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Part I

1 Introduction

These notes are about mathematical proofs. We are going to get started
by presenting some examples of proofs. Later, after we have seen several
proofs, we will discuss in general, in great detail,

• What proofs are.

• How to read proofs.

• How to write and how not to write proofs.

• What proofs are for.

• Why proofs they are important.

But first, in this section, I am going to show you several examples of proofs.
In each of these examples, we are going to prove a theorem. Theorems

have statements. Each statement expresses a proposition, and the fact
that the statement has been proved implies that the proposition is true, in
which case we say that the statement is true.

So maybe it is a good idea to start by clarifying the meanings of the
words “theorem”, “statement”, “proof”, and of other related words such as
“proposition”, “fact”, and “conclusion”.

1.1 Propositions, statements, theorems and proofs

Basically, a proposition is something that can be true or false and can be
the objects of belief. For example, if I believe that snow is white, my Mexican
friend Alicia believes that “la nieve es blanca”, and my French friend Gaston
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believes that “la neige est blanche”, then all three of us believe the same
thing. That thing that I, Alicia and Gsston believe, is a proposition.

A fact is a true proposition.
A statement is a linguistic object (a sequence of words or sysmbols) that

expresses a proposition. The same proposition can be expressed by different
statements in different languages. For example,

• “snow is white”, ”la nieve es blanca”, and “la neige est blanche”, are
three different statements that express the same proposition in three
different languages: English, Spanish and French.

• “two plus two equals four”, “dos más dos es igual a cuatro”, “deux
plus deux égale quatre”, and ”2+ 2 = 4”, are four different statements
that express the same proposition in four different languages: English,
Spanish, French, and mathematical language.

A proof of s proposition P is a logical argument1 that establishes the
truth of P by moving step by step from proposition to proposition until
P is reached. The proof ends with the proposition P , which is called the
conclusion. A proof can by written in a particular language by writing
in that language the statements that express the propositions that are the
steps of the proof. Most of our proofs will be written in a combination
mathematical language and English, but later will also explain how to write
proofs in purle mathematical language2

Why are proofs important? Again, this is an issue that will be taken
up later, but let me sketch the answer right away: a methematical proof
of a proposition P absolutely guarantees, with complete certainty,
that P is true. This is so for a simple reason:

1If you are worried because it is not clear to you what a “logical argument” is, do
not worry. We are going to spend the whole semester discussing logical arguments and
explaining what they are and how to read them and write them, so by the end of the
semester you will know.

2And we will discuss why having a purely mathematical language is important: one of
the main reasons is that mathematical language is a universal language, that is, a
language understandable by all the mathematicall educated people in the world.
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The rules of logic are designed in such a way
that one can only prove, using them, proposi-

tions that are true.
Therefore, if you write a correct proof of a

proposition P , that is, a proof that obeys the
rules of logic, then you can be sure that P is

true.
On the other hand, if you produce a pur-

ported proof of a proposition P that is not true,
then we can all be sure that your proof is incor-
rect, in the sense that in at least one step you
violeted the rules of logic.

And, in case you ask what are those “rules of logic” that you are talking
about? The answer is: I am about to tell you! But it is going to take me a
few weeks to tell you. And, once I have told you, you will see that the rules
are very simple. But you have to be patient and allow me to get you there
step by step3.

1.2 An example: a Sudoku puzzle

Our first proof will be about a Sudoku puzzle.

Remark 1.

• A 3× 3 Sudoku grid consists of a square dovided into 81 square cells,
arranged as 9 rows and 9 columns, and partitioned into nine 3 × 3
blocks:

3It’s like swimming. Once you have learned to swim, it seems simple to you. But most
people need to learn to swim gradually, by first practicing floating, then exhaling under
water, then kicking, then maybe doing a backstroke, treading water, and so on. And, once
you have learned all that, it all looks very simple.
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• A completed 3× 3 Sudoku grid is a 3 × 3 Sudoku grid in which each
cell is filled in with a nonzero digit4 in such a way that

– every row contains all nine nonzero digits,

– every column contains all nine nonzero digits,

– every block contains all nine nonzero digits.

Here is an example of a completed 3× 3 Sudoku grid:

4The digits are the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The nonzero digits are the numbers
1, 2, 3, 4, 5, 6, 7, 8, 9. So there are 10 digits and 9 nonzero digits.
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1 2

5

3 4 5 6 7 8 9

4 5 6

8

8 9 1 2 3

1 32 4 5 6

2 93 1 5 6 8

6 4

9

8 9

3

2 3 1

8 9 12 5 6 4

6 4 5 9111

7

8

23

7

1

6 54

7

7

7

7

8

1 23

3 2

9 7 8

6

4

4 5 79

• A 3× 3 Sudoku puzzle is a 3×3 Sudoku grid in which some of the cells
are filled in with nonzero digits.

• A solution of a 3 × 3 Sudoku puzzle P is a completed 3 × 3 Sudoku
grid that can be obtained from P by filling in the cells of P that are
not filled in in P .

• A Sudoku puzzle P is solvable if it has a solution.

• A Sudoku puzzle P is uniquely solvable if it has one and only one
solution. �

Example 1.
Here is a 3× 3 Sudoku puzzle
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2 4 5 6 7 9

4 6 1

1 3 5 6

93 1 5 8

6

9

9

3

3 1

8 12 4

4 5 9111

7

8

5

7

7

8

2

3 2

4

5

and here is a solution:

1 2

5

3 4 5 6 7 8 9

4 5 6

8

8 9 1 2 3

1 32 4 5 6

2 93 1 5 6 8

6 4

9

8 9

3

2 3 1

8 9 12 5 6 4

6 4 5 9111

7

8

23

7

1

6 54

7

7

7

7

8

1 23

3 2

9 7 8

6

4

4 5 79
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Theorem 1. The following Sudoku puzzle

3

34

4

6

4

8

9

7

1

2

2

3

has no solution.

Proof.
COMMENT: We are going to do a proof by contradiction5:

I. We assume (that is, imagine) that the puzzle has a solution,

II. we explore an imaginary world in which the problem has a solution,
until

III. we prove a contradiction

The logic here is as follows: we prove that a world in which the problem has
a solution is impossible, because in that world a contradiction would have to
be true, and a contradiction cannot possibly be true.

So a world in which our Sudoku puzzle has a solution is an impossible
world. Hence in the real world that puzzle does not have a solution.

We now carry out this program:

1. Let us assume that our puzzle has a solution.

5Proofs by contradiction are explained in Subsection 1.4 below. You should read the
explanation now.
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COMMENT.This means that we have entered an imaginary world W in
which the puzzle has a solution. To indicate that this world we are work-
ing in is different, we use an extra indentation. World W is different from
the real world because in W our puzzle has a solution.

2. Since our puzzle has a solution, we pick one solution and give it a name:
we call it S.

COMMENT. This is something that we are going to be doing a lot in the
course: if we find out that an object of a certain kind exists, then we “pick”
one and give it a name, so we can talk about it.

3. Also, let us give names to some other objects of interest: let us use B
for the top left 3× 3 block, R1, R2, R3 for the top three rows of S (so
each one has nine cells) and r1, r2, r3 for the three rows of B (so each
one has three cells).

4. In S, block B must contain all nine nonzero digits 1, 2, 3, 4, 5, 6, 7, 8, 9.
However, row r1 cannot have a 3 or a 4, because R1 already has a 3
and a 4 elsewhere. (To be precise: since a row of the big square has 9
cells, and all 9 nonzero digits must occcur in it, each of these nonzero
digits must occur exactly one. So, since R1 already has a 1, a 2, a 3
and a 4 elsewhere, these digits cannot occur in R1.)

5. A similar argument shows that 3 and 4 cannot occur in r3.

6. So 3, and 4 must occur in r2.

7. But neither the 3 nor the 4 can occur in the leftmost cell of r2, because
the first column already has a 3 and a 4 elsewhere.

8. Also, neither the 3 nor the 4 can occur in the second cell of r2, because
thhere is a 6 there.

9. Hence both the 3 and the 4 must occur in the third cell of r2 .

10, But both the 3 and the 4 cannot occur in the third cell of r2 , because
each cell is suppose to conatin only one digit.

11. So we have reached a contradiction.

COMMENT. The contradiction is the statement “A and no A”, where A is
the statement “3, and 4 occur in the third cell of r2”.
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So we have proved that the puzzle of the previous figure has no so-
lution. Q.E.D.

And here is the same proof, without the comments:
Proof.

1. Let us assume that our puzzle has a solution.

2. Since our puzzle has a solution, we pick one solution and give it a name:
we call it S.

3. Also, let us give names to some other objects of interest: let us use B
for the top left 3× 3 block, R1, R2, R3 for the top three rows of S (so
each one has nine cells) and r1, r2, r3 for the three rows of B (so each
one has three cells).

4. In S, block B must contain all nine nonzero digits 1, 2, 3, 4, 5, 6, 7, 8, 9.
However, row r1 cannot have a 3 or a 4, because R1 already has a 3
and a 4 elsewhere. (To be precise: since a row of the big square has 9
cells, and all 9 nonzero digits must occcur in it, each of these nonzero
digits must occur exactly one. So, since R1 already has a 1, a 2, a 3
and a 4 elsewhere, these digits cannot occur in R1.)

5. A similar argument shows that 3 and 4 cannot occur in r3.

6. So 3, and 4 must occur in r2.

7. But neither the 3 nor the 4 can occur in the leftmost cell of r2, because
the first column already has a 3 and a 4 elsewhere.

8. Also, neither the 3 nor the 4 can occur in the second cell of r2, because
thhere is a 6 there.

9. Hence both the 3 and the 4 must occur in the third cell of r2 .

10, But both the 3 and the 4 cannot occur in the third cell of r2 , because
each cell is suppose to conatin only one digit.

11. So we have reached a contradiction.

So we have proved that the puzzle of the previous figure has no so-
lution. Q.E.D.
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1.2.1 What is “Q.E.D.”?

What does “Q.E.D.” mean?

“Q.E.D.” stands for the Latin phrase quod erat
demonstrandum, meaning “which is what was to be
proved”. It is used to indicate the end of a proof.

1.2.2 Two Sudoku problems

Problem 1. Prove that the following Sudoku puzzle

8 7

8

7

32

7

8

8

7

is not solvable.



Math 300, Fall 2018 12

Problem 2. Prove that the following Sudoku puzzle

1 2

5

4 6 9

5

8

8 9 1 2

1 2 4 5 6

2 91 5 6 8

4

9

8 9 2 1

9 12 5 6 4

4 5 9111 8

21

6 54

8

1 2

2

8

6

4

4 5 9

is not uniquely solvable.

1.2.3 Proof strategies we have used in the proof of Theorem 1

In our proof of Theorem 1 we have used two important proof strategies.

