 1 ∈ IN0 then

8You may worry that “∅” already stands for the empty set. You need not worry. If one
does things carefully, it turns out that the empty set and the empty list truly are the same
thing, so it is perfectly all right to use “∅” both to denote the empty set and to denote
the empty list. But it takes some work to establish this, so for the moment just accept
that the empty list is called “∅”.
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pj ≤ pj+1”. And this is true because it is an implication with a false premise.)
Q.E.D.

Finally, it turns out that
∏

0

j=1
pj = 1 . If you have trouble believing this,

I will give you three reasons:

Reason No.1:
∏

0

j=1
pj = 1 because in these notes we defined

∏

0

j=1
pj to be

equal to 1, when we gace the inductive definition of “
∏

”.

Reason No.2:
∏

0

j=1
pj = 1 because mathematicians have agreed that this is

so. In other words, the statement “
∏

0

j=1
pj = 1” is true by convention,

because mathematicians have agreed that the product of the empty list is
equal to one9.

Reason No.3: Mathematicians are reasonable people, so if we decided that
∏

0

j=1
pj = 1 we must have had a good reason.

Here is the reason. The inductive definition of “
∏

” tells us that

n+1
∏

j=1

pj =
(

n
∏

j=1

pj

)

pn+1 (19.63)

if n is a natural number. This means that
n
∏

j=1

pj =

∏n+1

j=1
pj

pn+1

(19.64)

for n ∈ IN. Now suppose we want to make Formula (19.64) also true for
n = 0. Then we must have

0
∏

j=1

pj =

∏

1

j=1
pj

p1
. (19.65)

But
1
∏

j=1

pj = p1 .

9This is like many other conventions. Why is Pluto not a planet? Because astronomers
have decided that it is isn’t. Why is 1 not a prime number? Because mathematicians
have decided that it isn’t. Why do we drive on the right side of the street? Because at
some point it was decided (in the U.S and many other countries, but not in all countries)
that the right side of the street is the side on which people should drive. Why are cows
called “cows” rather than, say, “zebras”, or “tables”? Because English-speaking people
have agreed that that is the name of those animals.
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So we must have
0
∏

j=1

pj =
p1

p1
= 1 . (19.66)

This is not a rigorous proof. But it is an argument showing that the conven-
tion that

∏

0

j=1
pj = 1 is a reasonable one.

In any case, once you agree that
∏

0

j=1
pj = 1 follows that our nicer

version of the FTA is true.

19.3.11 A lemma on rearranging lists of numbers.

First of all, let us introduce the notion of “equivalent lists”.

Definition 55. Let p = (pj)
n
j=1 and q = (qj)

m
j=1 be finite lists. We say that

p and q are equivalent (or that p is a rearrangement of q, or that q is a
rearrangement of p) if

1. m = n,

2. the sets

Set(p) = {x : (∃j ∈ INm)pj = x} ,

Set(q) = {x : (∃j ∈ INm)qj = x} ,

are equal,

3. every member of Set(p) (i.e., of Set(q)) occurs the same number of
times as an entry of p as it does as an entry of q. �

We will write
p ≡ q

to indicate that p is a rearrangement of q.

(II) Lemma 6. Let p = (pj)
n
j=1 be a finite list of real numbers. Then there

exists a list q = (qj)
n
j=1 such that

1. q ≡ p,

2. q is ordered,
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3.
∑n

j=1
pj =

∑n

j=1
qj,

4.
∏n

j=1
pj =

∏n

j=1
qj.

Proof. We do a proof by induction.

Let P (n) be the statement

For every list p = (pj)
n
j=1 of length n consisting of real num-

bers there exists an ordered list q = (qj)
n
j=1 that is equivalent

to p and satisfies
∑n

j=1
pj =

∑n

j=1
qj and

∏n

j=1
pj =

∏n

j=1
qj.

We prove that (∀n ∈ IN)P (n) by induction on n.

The base case. P (1) is obviously true, because if p = (pj)
1
j=1 is a list

consisting of just one prime, then of course p is ordered, so we can take q to
be p, and then q is an ordered list and is equivalent to p.

The inductive step. We want to prove (∀n ∈ IN)(P (n) =⇒ P (n+ 1)).

Let n ∈ IN be arbitrary.

Assume that P (n) is true.

We want to prove P (n+ 1).

Statement P (n+ 1) says

(∀p)

(

p = (pj)
n+1

j=1 is a list of real numbers =⇒

(∃q)
(

q = (qj)
n+1

j=1 is a list of length k + 1 ∧ q is ordered ∧

q ≡ p ∧
n+1
∑

j=1

pj =
n+1
∑

j=1

qj ∧
n+1
∏

j=1

pj =
n+1
∏

j=1

qj

)

)

.

To prove P (n+1) we must take an arbitrary p, assume that p is a
list of real numbers of lenght n+1, and prove that there exists an
ordered list q that is equivalent to p and satisfies the conditions
on the sum and the product.

Let p be an arbitrary list of real numbers of length n+ 1.
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Let p = (pj)
n+1

j=1 .

Let j∗ be an index belonging to INn+1 such that pj∗ has the
maximum possible value of all the pj. (That is, precisely10,
j∗ ∈ INn+1 and pj∗ = Maxp.)

Let p′ be the list of length n obtained from p by removing
the j∗-th entry. (Precisely, let p′ = (p′j)

n
j=1 be the list defined

by p′j = pj for j < j∗, and p′j = pj+1 for j∗ ≤ j ≤ n.)