1. We used the proof by contradiction strategy, described in Section
1.4.

2. We used the rule for using existential statements, described in
Section 1.3.
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1.3 The rule for using existential statements

An existential statement is a statement that says that an object of a certain
kind exists. (That is, there is at least one object of

The rule for using existential statements says that, if you know that
an existential statement, saying that an object of a certain kind
exists, is true, then you can pick one and give it a name and
start talking about it.

For example:

i. If you know that Polonius has been killed, but you do not know who
did it, then you can talk about the person who killed Polonius and give
a name to that person, for example, call him (or her) “the killer”.

ii. If you know that Sudoku puzzle P has a solution (that is, a solution
exists), then you can pick one solution and call it S.

iii. if you know that an equation (say, the equation 3x2 + 5x = 8) has a
solution (that is, you know that the existential statement “there exists
a real number x such that 3x2 + 5x = 8” is true) then you are allowed
to pick a solution and call it, for example6, “a”.

6Can you call this solution x? This is a complicated issue. Think of this as follows:
the letter x is really a slot where you can put in a number. A number that can be put in
the slot so as to make the formula true is called a “solution”. The solution and the slot
are two different things. So it is not a good idea to use the same name for both. If you
do things very carefully, it turns out that it is O.K. to call both the slot and a solution
with the same name, but I strongly recommend that you do not do it. For example the
equation 3x2 + 5x = 8 has are two solutions, namely, 1 and − 8

3
. Which one is “x”? You

cannot call both of them “x”, because they are different. So I think it is better to call one
of the solutions a (or A, or u, or U , or p, or P , or α, or ♥) and then call the other one a
different name (say b, or B, or v, or V , or q, or Q, or β, or ♣).



Math 300, Fall 2018 14

1.4 Proofs by contradiction

Proof by contradiction is probably the most impor-
tant and most widely used of all proof strategies. So you
should not only learn what proofs by contradiction are,
but acquire the habit of alwaysa seriously consid-
ering the possibility of using the proof by con-
tradiction strategy when you are trying to figure
out how to do a proof.

aSure, I am exaggerating a little bit. There are quite a few direct proofs
(that is, proofs that are not by contradiction). But the number of proofs by
contradiction is huge.

Let me first explain what proofs by contradiction are, and then I will tell you
why they are so important.

And the first thing I need to explain is what a contradiction is.

1.4.1 What is a contradiction?

The precise definition of “contradiction” is complicated, and requires some
knowledge of logic. So let me give you a simplified definition that is easy to
understand and is good enough for our purposes.

Temporary definition of “contradiction”. A contradiction is a state-
ment of the form “A and no A”, that is, “A is true and A is not true”.
�

Example 2.

• The sentence “2+2 = 7” is not a contradiction. It is a false statement,
of course, but not every false statement is a contradiction.

• The sentence “2 + 2 = 7 and 2 + 2 = 4” is not a contradiction either.
It is a false statement (because it is the conjunction of two sentences
one of which is false), but that does not make it a contradiction.

• The sentence “2 + 2 = 7 and 2 + 2 6= 7” is a contradiction. because it
is of the form “A and no A”, with the sentence “2 + 2 = 7” in the role
of A.
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• The sentence “n = 1 and n 6= 1” is a contradiction.

• The sentence “John Adams was the first U.S. president” is false, but it
not a contradiction.

• The sentence “John Adams was the first U.S. president and was the
second U.S. president” is false, but it not a contradiction.

• The sentence “John Adams was the first U.S. president and was not
the first U.S. president” is a contradiction. �

1.4.2 What is a proof by contradiction?

A proof by contradiction is a proof in which you start by assuming that
the statement you want to prove is false, and you prove a contradiction.

To do a proof by contradiction, you would write something like this:

We want to prove A.

Assume that A is false.
...

2 = 1 and 2 6= 1.

So assuming that A is false has led us to a contradiction.

Hence A is true. Q.E.D.

WHAT DOES “ASSUME” MEAN?

“Assume” means “imagine”. In order to prove that some
statement S is true, we imagine that it is not true, that is, we
explore an imaginary world W in which S is not true, and we
prove that in this imaginary world something impossible (such as a
contradiction, ”A is true and A is not true”) would have to happen.
And from this we draw the conclusion that a world in which S is
not true is impossible, so un the real world S must be true.
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WARNING

Having explained very precisely what a contradiction is, I have to warn
you that mathematicians will often say things like “ ‘2 + 2 = 7’ ” is a
contradiction”.
This is not quite true, but when a mathematician says that every math-
ematician will understand what is really intended.
What the person who said “ ‘2 + 2 = 7’ is a contradiction” really meant
is something like this:

Now that I have proved that 2 + 2 = 7, I can easily get a
contradiction from that, because we all know how to prove
that 2 + 2 6= 7, and then we can deduce from these two
formulas the sentence “2 + 2 = 7 and 2 + 2 6= 7”, which is
truly a contradiction.
In other words, once I get to “2 + 2 = 7”, it is clear to me,
and to every mathematician, how to get to a contradiction
from there, so there is no need to go ahead and do it, so I
can stop here.

This is something mathematicians do very oftena: once we get to a
point where it is clear how to go on and finish the proof, we
just stop there.

For a beginning student I would recommend that you actually write your

proof until you get a real contradiction, because this is the only way to

make it clear to the person reading (and grading) your work that you

do understand what a contradiction is.

aAnd not only mathematicians! In chess, once you get to a position from
which it is clear that you can take your rival’s King and win, you say “check-
mate” and the game stops there.

1.5 More proofs: Pythagoras’ Theorem

Pythagoras’ Theorem is one of the oldest and most important theorems in
Mathematics. It is named after the Greek mathematician and philosopher
Pythagoras, who lived approximately from 570 to 495 BCE, although there
is a lot of evidence that the theorem (but probably not the proof) was known
before, by the ancient Babylonians.

The statement of the theorem is as follows:
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Theorem 2. (Pythagoras’ Theorem) If T is a right triangle7, c is the length
of the hypothenuse8 of T , and a, b are the lengths of the other two sides, then

a2 + b2 = c2 . (1.1)

There are many different proofs of Pythagoras’ Theorem. I am going to
give you two proofs.

Pythagoras’ proof. We draw a c× c square PQRS, and then attach at each
side a copy9 of T as shown in the picture.

c

c

c c

a

a

a

a

b

b

b

b

    P Q

RS

C

C

C

C

1

2

4

3

7A right triangle is a triangle having one right angle
8The hypothenuse of a right triangle T is the side opposite to the right angle of T .
9For those who have studied Euclidean Geometry in high school: a copy of a figure F is

a figure F ′ congruent to F . “Congruent to F” means: “obtainable from F by combining
displacements and rotations. For example, the triangles QC3R, RC4S, and SC1P are all
congruent to PC2Q.
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The point P lies on the straight line segment from C1 to C2, because

1. If α1 is the angle at S of the triangle SC1P , and α2 is the angle at P
of the triangle PC2Q, then α1 = α2, because the triangles SC1P and
PC2Q re congruent.

2. Similarly, if β1 is the angle at P of the triangle SC1P , and β2 is the
angle at Q of the triangle PC2Q, then β1 = β2, because the triangles
SC1P and PC2Q are congruent.

3. Since SC1P and PC2Q are both right triangles, and the sum of the
angles of every triangle is 180o, we have

α1 + β1 + 90o = 180o and α2 + β2 + 90o = 180o ,

so
α1 + β1 = 90o and α2 + β2 = 90o .

4. Since α1 = α2, it follows that α2 + β1 = 90o,

5. Hence the angle θ between the segments PC1 and PC2 is equal to
α2 + 90o + β1, i.e., to 180o. This proves that the segments PC1 and
PC2 lie on the same straight line, so P lies on the segment C1C2.

A similar argument shows that Q lies on the segment C2C3, R lies on the
segment C3C4, and S lies on the segment C4C1.

So the polygonal C1PC2QC3RC4SC1 is a square.
Let d = a+ b. Then the sides of the square C1C2C3C4 have length d.
Therefore the area of the square C1C2C3C4 is d2.
On the other hand, the smaller square PQRS has side of length c, so its

area is c2. Each of the four triangles has area ab
2
. So the area of C1C2C3C4

is equal to c2 + 4× ab
2
, i.e., to c2 + 2ab.

It follows that

(a+ b)2 = d2

= c2 + 4× ab

2
= c2 + 2ab .

On the other hand, (a+ b)2 = a2 + b2 + 2ab. It follows that

a2 + b2 + 2ab = c2 + 2ab .
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Subtracting 2ab from both sides, we get

a2 + b2 = c2 ,

which is the desired result. Q.E.D.

Proof using similar triangles. Let C be the vertex of T where the right angle
is located, and let A, B be the other two vertices.

Draw a line through C perpendicular to the line AB, and let H be the
point where this line intersects the line AB.

A

H

β

α

C
B      

Let α, β be the angles of T at A, B, so α+ β = 90o. The angle of ACH
at H is also 90o, and the angle at A is α. Hence the angle of ACH at C is
β. So the triangles ABC and ACH are similar. Hence the sides opposites to
equal angles are proportional. That is:

|AC|
|AH| =

|AB|
|AC| ,
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from which it follows that

|AC|2 = |AH| · |AB| .

A similar argument shows that

|BC|2 = |BH| · |AB| .

Adding both equalities we get

a2 + b2 = |AH| · |AB|+ |HB| · |AB|
=

(

|AH|+ |HB|) · |AB|
= |AB| · |AB|
= |AB|2
= c2 .

So a2 + b2 = c2, as desired. Q.E.D.

1.6 Irrational numbers

In this section we will prove a very important fact, namely, that “the number√
2 is irrational”. This means, roughly, the same thing as “there does not

exist a rational number r such that r2 = 2.” (The two statements do not say
exactly the same thing. I will discuss how they differ later.)

But first I want to explain what this means and why this result is so
important. And to do this we need a small philosophical digression into the
question: what is a “number”?. (If you are not interested in philosophical
questions, you may skip this discussion and move on to subsection 1.7.3.)

1.7 What are “numbers”?

This is not an easy question to answer, and I will not even try. But there
are some tings that can be said.

1. Numbers are, basically, tags (or labels) that we use to specify the
amount or quantity of something, i.e., to answer the questions “how
much ...?” or “how many ...?”
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2. Since ancient times, it was understood that there are at least two kinds
of “numbers”:

(a) The counting numbers, that we use to specify amounts of dis-
crete quantities, such as coins, people, animals, stones, books, etc.

• counting numbers are used to count: 1, 2, 3, 4, 5, and so on,

• they are the ones that answer questions of the form
“how many ... are there?”;

• they vary in discrete steps: they start with the number 1,
then they “jump” from 1 to 2, and there is no other counting
number between 1 and 2, then they “jump” from 2 to 3, and
there is no other counting number between 2 and 3, and so
on.

(b) The measuring numbers, that we use to specify amounts that
can vary continuously, such as lengths, areas, volumes, weights.

• measuring numbers are used to measure continuously vary-
ing quantities;

• they are the ones that answer questions of the form
“how much ... is there?”;

• they vary continuously, so that, for example, when you
pour water into a cup, if at some time point there are 10
ounces in the cup, and later there are 12 ounces, it does not
occur to us that the amount of water in the cup may have
jumped directly from 10 to 12 ounces: we understand that at
some intermediate time there must have been 11 ounces, and
at some time before that there must have been 10.5 ounces,
and at some time before that there must have been 10.25
ounces, and at some time before the amount of water in the
cup was 10.15309834183218950482 ounces; and so on10. At
no time did the amount of water “jump”11 from some value u
to some larger value v.

10WARNING: The words “and so on” here are very imprecixse. It’s not at all what
they mean. When I talk about the counting numbers and I write “1, 2, 4, 5, and so
on”, you know exacrtly what comes next: it’s 6. But when I write “11, 10.5, 10.25,
10.15309834183218950482, and so on”, I haven’t the faintest idea what comes next! So
the “and so on” for counting numbers is acceptable, but the “and so on” for measuring
numbers is not, and when we do things rigorusly and precisely we must get rid of it.

11To make this precise, one needs to use tha language of Calculus: if w(t) is the amount
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• they can be subdivided indefinitely: for example

– You can take a segment of length 1 (assuming we have
fixed a unit of length), and divide it into seven equal seg-
ments, each one of which has length 1

7
. And then you can

draw segments whose lengths are 3
7
, or 4

7
, or 9

7
, or 23

7
, thus

getting fractional lengths.

– And, instead of 7, you can use any denominator you want,
and get lengths such as 5

2
, 12

5
, 29

17
, 236,907

189,276
, and so on.

– Hence, if n and m are any natural numbers, then we can
(at least in principle) construct segments of length m

n
.

That is, we can construct segments of length f , for any
fraction f .

The measuring numbers such as 5
2
, 12

5
, 29

17
, or 236,907

189,276
, that can obtained

by dividing a counting number m into n equal parts, where n is another
counting number, are called fractions.

And this suggests an idea:

Idea 1: Perhaps the measuring numbers are exactly the same as the frac-
tions.

In other words: suppose we use the length u of some straight-line segment U
as the unit for measuring length. (That is, we call the lenght of this segment
“meter”, or “yard”, or “foot”, or “mile”, and then we try to express every
length in meters, or yards, or feet, or miles.) When we do that, we will
of course need fractions to expres some lenghts because, for example, if we
measure distances in miles, not every distance will be 1 mile, or 2 miles, or n
miles for some counting number n. Some distances will be, say, half a mile,
or three quarters of a mile, on thirteen hundredths of a mile, or forty-seven
thousandths of a mile12.

of water at time t, then w is a continuous function of t. The trouble with this is: at this
point you only have a nonrigorous, not very precise idea of what a “continuous function”
is. You will learn to define the notion of “continuous function”, and work with it, and
prove things about it, in your next “Advanced Calculus” or “Real Analysis” course.

12Here is another important difference between counting and measuring numbers: to
count things using counting numbers you do not need units, but to measure amounts using
measuring numbers you do. If you are asked how many pills there are in a bottle, then
you answer “six”, or “twenty-five’, or whatever, and nobody is going to ask “six what?”.
But if you are asked how much water there are in the bottle, and you answer “six”, then
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Then Idea 1 suggests that the length of every segment V should be equal
to a fraction m

n
times u (wnere m,n are natural numbers, i.e., counting

numbers). That means that if we divide the segment U into n equal segments
of length w = u

n
, then the length of U is n times w, and the length of V is m

times w. So U and V are commensurable. Since we can take U and V to be
any two segments we want, we find that If Idea 1 i true, then any two
segments are commensurable.

COMMENSURABLE LENGTHS

“Commensurable” means “measurable together”. Precisely:

Definition 1.

• Two segments U , V , are commensurable if you can use a ruler
of the same length w to “measure u and v together”, that is,
to express both lengths u and v as integer multiples mw, nw
of the unit of length w.

• Two segments U , V , are incommensurable if they are not
commensurable.

But then a momentous discovery of far-reaching consequences was made:

There are incommensurable lenghts.

That is, it is not true that any two lengths are commensurable.
Precisely: it is possible to construct geometricallly13 a segment whose

length r satisfies r2 = 2. For example, if we draw a square whose sides have

somebody is going to ask “six what?”, expecting that you will say something like “six
ounces”, or “six liters”, because if you do not specify the units of your measurement the
number you gave is meaningless.

13What does “constructing geometrically” mean? This is tricky. For Euclid (who lived
about 23 centuries ago), “constructing geometrically” meant “constructing with a ruler
and compass”. (See the Wikipedia article ”Compass and straightedge consrtuctions”.)
Using ruler and compass, one can construct lines and circles, but there are lots of other
curves—for example, ellipses—that cannot be constructed that way. On the other hand,
there are other equally “geometric” methods that can be used to construct some of those
curves. For example, ellipses can be constructed using pins and strings. (See the Wikipedia
article “Ellipses”.)
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length 1, then the length r of the diagonal of the square will satisfy r2 = 2,
by Pythagoras’ theorem.

r

1

1

=1 +1   = 2
22

r
2

And it was discovered that there is no fraction r such that r2 = 2. This
means that

I. If you believe that “number” means “fraction”, then there is no number
that measures the length of the diagonal of a square whose sides have
lengt 1.

II. If you are willing to accept that there could be “numbers” that are not
fractions, then maybe there is a number r that measures the length of
the diagonal of a square whose sides have lengt 1, but that number r,
that we could call “

√
2”, is not a fraction.

Today we would say that
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• Those numbers that are not fractions, such as
√
2, do indeed exist, and

we call them “real numbers”.

• The fractions, called “rational14 numbers”, are real numbers, but many
real numbers are “irrational” numbers, that is, numbers that are not
rational.

• Actually, most15 real numbers are not rational.

• It took mathematicians more than 2,000 years after the discovery of
the irrationaly of

√
2 to come up with a truly rigorous definition of the

concept of “real number”. (The name “real number” was introduced by
Descartes in the 17th century. The first rigorous definition was given
by George Cantor in 1871, and the most widely used definitions were
proposed by Karl Weierstrass and Richard Dedekind.

1.7.1 Why was the irrationality of
√
2 so important?

The discovery of the inconmensurability of
√
2 was made, according to legend,

by Hippasus of Metapontum, who lived in the 5th century B.C.E and
was a member of the religious sect of the Pythagoreans, i.e., the followers of
the philosopher and mathematician Pythagoras16. And the legend also says
that the discovery was so shocking to the Pythagoreans that Hippasus was
drowned at sea, as punishment for having divulged the secret. (But this is a
legend, and there is no evidence that it is true.)

14The word “rational” here has nothing to do with “rationality” in the sense of “in
accordance withb reason or logic”. It comes from the word “ratio”, which means “quo-
tient”. An “irrational number” is a number that is not the quotient (“‘ratio”) of two
integers. If you hear somebody say something like “scientists have shown that nature is
irrational: mathematicians have shown that irrrationality is everywhere present, because
most numbers are irrational”, then you shoud realize that thit is an ignorant statement by
somebody who does not understand what “irratioanl numbers” are. The “irrationality” of
irrational numbers has nothing to do with their being unreasonable, absurd, or illogical;
it just means that they are not quotients of two integers.

15If this statement does not strike you as incomprehensible because you don’t know
what it means, you should think again, and ask yourself “what could it possibly mean to
say that most real numbers are irrational”? It turns out that this can be made precise,
but making it precise is hard.

16Yes, that’s the same Pythagoras of Pythagoras’s theorem.
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Why was the existence of inconmensurable magnitudes so upsetting to
the Pythagoreans? The reason is this: the Pythagoreans were a mystical-
religious cult.

The Pythagoreans honored the effort put into mathematics,
and coordinated it with the observation of the cosmos in var-
ious ways, for example: by including number in their reason-
ing from the revolutions and their difference between them,
by theorizing what is possible and impossible in the organi-
zation of the cosmos from what is mathematically possible
and impossible, by conceiving the heavenly cycles according
to commensurate numbers with a cause, and by determining
measures of the heaven according to certain mathematical ra-
tios, as well as putting together the natural science which
is predictive on the basis of mathematics, and putting the
mathematical objects before the other observable objects in
the cosmos, as their principles.

From the Wikipedia article on Pythagore-

anism, which quotes the Protrepticus, by

D. S. Hutchinson and M. R. Johnson, a

2015 reconstruction of a lost dialogue of

Aristotle.

In other words, for the Pythagoreans everything in the world was determined
by ratios (i.e. quotients) of “numbers”, and for them “number” meant “nat-
ural number” (i.e., counting number). The discovery that some lengths were
not ratios of “numbers” undermined the Pythagorean system to such an ex-
tent that the members of the sect felt it necessary to conceal this fact from
the general public.

But it is important to put all this in proper perspective: there is no real
proof that Hippasus truly was the discoverer of the irrationality of

√
2, or

that he was drowned at sea for that discovery.

1.7.2 What is a “real number”, really?

The discovery that there are lengths that are inconmensurable with one an-
other naturally forced mathematicians to ask a fundamental question: what
is a “number”, really?
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And, as we have explained, it took more than 2,000 years until mathe-
maticians found a satisfactory answer.

1.7.3 The most important number systems: real numbers vs. in-
tegers and natural numbers

Now let us look at the main number systems17 that mathematicians use
today.

1. The measuring numbers, together with their negatives, and zero, are
called real numbers.

2. The set of all real numbers is called IR. (It is also called “the set of all
real numbers”, or “the real line”.)

3. The counting numbers are called natural numbers. (They are also
called “positive integers”.)

4. The set of all natural numbers is called IN.

5. The natural numbers, together with their negatives and zero, are called
integers.

6. The set of all integers called Z.

7. The real numbers that are quotients of two integers are called rational
numbers. That is, we have

Definition 2. A rational number is a real number r such that there
exist integers m,n for which:

(a) n 6= 0

(b) r = m
n
. �

8. The set of all rational numbers is called Q.

17There are many number systems. What we will do here is barely scratch the surfaceof
a very rich theory.
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1.7.4 A remark about sets

We will spend a lot of time in this course studying sets. At this point, all
you need to know is that

• sets have members.

• If S is a set and x is an object (for example, a number or a person or
a giraffe or a set) then “x ∈ S” is a way of saying that x is a member
of S.

• “x ∈ S” is read as “x belongs to S”, or “x is in S”, or “x is a member
of S”.

• We write “x /∈ S” to indicate that x is not a member of S.