Then p′ is a list of primes of length n.

Since we are assuming that P (n) holds, there exists an ordered
list q′ = (q′j)

n
j=1 such that q′ ≡ p′,

∑n

j=1
q′j =

∑n

j=1
p′j, and

∏n

j=1
q′j =

∏n

j=1
p′j.

Let p′′ be the list of length n+ 1 obtained from p′ by adding
pj∗ as the n + 1-th entry. (Precisely, p′′ = (p′′j )

n+1

j=1 , where
p′′j = p′j for j ∈ IN, and p′′n+1 = pj∗ .)

Let q′′ be the list of length n+ 1 obtained from q′ by adding
pj∗ as the n + 1-th entry. (Precisely, q′′ = (q′′j )

n+1

j=1 , where
q′′j = q′j for j ∈ IN, and q′′n+1 = pj∗ .)

Since q′ ≡ p′ and the lists q′′, p′′ are obtained from q′ and
p′ by adding the same entry pj∗ at the end, it is clear that
q′′ ≡ p′′.

Since p′′ is obtained from p by interchanging two entries (by
moving pj∗ from the j∗-th position to the n + 1-th position),
it is clear that p′′ ≡ p.

So q′′ ≡ p.

Furthermore, q′′ is ordered. (Reason: q′ is ordered, so the
first n entries of q′′ satisfy q′′1 ≤ q′′2 ≤ · · · ≤ q′′n. In addition,
for some j ∈ INn+1, q

′′

n = pj ≤ pj∗ = q′′n+1.)

10The existence of such a j∗ is a consequence of Theorem 70. This theorem says that
every finite list of real numbers has a lagest entry, which is completely obvious, but can
also be proved rigorously if anyone so desires.
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Finally,

n+1
∑

j=1

q′′j = (
n
∑

j=1

q′′j ) + q′′n+1

= (
n
∑

j=1

q′j) + pj∗

= (
n
∑

j=1

p′j) + pj∗

= (

j∗−1
∑

j=1

p′j +
n
∑

j=j∗

p′j) + pj∗

= (

j∗−1
∑

j=1

pj +
n
∑

j=j∗

pj+1) + pj∗

= (

j∗−1
∑

j=1

pj +
n+1
∑

j=j∗+1

pj) + pj∗

= (

j∗−1
∑

j=1

pj) + pj∗ + (
n+1
∑

j=j∗+1

pj)

=
n+1
∑

j=1

pj ,

so
n+1
∑

j=1

q′′j =
n+1
∑

j=1

pj .

∗ A similar argument shows that

n+1
∏

j=1

q′′j =
n+1
∏

j=1

pj .

So, if we take q to be q′′, we hvae shown that q satisfies all
the conditions that appear in statement P (n+ 1).

This completes the proof of P (n+ 1), assuming P (n).

Hence P (n) =⇒ P (n+ 1).
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• So (∀n ∈ IN)(P (n) =⇒ P (n+ 1)).

This completes the inductive step, and the proof of our lemma. Q.E.D.
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19.4 Euclid’s proof that there are infinitely many primes

About 2,300 years ago, the great mathematician Euclid, in his book the Ele-
ments (ca. 300 BCE), proved that there are infinitely many prime numbers.

19.4.1 Statement of Euclid’s theorem

The proof I am going to present here is not exactly Euclid’s, but is based
essentially on the same idea.

First, here is Euclid’s result:

THEOREM. The set of prime numbers
is infinite.

And now we discuss the proof. And, before that, we have to clarify what
the statement means, by giving a precise definition of “finite set”.

19.4.2 What is a finite set? What is an infinite set?

We now explain what a “finite set” is. t

Definition 56. Let S be a set,

1. We say that S is finite if S = ∅ or there exists a finite list a = (aj)
n
j=1

such that S = Set(a), that is

S = {x : (∃j ∈ INn)x = aj} .

2. We say that S is infinite if it is not finite.

�

19.4.3 The proof of Euclid’s Theorem

Let S be the set of all prime numbers.

We want to prove that S is an infinite set.

Suppose S is not infinite, so S is a finite set.
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Let L = (p1, p2, . . . , pn) be a list
11 such that S is the set Set(L) of entries

of L. (This means that S is the set {x : (∃j ∈ INn)x = pj}.)

Let M =
∏n

j=1
pj (so M is the product of all the entries of

the list L.)

Let N = M + 1.

Then N is a product of primes, by the Fundamental Theorem of
Arithmetic, so N has a prime factor.

Pick a prime number which is a factor of N , and call it q.

We will show that the prime number q is not on the list L.

Suppose q was one of the entries of the list L.

Then we may pick j such that j ∈ IN, 1 ≤ j ≤ n, and q = pj.

Then q is a factor of the number M , because pj is a factor of the
product p1.p2. · · · .pn.

But q is also a factor of N .

So q is a factor of N−M , i.e. q is a factor of 1 (because N−M = 1).

But q is a prime number, so q cannot be a factor of 1.

The two previous statements contradict each other. So we have
derived a contradiction.

Hence the assumption that q is one of the entries of the list L is impos-
sible. So q is not an entry of L.

But q is a prime number.

Hence L is not a list of all the primes.

But we have assumed that L is a list of all the primes.

So we have established a contradiction. This contradiction arose from as-
suming that S is a finite set.

So S is an infinite set.
Q.E.D.

11I say “a list” rather than “the list”, because you could list the primes in different ways,
for example: in increasing order, or in decreasing order.