• So, for example,

– If C is the set of all cows, then to say that Suzy is a cow we can
equally well say “Suzy∈ C”.

– You can read “Suzy∈ C in any of the following ways:

1. Suzy belongs to C,

2. Suzy is in C,

3. Suzy belongs to the set of all cows,

4. Suzy is a cow.

But the third reading, although correct, is very stupid, because
there is no reason to say “Suzy is a member of the set of all cows”
when you can say the same thing in a much shorter and simpler
way by saying “Suzy is a cow”.

– Similarly, you can read “Suzy/∈ C in any of the following ways:

1. Suzy does not belong to C,

2. Suzy is not in C,

3. Suzy does not belong to the set of all cows,

4. Suzy is not a cow.

And the third reading, though correct, sounds silly, so you would
never say it that way.

• Here is another example.
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– “IN”, as we know, is the set of all natural numbers. So, to say
that 3 is a natural number we can equally well say “3 ∈ IN”.

– You can read “3 ∈ IN in any of the following ways:

1. 3 belongs to IN,

2. 3 is in IN,

3. 3 belongs to the set of all natural numbers,

4. 3 is a natural number.

But the third reading, althogh correct, is very stupid, because
there is no reason to say “3 is a member of the set of all natural
number” when you can say the same thing in a much shorter and
simpler way by saying “3 is a natural number”.

Problem 3. For each of the following formulas,

(a) indicate how to read it in English,

(b) indicate whether it is true or false.

1. −3 ∈ IN,

2. 0 ∈ IN,

3. 0 /∈ Z,

4. 0 ∈ Z,

5. −3 ∈ IR,

6. 0 ∈ IR,

7. 0 /∈ IR,

8. 0 ∈ IR,

9. 0 ∈ Q,

10. 3 ∈ Q,

11. −3 ∈ Q,

12. 237
42

∈ Q,
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13.
√
2 ∈ Q,

14.
√
2 /∈ Q,

15. π ∈ Q.

1.7.5 Proof of the irrationality of
√
2

As explained before, we could state the theorem on the irrationality of
√
2

by saying that “
√
2 is irrational”. This, however, would mean that there is

a “number
√
2”, i.e., a number whose square is 2. But the issue whether

such a number exists is different from the one that concerns us here, namely,
whether there exists a rational number r such that r2 = 2. So I prefer to
state the theorem in a way that does not imply any a priori commitment to
the existence of a “number” r such that r2 = 2.

And, before we give the proof, we introduce a few concepts and state
some facts that will be used in the proof, (These facts will be proved later in
the course.)

THE DEFINITION OF “DIVISIBILITY” AND
“FACTORS”

Definition 3. Let a, b be integers. We say that a is divisible by b
(or that b is a factor of a) if there exists an integer k such that
a = bk.

THE DEFINITION OF “EVEN” AND “ODD”
INTEGERS

Definition 4. Let a be an integer. We say that a is even if it is
divisible by 2. And we say that a is odd if it is not even.

The integers 1 are −1 are factors of every integer, because if n ∈ Z then
n = n× 1 and n = (−n)× (−1), so n is divisible by 1 and by −1. So 1 and
−1 are not very interesting factors, because they are always there. So we
refer to 1 and −1 as the trivial factors of an integer.
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THE DEFINITION OF “COPRIME” INTEGERS

Definition 5. Let a, b be integers. We say that a and b are coprime
if they do no have any nontrivial common factors.

Example 3. The integers 12 and 35 are coprime. Indeed:

• The factors of 12 are 1, −1, 2, −2, 3, −3, 4, −4, 6, −6, 12 and −12.

• The factors of 35 are 1, −1, 5, −5, 7, −7, 35 and −35.

So the only common factors are 1 and −1, i.e., the trivial factors. Hence 12
and 35 are coprime. �

Fact 1. Every rational number is equal to a quotient m
n
of two co-

prime integers.

Fact 2. The product of two odd integers is odd.

And now, finally, we are ready to prove our third theorem

Theorem 3. There does not exist a rational number r such that r2 = 2.

Proof. We give a proof by contradiction .

Assume that there exists a rational number r such that r2 = 2.

Pick one such number and call it r.

Using Fact 1, we may pick integers m,n such that

(1) n 6= 0,

(2) r = m
n
,

(3) m and n have no nontrivial common factors.

Since r2 = 2, we have m2

n2 = 2.

Therefore m2 = 2n2.

So m2 is even.

But then m is even. (Reason: Assume18 that m is not even. Then m
is odd. So by Fact 2, m2 is odd. But we have proved that m2 is even.
So m2 is not odd. Therefore m2 is odd and m2 is not odd, which is a
contradiction.)

18Notice that we have a proof by contradiction within our main proof by contradiction.
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Since m is even, m is divisible by 2.

So we may pick an integer k such that m = 2k.

Then m2 = 4k2.

But m2 = 2n2.

Hence 2n2 = m2 = (2k)2 = 4k2.

Therefore n2 = 2k2.

So n2 is even.

But then n is even. (Reason: Assume19 that n is not even. Then n
is odd. So n2 is odd by Fact 2. But we have proved that n2 is even.
So n2 is not odd. Therefore n2 is odd and n2 is not odd, which is a
contradiction.)

So m is even and n is even.

Therefore m and n are divisible by 2.

So m and n have a nontrivial common factor.

But m and n do not have a nontrivial common factor.

So m and n have a nontrivial common factor and m and n do not have
a nontrivial common factor.

So we have proved a contradiction.

So the assumption that there exists a rational number r such that r2 = 2 has
led us to a contradiction,

Therefore there does not exist a rational number r such that r2 = 2 .Q.E.D.

1.8 More irrationality proofs

We now use the same tecbnique to prove that
√
3 is irrational. The key point

here is to realize that “even vs. odd” now has to be replaced by “divisible by
3 vs. not divisible by 3”. And, in order to do the crucial step (the analogue
of “if m2 is divisible by 2 then m is divisible by 2”) we need a generalization
of Fact 2:

Fact 3. If p is a prime number, then the product of two integers that are not
divisible by p is not divisible by p either.

(We will prove Fact 3 later.)

19Another proof by contradiction !
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Theorem 4. There does not exist a rational number r such that r2 = 3.

Proof. We will do a proof by contradiction .

Assume that there exists a rational number r such that r2 = 3.

Pick one such number and call it r.

Using Fact 1, we may pick integers m,n such that

(1) n 6= 0,

(2) r = m
n
,

(3) m and n have no nontrivial common factors.

Since r2 = 3, we have m2

n2 = 3.

Therefore m2 = 3n2.

So m2 is divisible by 3.

But then m is divisible by 3. (Reason: By Fact 3, if m was not divisible
by 3, it would follow that m2 is not divisible by 3 either. But m2 is
divisible by 3, and we got a contradicition.)

Since m is divisible by 3, we may pick an integer k such that m = 3k.

Then m2 = 9k2.

But m2 = 3n2.

Hence 3n2 = 9k2, so
n2 = 3k2 . (1.2)

So n2 is divisible by 3.

But then n is divisible by 3. (Reason: By Fact 3, if n was not divisible
by 3, it would follow that n2 is not divisible by 3 either. But n2 is
divisible by 3, and we got a contradicition.)

So 3 is a factor of m and 3 is a factor of n.

Hence m and n have a nontrivial common factor.
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But m and n do not have a nontrivial common factor.

Therefore

m and n have a nontrivial common factor, and m and n do
not have a nontrivial common factor,

which is a contradiction,

So the assumption that there exists a rational number r such that r2 = 3 has
led us to a contradiction,

Therefore there does not exist a rational number r such that r2 = 3 .Q.E.D.

1.8.1 What happens when you make a mistake in a proof

Can we do the same that we did before to prove that

THEOREM: There does not exist a rational number r such that r2 = 4.
Proof. We will do a proof by contradiction .

Assume that there exists a rational number r such that r2 = 4.

Pick one such number and call it r.

Using Fact 1, we may pick integers m,n such that

(1) n 6= 0,

(2) r = m
n
,

(3) m and n have no nontrivial common factors.

Since r2 = 4, we have m2

n2 = 4.

Therefore m2 = 4n2.

So m2 is divisible by 4.

But then m is divisible by 4. (Reason: By Fact 3, if m was not divisible
by 4, it would follow that m2 is not divisible by 4 either. But m2 is
divisible by 4, and we got a contradicition.)

Since m is divisible by 4, we may pick an integer k such that m = 4k.
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Then m2 = 16k2.

But m2 = 4n2.

Hence n2 = 4k2, so
n2 = 3k2 . (1.3)

So n2 is divisible by 4.

But then n is divisible by 4. (Reason: By Fact 3, if n was not divisible
by 4, it would follow that n2 is not divisible by 3 either. But n2 is
divisible by 4, and we got a contradicition.)

So 3 is a factor of m and 4 is a factor of n.

Hence m and n have a nontrivial common factor.

But m and n do not have a nontrivial common factor.

Therefore

m and n have a nontrivial common factor, and m and n do
not have a nontrivial common factor,

which is a contradiction,

So the assumption that there exists a rational number r such that r2 = 4 has
led us to a contradiction,

Therefore there does not exist a rational number r such that r2 = 4 .Q.E.D.

Same proof, right?

WRONG!!!!!

What is wrong here?

1. The result is false. It is not true that there does not exist a rational
number r such that r2 = 4. Indeed, if we take r = 2 then r is ratinal
and r2 = 4.
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2. Since the conclusion of the proof is false, the proof itself must be wrong.
That is, whoever wrote this proof must have cheated20 in some step.

In our case, Fact 3 explicitly says that “if p is prime then if a is not
divisible by p it follows that a2 is not divisible by p”. So we are allowed
to apply Fact 3 if p is prime, but we are not allowed to apply it if p
isnot prime.

So the two steps where we applied Fact 3 are wrong. In those steps,
we cheated, by violating the rules.

The general principle is this: If a proof is correct then you
can be sure that the conclusion is true.

And another way to say that is this: if the conclusion of a proof is
false, then the proof must be wrong. There has to be a mistake
in the proof itself.

So, if I give you a proof of a conclusion that is false, you have to be able
to find where in the proof the author cheated. I will not be satisfied with a
statement such as “the proof is wrong because the conclusion is false.” I will
want to know where in the proof a mistake was made.

Consider the following analogy: If I am trying to drive to Boston and end
up in New York, then of course I can conclude thta I did something worng.
But I will want to know what I did wrong, where I made a wrong turn. The
same happens with proofs.

1.8.2 More complicated irrationality proofs

I hope it is clear to you that the same method, exactly, will apply to prove
that

√
5,

√
7,

√
11, and, more generally,

√
p for any prime number, is irra-

tional.
Now let us try a more complicated case. Let us prove that

Theorem 5. There does not exist a rational number r such that r2 = 12.

Remark 2. The number 12 is not prime. (Actually, 12 = 4 × 3.) So we
cannot apply Fact 3 with 12 in the role of p.

20Nothing personal here. “Cheat” means “violate the rules.” Of course, I haven’t told
you yet what the rules are, but let me anticipate one of them. You are allowed to use
a result that has been proved, but you are now allowed to make up a statement
that has not been proved and use it as if it was true.
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Proof. We will do a proof by contradiction .

Assume that there exists a rational number r such that r2 = 12.

Pick one such number and call it r, so r2 = 12..

Using Fact 1, we may pick integers m,n such that

(1) n 6= 0,

(2) r = m
n
,

(3) m and n have no nontrivial common factors.

Since r2 = 12, we have m2

n2 = 12.

Therefore m2 = 12n2.

Hence m2 = 3× 4n2.

So m2 is divisible by 3.

But then m is divisible by 3. (Reason: By Fact 3, if m was not divisible
by 3, it would follow that m2 is not divisible by 3 either. But m2 is
divisible by 3, and we got a contradicition.)

Since m is divisible by 3, we may pick an integer k such that m = 3k.

Then m2 = 9k2.

But m2 = 12n2.

Hence 12n2 = 9k2, so
4n2 = 3k2 . (1.4)

So 4n2 is divisible by 3.

But then n is divisible by 3. (Reason: By Fact 3, assume n is not
divisible by 3; then by Fact 3 n2 is not divisible by 3; since 4 is not
divisible by 3, another application of Fact 3 tells us that 4n2 is not
divisible by 3. But 4n2 is divisible by 3, so we got a contradiction.)

So 3 is a factor of m and 3 is a factor of n.

Hence m and n have a nontrivial common factor.
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But m and n do not have a nontrivial common factor.

Therefore

m and n have a nontrivial common factor, and m and n do
not have a nontrivial common factor,

which is a contradiction,

So the assumption that there exists a rational number r such that r2 = 12
has led us to a contradiction,

Therefore there does not exist a rational number r such that r2 = 12 .Q.E.D.

Problem 4. Prove that each of the following numbers is irrational:

1. 3
√
5,

2.
√
28,

3.
√

2 +
√
2.

4. 3
√
9. �

Problem 5. Prove or disprove21 each of the following statements:

1. The sum of two rational numbers is a rational number.

2. The product of two rational numbers is a rational number.

3. The sum of two irrational numbers is a rational number.

4. The product of two irrational numbers is a rational number.

5. The sum of two irrational numbers is an irrational number.

6. The product of two irrational numbers is an irrational number.

7. The sum of a rational number and an irrational number is an irrational
number.

21To disprove a stetement means “to prove that the statement is false”. For example,
when we proved that 1 is not even we disproved the statement ‘1 is even”.
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8. The product of a rational number and an irrational number is an irra-
tional number. �

Problem 6.

1. Explain why the following “proof” that
√
2+

√
3 is irrational is wrong:

We know that
√
2 is irrational.

We know that
√
3 is irrational.

Hence the sum
√
2 +

√
3 is irrational. Q.E.D.

2. Explain why the following “proof” that
√
6 is irrational is wrong:

We know that
√
2 is irrational.

We know that
√
3 is irrational.

Hence the product
√
2.
√
3 is irrational.

So
√
6 is irrational. Q.E.D.

3. Give a correct proof that
√
2 +

√
3 is irrational. �

Problem 7. Prove that
√
2+

√
3+

√
5 is irrational. (NOTE: This requires

some hard thinking on your part.) �

Problem 8. Prove that
√
2 +

√
3 +

√
5 +

√
7 is irrational. (NOTE: This

requires quite a lot of thinking on your part.) �

Problem 9. Prove that, if n ∈ IN, and p1, p2, . . . , pn are n distinct primes,
then

√
p1 +

√
p2 + · · ·+√

pn is irrational. (NOTE: This is very difficult.) �
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Part II

2 The languages of mathematics: formal, nat-

ural, and semiformal

In these notes, we will be talking mostly about mathematical objects,
that is, numbers of various kinds (natural numbers, integers, rational num-
bers, real numbers, complex numbers, integers modulo n, etc.), sets, func-
tions, relations, graphs, geometric objects (such as points, lines, segments,
angles, circles, planes, curves and surfaces of various kinds, etc.), and many
other kinds of objects (such as groups, rings, fields, algebras, modules, vec-
tor spaces, manifolds, bundles, Lie groups, etc.) that mathematicians have
invented and you will learn about in more advanced courses.

And we will talk about these mathematical objects using mathematical
language. But mathematical language is a special kind of language, in
many ways similar to other languages such as English, and in many ways
different. So, in order to talk about mathematical language we will want
to say a few words about language in general, so that we can explain what
makes mathematical language special.

Mathematical language, as commonly used, is semiformal language,
that is, a mixture of formal language and the natural language (English,
Chinese, French, whatever) that one uses in a particular country. (Formal
lamguage is a language consisting entirely of formulas. For example, the
statement “A = πR2” is an expression in formal language.)

For example, when we say

from the facts that 2 + 2 = 4 and 4 + 2 = 6 we deduce that (2 + 2) + 2 = 6
(2.5)

this is a mixture of formal mathematical language and English. (The formal
language part consists of the formulas “2+2 = 4”, “4+2 = 6”, and “4+2 =
6”. The English part is the rest.)
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If we wanted to say the same thing in French, we would say

des faits que 2 + 2 = 4 et 4 + 2 = 6 on deduit que (2 + 2) + 2 = 6 . (2.6)

Notice that the formal language part does not change. That’s because
formal language is universal. The formula “2 + 2 = 4” is exactly the
same in English, French, Chinese, or any other language.

As we will see in the course, it is possible to formalize mathematics
fully, that is, to develop a formal language into which we can translate every
mathematical statement.

For example, statement (2.5) would become, in purely formal language:

(2 + 2 = 4 ∧ 4 + 2 = 6) =⇒ (2 + 2) + 2 = 6 . (2.7)

And, once you get to this level, the texts you get are no longer in English or
Franch or Chinese, because formal language is the same everywhere,
exactly as the formula “1+1 = 2’ is the same everywhere and can be under-
stood by all people, no matter what language they speak.

This means that if we could write all of mathematics in formal language,
we would have a language that permits people of all nationalities, speaking all
kinds of lamguages, to communicate easily: if a mathematician who speaks
Chinese says something, and a mathematician who speaks English does not
understand, then all these two mathematicians have to do is switch to formal
language, and then they would have no problem communicating.

Formal language has other advantages that we will talk about soon. So
you would think that mathematicians must use formal language all the time.
But in fact we do not. We use a semiformal language which is a mixture
of formal language and our own natural languages, because formal language
is too dry and to hard to read. But formal language remains the means of
communication of last resort: if I don’t understand something you wrote,
then I would ask you to say it in formal language. I you cannot say it in
formal language, then what you wrote is meaningless. If you can say it in
formal language, then I will understand what you said, and I will be able to
decide if it is right or wrong.

Example 4. Suppose you are trying to define “prime number”, and write “a
prime number is a number that is only divisible by 1 and itself”. Then I do
not understand what you are saying, so I cannot tell if it is right or wrong.

Why do I not understand?
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• Fisrt of all, I do not understand what “number” means. There are lots
of different kinds of numbers: natural numbers, integers, rational num-
bers, real numbers, complex numbers, integers modulo n, etc. When
you say “number”, which one do you mean?

• Also: what does “only divisible” mean? You may say that when yoy
write “p is only divisible by 1 and itself”, what you mean is that “the
only factors of p are 1 and p”. But then I would reply: “so 3 is not
prime, because the factors of 3 are 3, 1, −1 and −3, so it’s not true
that the only factors are 1 and 3; so 3 is not prime.” Then you would
probably reply: “I did not mean to count negative factors as factors”,
And I would aswer: “why didn’t you say that?”

If I ask you to write your statement in formal language, then that will force
you to make your meanings precise. For example, you will write something
like22

if p ∈ IN , then p is prime if (∀k ∈ IN)
(

k|p =⇒ (k = 1 ∨ k = p)
)

. (2.8)

This is now completely clear, so at this point I will finally have understood
what you are saying. And then I will be able to tell if this is right or wrong.

The answer is: as a definition of “prime number”, this is wrong, because
1 is not prime, but according to (2.8) 1 is prime.

But we can make it right by writing:

if p ∈ IN , then p is prime if p > 1 ∧ (∀k ∈ IN)
(

k|p =⇒ (k = 1 ∨ k = p)
)

.

(2.9)

2.1 Things and their names

In any language, whether it is English, French, Russian, Spanish, Chinese, or
formal or semiformal mathematical language, we talk about things (objects,
entities), and in order to do that we give them names.

22This is not yet a fully formal definition. To make it fully formal we need to introduce a
symbolic way to say “p is prime”. We can do this by using “P (x)” for “x is prime”, and then

your statement would become: (∀p ∈ IN)

(

P (p) ⇐⇒ (∀k ∈ IN)
(

k|p =⇒ (k = 1∨k = p)
)

)

.

This is not yet a correct definition of “prime number” but at least it is pefectly clear.
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THINGS

In these notes, the word thing refers to an object of any kind: a
concrete inanimate material object such as a table or a molecule or
a planet, a “living thing” such as a plant, an animal, a person, or
an amoeba, or an abstract thing such as a mathematical object.
So, in these notes, Mount Everest is a thing, and the chair on which
you are sitting is a thing, and a book is a thing, but so are a giraffe,
a spider, and you, and I, and my uncle Jim, and the number four,
and the set IN of all natural numbers.
Some students don’t like using the word “thing” to refer to people,
perhaps because they are thinking that “people are not things”.
My answers to that are:

1. We can use words in any way we like, as long as we do it
consistently. So in this course we can decide how to use the
word “thing”, and there should be no problem as long as what
we mean is clear to everybody.

2. We often do talk about “living things”, and that includes
people.

3. If you don’t like using the word “thing” in this way, there is
a word that’s perfect for you: you can talk about “entities”
instead. An entity is anything that exists. It can be a table, a
river, a planet, an atom, a cell, a plant, a giraffe, a person, a
number, a triangle, a matrix, a set, or a function. So just sub-
stitute the word “entity” for “thing” throughout these notes,
and you will be fine.

2.1.1 Giving things individual names

The simplest way to give names to things is to give each thing an individ-
ual name, as when you call people with names such as “Mary”, “John”,
or “George Washington”, you give cities names such as “New York City”,
“Paris”, or “London”, or you give mountains names such as “Mount Everest”
or “Mount Aconcagua”.

But this way of naming things is not very convenient, because in our daily
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life we have to talk about an enormous number of things of many different
kinds, and it would be truly impossible to give an individual name to each
one.

Just imagine if every fork, every knife, every spoon, every plate, every
glass, every cup, every napkin, every table, every pencil, every pen, every
cell phone, every toothbrush, every animal, every plant, every cell in every
person’s or animal’s or plant’s body, every molecule and every atom in the
Universe, every electron and every proton and every neutron and every par-
ticle of every kind, had to have its own individual name, and you had to
know the name of each of those things before you can talk about it! Imagine
how difficult life would be if every time you want to ask a waiter for a spoon
you had to find out first the name of that particular spoon!

2.1.2 Variable noun phrases

So languages have developed a special device for naming things without hav-
ing to give each individual thing its own name. We do this by using vari-
ables, that is, noun phrases that can be temporarily designated to stand
for a particular thing but can then be re-used, as needed, to stand for a
different thing.

NOUN PHRASES

A noun phrase is a word or phrase that stands for or is the name
of something or somebody. For example: “he”, “she”, “the giraffe”,
“my uncle Jimmy’, “Mount Everest”, “the pencil”, “the Math 300
final exam”, “the table that I bought yesterday”, “the President of
the United States”, “Mary”, “New York City”, “the most expensive
restaurant in New York City”, “the owner of the most expensive
restaurant in New York City”, are all noun phrases.

Example 5. When I say “I am going to open the door and let you in”, the
noun phrases “I”, “the door”, and “you” stand, respectively, for the speaker,
a door, and the person that the speaker is talking to. But later, if somebody
else says the same thing to somebody else, the words “I”, “the door”, and
“you” will stand for two different people and a different door.

These noun phrases are variables: at each particular time they are used
they stand for some definite thing or person, called the referent, or the
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value of the variable. In each particular instance, it must be clear what the
value is. (For example, if you and I are on a beach, and there is no door in
sight, then when I say “I am going to open the door and let you in” you will
not understand what I am talking about23.). �

Variable noun phrases are re-usable: after I have used “the door”
to refer to one particular door, I may use “the door” again later to refer to
a different door.

Example 6. In a court of law, the noun phrase “the defendant” is used as a
variable. When a trial begins, someone announces in some way that, for the
duration of this trial, the words “the defendant” will refer to a certain specific
person. Then, during the trial, everybody refers to that person as “the
defendant”. When the trial is over, the variable “the defendant” becomes
free, that is, not attached to any particular person, and is free to be used to
refer to a new defendant when a new trial begins. �

Example 7. When you buy a house, the contract will probably contain a
clause at the beginning declaring the words “the buyer” to stand for you
for that particular contract. This means that the phrase “the buyer” is a
variable, whose value is you for this contract. Later, for a new house sale,
where the buyer is a different person, a new contract will be signed, in which
the phrase “the buyer” has a totally different value. So the value of the
phrase “the buyer” is fixed only within a specific contract, and changes when
you go to another contract. �

2.1.3 Declaring the value of a variable

When we communicate our thoughts by speaking or writing, we use variable
noun phrases all the time. But in order to be understood we also have to
communicate to the reader or listener what each variable stands for each
time we use it. That is, we have to declare the values of the variables we
use. How is that done?

In English, values of variables are declared in dozens of different ways.
For example,

23Unless my statement is part of some larger context that makes the value of the noun
phrase “the door” clear. For example, I could be telling you that later, when we get home,
I will open the door and let you in. In that context, the value of “the door” is clear.
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• Often, we first mention a person by his or her name, and then when
we use the pronouns “he”, “him”, “his”, “she”, “her”, it is understood
that the pronoun stands for that person. For example, suppose I write

George Washington was the first president of the United
States, and he served as president for two terms. He
was succeeded by John Adams, who served only one
term. When Adams ran for reelection to a second term,
he was the object of malicious attacks by his opponents,
and eventually lost the election to Thomas Jefferson.

In this text, the pronoun “he” appears three times. The first two times,
it clearly refers to George Washington, but the third time it refers to
John Adams. The mention of John Adams undoes the declaration that
“he” stands for George Washington, and assigns the new value “John
Adams” to the pronoun.

• The pronoun “I” is understood to stand for whoever is speaking or
writing.

• The pronoun “you” is understood to stand for whoever the speakers or
writers are addressing themselves to.

• Values of variables are often declared by pointing. For example, if I say
“please give me that book”, and I point to a book, then that book is
the value of the variable “the book”.

• Sometimes, the value of a variable is clearly determined by the fact
that there is only one thing within sight that the variable can stand
for. For example, if I say “please give me the book”, and there is only
one book within sight, then that book is the value.

• Often, the value of a variable is announced explicitly, as in the examples
we gave above of the variable “the defendant” in a trial, and “the buyer”
in a contract.

2.1.4 Using variables to name things in mathematical language

In mathematical language, it is customary to use letters as variables. The
most commonly used letters are
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• lower case letters such as x, y, r, p, q, a, b, atc.,

• capital letters such as X, Y , P , Q, A, B, etc.,

• lower case Greek letters (α, β, ϕ, ψ, σ, etc.),

• capital Greek letters24 (Φ, Ψ, Σ, etc.).

But it is perfectly possible to use as variables other symbols such as

• longer strings such as “abb” or “the number I have been talking about”,

• other symbols, such as ⋄, or ♣.

Actually, you can use as a variable any symbol or string of symbols
you want (except only for symbols such as =, <, ≤, >, ≥, +, ×, →, ⇒,
∧, ∨, ⇔, etc., that already stand for something else), provided that you
declare its value (i.e. tell the reader clearly what the symbol or string of
symbols stands for).

Remark 3. The symbols π and e stand for the well known real numbers
3.141592653589793238 . . . and 2.718281828459045235 . . ., respectively. But
even those symbols can be (and sometimes are) used as variables with other
values, provided that the reader is told clearly what these symbols stand
for25. �

2.1.5 Free (i.e. open) vs. bound (i.e. closed) variables

A free variable (or “open variable”) in a text is a letter (or string of symbols)
that is “unattached”, in the sense that it has not been assigned a value, and
is therefore free to be assigned any value we want.

A bound variable (or “closed variable”) is a variable that has been as-
signed a value.

For instance, suppose a student starts a proof by writing:

24Some capital Greek letters are not used, because they are identical to their Latin
counterparts. For example, A (capital alpha) and B (capital beta) are identical to the
Latin A and B.

25For example: the symbol π is sometimes used to stand for a permutation; the expres-
sion πk(S) stands for the k-th homotopy group of a space S; the letter e is sometimes used
for the charge of an electron.
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(*)
x2 = 1 + x .

or

(**) I am going to prove that x2 = 1 + x .

In these texts, the letter x is a free variable. The formula says that “x-squared
is equal to x+1”, but it does not tell us who x is. So we have no way to know
whether the formula is true or false. Therefore texts such as (*) or
(**) are unacceptable, because they are meaningless.

On the other hand, suppose a student writes

(***)
Let x = 1+

√
5

2
.

Then
x2 = 1 + x .

In this text, the phrase “let x = 1+
√
5

2
” effectively declares the vari-

able x to have the value 1+
√
5

2
.

So, after this value declaration, “x” stands for the number 1+
√
5

2
.

Then the meaning of (***) is perfectly clear, so (***) is acceptable,
because in it the variable x is used correctly: before it is used, a
value for it is declared.

And then the meaning of (***) is perfectly clear: (***) is just a round-
about way to say that

(1 +
√
5

2

)2

= 1 +
1 +

√
5

2
.

Once this particular use of the variable x is over, you could, if you want
to, use the same letter to represent some other number or object of any kind.
But in that case it would have to be very clear that the old declaration that
x = 1+

√
5

2
no longer applies.

You could do this, for example, by saying something like

(****)
Let x = 1+

√
5

2
. Then x2 = 1 + x.

Now suppose, instead, that x = 1−
√
5

2
. Then it is also true

that x2 = 1 + x.

In (****), the word “now” serves the purpose of telling the reader that “we
are starting all over again, and the old declared value of x no longer applies.”
(And the word “instead”, which is unnecessary, strictly speaking, reinforces
that.)
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2.1.6 Arbitrary things

There is another way to assign a value to a variable: we can declare the value
to be an arbitrary object of a certain kind.

ARBITRARY THINGS

An arbitrary thing of a certain kind is a fixed thing about which we
know nothing, except that it is of that kind. For example, an “arbitrary
integer” is an integer about which you know nothing other than that it
is an integer.
The way you should think about “arbitrary things ” is as follows.

• Imagine that you are playing a game against somebody (a friend,
or a computer, or an alien from another planet) that we will call
the CAT (“creator of arbitrary things”).

• The CAT’s job is as follows: every time you say or write “let a be
an arbitrary thing of such and such kind,” the CAT picks one such
thing, writes down what that thing is on a piece of paper, puts the
paper in an envelope, and seals the envelope.

So, for example, if you say “let a be an arbitrary natural number”
then the CAT will pick a natural number and write down what it
is on a piece of paper that will go inside the envelope.

• Later. after you have finished talking or writing, you or the CAT
will open the envelope, and you will know who a really was.

• At that point,

– if what you said about a turns out to be true, then you win,
and the CAT loses.

– if what you said about a is not true, then the CAT wins, and
you lose.

The key fact is this: In order to win, you have to be sure that
everything you say about a is true of all the things of the given
kind, because if there is just one thing for which what you said is not
true, then a could turn out to be that thing, and then you will have been
proved wrong, and will lose.
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Example 8. Suppose you say:

Let n be an arbitrary integer.

What can you say after that, being sure that it is true?

Certainly, you cannot say that n = 2, because n could be 1, or −7, or 25.

And you cannot say that n is even, because n could be odd.

But here are a few things you can say:

• n = n.

• |n| ≥ 0.

• n is either a natural number, or the negative of a natural number, or
zero.

• n + n2 is even. (Reason: n is either even or odd. If n is even, then
n2 is also even, so the sum n + n2 is even. If n is odd, then n2 is also
odd, and the sum of two odd integers is even, so n+ n2 is even. So, no
matter who n is, whether it is even, or odd, positive or negative, yuuo
can be sure that n+ n2 is even.)

• n2 ≥ 0. (Reason: the square of every real number, and in particular of
every integer, is ≥ 0.)

• If n is even then n2 is divisible by 4. (This sentence is true for every
natural number n. Indeed, the sentence is an implication: n is even=⇒
n2 is divisible by 4. The integer n could be even or odd, and you have no
control over that, because the CAT chooses n, and the CAT can choose
n any way he or she wamts to. But: if n is odd, then the implication
“n is even=⇒ n2 is divisible by 4” is true, because the premise “n is
even” is false; and if n even then we may pick an integer k such that
n = 2k, and then n2 = 4k2, so n2 is divisible; by 4, so the conclusion
“‘n2 is divisible by 4” is true. So the sentence is true for every n.)

• n(n+ 1)(n+ 2) is divisible by 6.

• If n > 4 then n2 > n+11. (Reason: as we will see later, an implication
“If A then B” is true if A is false or if B is true. Using this: if n ≤ 4
then the implication “if n > 4 then n2 > n + 11” is true because
“‘n > 4” is false. And if n > 4 then the implication “if n > 4 then
n2 > n+ 11” is true because n2 > n+ 11’ is true.)

On the other hand, you cannot say “n2 > 0”, because if you say that then
the CAT will pick n to be 0, and you lose. �
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Example 9. Suppose you say:

Let m, n be arbitrary natural numbers.

What can you say after that, being sure that it is true?

Certainly, you cannot say that m = n, because m and n could be different.

And you cannot say that m 6= n, because m and n could be equal.

And you cannot say that m > n, because m could be smaller than n.

But here are a few things you can say:

• m+ n ≥ 2. (Reason: m ≥ 1 and n ≥ 1, so m+ n ≥ 2.)

• m.n is a natural number.

• (m+ n)2 = m2 + 2m+ n2.

• (m+ n)3 = m3 + 3m2n+ 3mn2 + n3.

• m2 − n2 = (m− n)(m+ n).

• n+ n2 and m+m2 are even.

• Either m > n or m = n or m < n. �

2.1.7 Universal quantifiers and arbitrary things

Suppose you want to make sure (that is, prove) that something is true for
all the members of some set S. For example, you may want to make sure
that every student in a class knows that there is an exam next Tuesday.

You could do this in two ways:

1. You can use the exhaustive search method: chack, one by one, all
the memers of S, and verify that they all know about the exam.

2. You can use general reasoning: you try to come up with an ar-
gument that shows that every student knows about the exam. (For
example: maybe you have sent an e-mail to a mailing list of all the
students, telling them about the exam. And yyou are sure that all the
students get the messages to this mailing list, and that they all read
them. Then you can be sure that they all know about the exam.)
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If the set S is very large then it may be very difficult to use the exhaus-
tive search method. And if the set is infinite then using exhaustive search
is impossible. And this is the situation we encounter most of the time in
Mathematics: the sets S about we want to make sure that statements of the
form “P (x) is true for every member x of S” are usually infinite, or finite but
very large. So the only way to prove that something is true for all members
of some set S is to use reasoning:

This is why, in order to prove universal sentences (∀x ∈ S)P (x), we use
the following method:

• we imagine that we have an arbitrary member x of S,

• we reason about x, prove facts about x,

• and, maybe, eventually, we prove that P (x), the fact about x that we
wanted to make sure is true, is indeed true.

If we can do that for an arbitrary member of S, then we have established
that P (x) is true for every x ∈ S, that is, that (∀x ∈ S)P (x). (“(∀x ∈
S)P (x)” is a “universally quantified sentence”. We will study such sentences
in great detail in Section 4, on page 58.)

The method for proving universally quantified sentences (∀x ∈ S)P (x)
by proving that P (x) is true for an arbitrary member x of S is the Rule for

proving universal sentences, that we will call Rule ∀prove , This rule will

be discussed in section 4.5, on page 71 below.

Problem 10. Indicate whether each of the following statements about n is
true for an arbitrary integer n. If the answer is “yes”, prove it. If the answer
is “no”, prove it by giving a counterxample, that is, a particular value of n
for which the statement is false.

1. n is even.

2. n is even or n is odd.

3. n is even and n is odd.

4. n is even or n+ 1 is even.

5. n(n+ 1) is even.
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6. n(n+ 1)(n+ 2) is divisible by 3.

7. n(n+ 1)(n+ 2) is divisible by 6.

8. n2 > 0.

9. n2 ≥ 0.

10. n(n+ 1) ≥ 0.

11. (∀m ∈ Z)(n < m =⇒ n2 < m2).

12. (∀m ∈ Z)(n > m =⇒ n2 > m2).

13. (∀m ∈ Z)(n = m =⇒ n2 = m2).

14. (∀m ∈ Z)(n2 = m2 =⇒ n = m).
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3 Dealing with equality

Throughout these notes, the symbols “=” and “ 6=” will be used.

• The symbol “=” is read as “is equal to”.

• The symbol “ 6=” is read as “is not equal to”.

The meaning of “=” in mathematics is quite simple: if a and b are any two
things, then “a = b” (read as “a is equal to b”, or “a equals b”) means that
a and b are the same thing.

Example 10.

• The sentence “3 = 2 + 1” is read as “three is equal to two plus one”.

• The sentence “3 = 2 + 2” is read as “three is equal to two plus two”.

• The sentence “3 6= 2 + 1” is read as “three is not equal to two plus
one”.

• The sentence “3 6= 2 + 2” is read as “three is not equal to two plus
two”.

• The sentences “3 = 2 + 1” and “3 6= 2 + 2” are true.

• The sentences “3 = 2 + 2” and “3 6= 2 + 1” are false. �

3.1 The substitution rule (Rule SEE, a.k.a. Rule =use)
and the axiom (∀x)x = x

There are two basic facts you need to know about equality.
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THE TWO BASIC FACTS ABOUT EQUALITY

First, there is the substitution rule, which tells you that in a proof you
can always “substitute equals for equals”:

RULE SEE (substitution of equals for equals): If in a step of a
proof you have an equality s = t or t = s, and in another step you have
a sentence P , then you can write as a step any statement obtained by
substituting t for s in one or several of the occurrences of s in P .

The second thing you need to know is the following axiom:

EQUALITY AXIOM (The “everything is equal to itself” axiom):

x = x for every x .

Example 11. In the sentence “2 + 2 = 4”, the symbol “2” occurs twice.
Suppose you have “2 + 2 = 4” as one of the steps in a proof. And suppose
that in another step you have “1 + 1 = 2”. Then you can substitute “1 + 1”
for “2” in the first occurrence of “2” in the sentence “2+2 = 4”, thus getting
“(1 + 1) + 2 = 4”. Or you can substitute “1 + 1” for “2” in the second
occurrence of “2” in “2+ 2 = 4”, thus getting “2+ (1+ 1) = 4”. Or you can
substitute “1 + 1” for “2” in both occurrences of “2” in “2 + 2 = 4”, thus
getting “(1+1)+(1+1) = 4”. Or you can substitute “1+1” for “2” in none
of occurrences, in which case you get back “2 + 2 = 4”. �

Example 12. The following are true thanks to the equality axiom:

1. 3 = 3,

2. (345 + 1, 031)× 27 = (345 + 1, 031)× 27,

3. Jupiter=Jupiter26

4. π = π.

5. My uncle Billy=My uncle Billy. �

26But you have to be very careful here! There are at least three different things
named “Jupiter”: a planet, a Roman god, and a Mozart symphony. When you write
“Jupiter=Jupiter”, you have to make sure that the two “Jupiter” in the equation have
the same meaning. It would be false if you said that the planet Jupiter is the same as the
Roman god Jupiter!
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3.2 Equality is reflexive, symmetric, and transitive

Most textbooks will tell you that equality has the following three properties:

I. Equality is a reflexive relation. That is:

for every x , x = x . (3.10)

II. Equality is a symmetric relation. That is:

for every x , y , if x = y then y = x . (3.11)

III. Equality is a transitive relation. That is:

for every x , y , z , if x = y and y = z then x = z (3.12)

And, in addition, they will also tell you that the following important property
holds:

IV. If two things are equal to a third thing then they are equal
to each other. That is,

for every x , y , z , if x = z and y = z then x = y . (3.13)

We could have put these properties as axioms, but we are not doing that
because all these facts can easily be proved from our two basic facts about
equality.

Theorem 6. Facts I, II, III, and IV above follow from the two basic facts
about equality described in the box on page 55 above.

Proof. Fact I is exactly our Equality Axiom, so you don’t need to prove it.
And now I am doing to do the proof of Fact II for you. So what you

have to do is prove III and IV.

Proof of Fact II.

Let x, y be arbitrary.

Assume x = y.

We want to prove that y = x.
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By the Equality Axiom, x = x.

Since we have “x = y”, Rule SEE tells us that, in the sentence
“x = x”, we can substitute “y” for any of the two occurrences of
x in “x = x”. So we choose to substitute “y” for the first of the
two xs that occur in “x = x”.

This yields y = x .

Since we have proved that y = x assuming that x = y, we have shown
that

if x = y then y = x . (3.14)

(This is because of Rule =⇒prove, discussed later in these notes in sec-
tion 6.7.3 on page 138.)

Since we have proved (3.14) for arbitrary x, y, it follows that

For all x, y, if x = y then y = x . (3.15)

(This is because of Rule ∀prove, discussed later in these notes in section 4.5
on page 71.) This completes our proof. Q.E.D.

Proof of Facts III and IV. YOU DO THEM.

Problem 11. Write proofs of Fact III and Fact IV, following the model of
the proof given here for Fact II. �
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4 Universal sentences and how to prove and

use them

A universal sentence is a sentence that says that something is true for
every object x of a certain kind.

For example, the sentence

every natural number is either even or odd (4.16)

says that every natural number has the property of being even or odd.
So this is a universal sentence.
Other examples of universal sentences are:

• Every natural number is an integer.

• Every real number has a square root27.

• Every real number has a cube root28.

• If n is any natural number then n is even or odd. �

• Every cow has four legs.

• Every cow has nine legs29.

• All humans are thinking beings.

• All giraffes have a long neck.

• Every giraffe has a long neck.

• Every real number is positive30.

• Every natural number can be written as the sum of three squares of
integers31.

27False!
28True!
29Sure, this one is false. But it is a universal sentence.
30This one is false.
31False again!
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• Every natural number can be written as the sum of four squares of
integers32.

• Every integer is even33.

• If a, b, c are integers, then if a divides b and c it follows that a divides
b+ c.

Universal sentences can always be rephrased is terms of “arbitrary things”.
For example, sentence (4.16) says

If n is an arbitrary natural number then n is either even or odd . (4.17)

We can say this in a more formal (and shorter) way by using the uni-
versal quantifier symbol:

∀
(This symbol is an inverted “A”. The symbol is chosen to remind us that
“∀” stand for “for all”.)

Precisely, the symbol is used as follows:

• Using the universal quantifier symbol, we form restricted universal
quantifiers, that is, expressions of the form

(∀x ∈ S) ,
where

– x is a variable,

– S is the name of a set.

• It is also possible to form unrestricted universal quantifiers, that
is, expressions of the form

(∀x) ,
32This one, believe it or not, is true. But it is very hard to prove, and precisely for that

reason, if you are interested in mathematics, I recommend that you read the proof. It is
truly beautiful. The result is called “Lagrange’s four squares theorem”.

33Also false.
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where x is a variable,

• A restricted or unrestricted universal quantifier can be attached to a
sentence by writing it before the sentence. This operation is called uni-
versal quantification, and the result is a universally quantified
sentence.

• So,

If S is a set, and P (x) is a statement involving
the variable x, then

(∀x ∈ S)P (x)

is a universally quantified sentence, obtained
by universally quantifying the sentence P (x).

If P (x) is a statement involving the variable x,
then

(∀x)P (x)
is a universally quantified sentence, obtained
by universally quantifying the sentence P (x).

4.1 How to read universal sentences

4.1.1 Sentences with restricted universal quantifiers

The universal sentence
(∀x ∈ S)P (x)

can be read as follows:

• for every member x of S, P (x) is true34,

or as

• for every member x of S, P (x),

34See Remark 4 below.
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or as

• for all members x of S, P (x) is true,

or as

• for all members x of S, P (x),

or as

• if x is an arbitrary member of S then P (x) is true,

or as

• if x is an arbitrary member of S then P (x) .

4.1.2 Sentences with restricted universal quantifiers

The universal sentence
(∀x)P (x)

can be read as follows:

• for every x, P (x) is true35,

or as

• for every x, P (x),

or as

• for all x, P (x) is true,

or as

• for all x, P (x),

or as

• if x is arbitrary then P (x) is true,

or as

• if x is arbitrary then P (x) .

35See Remark 4 below.
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4.1.3 A recommendation

Of all these ways of reading “(∀x ∈ S)P (x)” and “(∀x)P (x)”, I strongly
recommend the ones involving “arbitrary” x, because once you get
used to reading universal statements that way it becomes very clear how to
go about proving them.

Remark 4. If A is any sentence, then saying “A is true” is just another way
of asserting A. For example, saying that

“all animals are made of cells′′ is true (4.18)

is just another way of saying

all animals are made of cells . (4.19)

Similarly, saying
P (n) is true (4.20)

is just another way of saying
P (n) . (4.21)

This is why the sentence “(∀n ∈ Z)P (n)” can be read either as “if n is an
arbitrary integer then P (n) is true”, or as “if n is an arbitrary integer then
P (n)”. �

4.2 Using the universal quantifier symbol to write uni-
versal statements

4.2.1 What is formal language?

As we explained before, formal language is a language in which you use
only formulas, and no words.

For example, you know from your early childhood how to take the En-
glish sentence “two plus two equals four” and say the same thing in formal
language. i.e., with a formula. You just write

2 + 2 = 4 . (4.22)

We can say more complicated things in formal language by introducing more
symbols. For example, here is the definition if “divisible” that we saw earlier:
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DEFINITION Let a, b be integers. We say that a is divisible by b (or that
b is a factor of a) if there exists an integer k such that a = bk. �

Then, we can agree to introduce the new symbol “|” to stand for “is a

factor of”, and write

b|a (4.23)
instead of “b is a factor or a”, or “a is divisible by b”.

In particular, we can now say “x is even” in formal language, as follows:
“2|x”. So, for example the assertion that “the sum of two even integers is
even” becomes, in formal language:

(∀a ∈ Z)(∀b ∈ Z)
(

(2|a ∧ 2|b) =⇒ 2|a+ b
)

. (4.24)

Can you say more complicated things in formal language? For example,
can you rewrite the English sentence

(#)
If we take any two real numbers and compute the
square of their sum, then you get the same result
as when you add the squares of the two numbers
plus twice their product.

in formal language?
You know since high school that you can take a big part of (#) and rewrite

it in formal language. The trick is to give names to the two integers that
you want to talk about. Then you can write

(#1)
If we take any two real numbers and call them a
and b, then

(a+ b)2 = a2 + b2 + 2ab ,

or

(#2)
If a, b are arbitrary real numbers, then

(a+ b)2 = a2 + b2 + 2ab .



Math 300, Fall 2018 64

Naturally, you could use any names you want, For example, you could equally
well have written

(#3)
If x, y are arbitrary real numbers, then

(x+ y)2 = x2 + y2 + 2xy .

or

(#4)
If we take any two real numbers and call them x
and y, then

(x+ y)2 = x2 + y2 + 2xy .

Sentences (#1), (#2), (#3), (#4) are statements in semiformal language:
they are a mixture of formal language and ordinary English.

These statements are universal sentences. And now you have learned how
to formalize36 universal statements. So you can write

(#5) (∀a ∈ IR)(∀b ∈ IR)(a+ b)2 = a2 + b2 + 2ab .

or

(#6) (∀x ∈ IR)(∀y ∈ IR)(x+ y)2 = x2 + y2 + 2xy .

Statements (#5) and (#6) are formal sentences, that is, formulas with
no words.

4.2.2 The road to full formalization.

What we have done is get started moving towards full formalization.
You started doing this in your childhood, when you learned how to for-

malize “two plus two equals four” by writing “2 + 2 = 4”.
And now you have learned how to formalize more complicated sentences,

Using the universal quantifier symbol, you are now able to say many more
things in formal language.

36that is, how to say in formal language
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Example 13. Suppose you wanted to say “every natural number is positive”.
You can write

(∀n ∈ IN)n > 0 . (4.25)

This is a formula, that is, a sentence in formal language. �

Example 14. Although we do not know yet how to write something like

(#7)
If we have any two integers, when say that the first
one is divisible by the second one what we mean is
that there exists an integer that multiplied by the
second one results in the first one.

in full formal language, we are able, using what we know so far, to go a long
way, and rewrite (#7) in semiformal language, with very few words, i.e.,
getting very close to a fully formal sentence. We can write

(#8) (∀a ∈ Z)(∀b ∈ Z)(“a|b” means “there exists k
such that k ∈ Z and b = ak.”)

�

Example 15. Let us say “If a, b, c are integers, then if a divides b and c it
follows that a divides b+ c” in semiformal language.

We can say:

(∀a ∈ Z)(∀b ∈ Z)(∀c ∈ Z)
(

if a|b and a|c then a|b+ c
)

, (4.26)

which is, again, a sentence in semiformal language. �

Later, when we learn how to say “means”, “there exists”, “if . . . then” and
“and”, we will be able to say (#8) and (4.26) in fully formal language, as
follows:

• We can translate (#8) into fully formal language as

(∀a ∈ Z)(∀b ∈ Z)(a|b⇐⇒ (∃k ∈ Z)b = ak) . (4.27)

• We can translate (4.26) into fully formal language as

(∀a ∈ Z)(∀b ∈ Z)(∀c ∈ Z)
(

(a|b ∧ a|c) =⇒ a|b+ c
)

, (4.28)
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4.3 Open and closed variables and quantified sentences

Let us recall that

A free variable is a letter (or string of symbols) that is
“unattached”, in the sense that it has no particular value, and
is free to be assigned any value we want.
A bound variable is a variable that has been assigned a specific
value, by means of a value declaration.
We can turn a free variable into a temporary constant by declar-
ing its value.

Let me add a couple of points to that:

• Free variables are also called open variables.

• Bound variables are also called closed variables.

(They are called “bound” variables because they are “bound”, attached
to a value, by contrast with free variables, that are free to be assigned
any value because they do not have a value already assigned to them.
And they are called “closed” because they are not open to be assigned
a value, since they already have one.)

• A value declaration is valid until it expires. When the value
declaration expires, the variable becomes free again, and you can assign
a new value to it.

Example 16. Here is an example of declaring a value for a variable, and of
making that declaration expire. You could write:

1. Let x = 1+
√
5

2
.

2. Then x2 = 1 + x.

3. Now suppose, instead, that x = 1−
√
5

2
.

4. Then it is also true that x2 = 1 + x.

Here, step 1 assigns the value 1+
√
5

2
to the variable, so this variable, which

until then was open, is now attached to the value 1+
√
5

2
, so x is bound, no

longer free.
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But then, in step 3, we are ssigning a new value to x, which means that
the previous value declaration has expired. The fact that the previous value
declaration has expired is signaled by the word “now”’, and reinforced by
the word “instead”.

Notice that if you had written

1. Let x = 1+
√
5

2
.

2. Then x2 = 1 + x.

3. Let x = 1−
√
5

2
.

4. Then it is also true that x2 = 1 + x.

this would have been confusing for many readers, because they would have
wondered: “wasn’t x equal to 1+

√
5

2
? How come suddenly it seems to have a

different value?”
The words “now” and “instead” make it crystal clear to the reader that

the first value declaration has just expired and we are free to assign to x a
new value if we so desire. �

4.4 A general principle: two rules for each symbol

Every time we introduce a new symbol, we need two rules telling us how to
work with it:

• We need a rule that tells us how to use statements involving that
symbol.

and

• We need a rule that tells us how to prove statements involving that
symbol.

Example 17. Let us look at the new symbol “|” (“divides”) that we intro-
duced in Part I of these notes. What is the “use” rule’? What is the “prove”
rule?

The “use” rule is:
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If you get to a point in a proof where you have a statement

a|b ,

then you can go from this to

We may pick an integer k such that b = ak .

And the “prove” rule is:

If you get to a point in a proof where you have integers a, b, c
and you know that

b = ak ,

then you can go from this to

a|b .

These rules are just another way of stating the definition of “divides”. �

4.4.1 Naming sentences

Sentences are also things that we can talk about, so we can give them names.
One common way mathematicians use to name sentences is to give a

sentence a capital letter name, such as A, or B, or P , or Q, or S.
So we could talk about the sentence “x eats grass” by giving it a name,

that is, by picking a capital letter and declaring its value to be this sentence.
We could do this by writing

Let P be the sentence “x eats grass”.

However, there is a much more convenient way to do this: If a sentence
has an open variable, we include this open variable in the name
of the sentence, thus signaling to the reader that the sentence
contains that open variable.

So, for example, a good name for the sentence “x eats grass” could be
P (x) (or A(x), or S(x), etc.). We could declare the value of the variable
P (x) by saying
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(*) Let P (x) be the sentence “x eats grass”.

An important convention about names of sentences is this: suppose we
want to talk about the sentence obtained from P (x) by substituting (i.e.,
“plugging in”) the name of a particular thing for the open variable x. If we
already have a name for that thing, say “a”, then the name of the sentence
arising from the substitution is P (a).

So, for example, after we make the value declaration (*), then “P (Suzy)”
is the name of the sentence “Suzy eats grass”.

What if you have a sentence with, say, two or more open variables? You
do the same thing: if, for example, you want to give a name to the sentence
“x told y that z does not like w”, you can call that sentence P (x, y, z, w).
You could make the value declaration

Let P (x, y, z, w) be the sentence “x told y that z does not like
w”.”

And then,

• If you want want to talk about the sentence ”Alice told Jim that
Bill does not like Mary”, then that sentence would have the name
P (Alice, Jim,Bill,Mary).

• If you want want to talk about the sentence ”Alice told Jim that Bill
does not like her” (that is, does not like Alice), that sentence would be
called P (Alice, Jim,Bill,Alice).

• If you want want to talk about the sentence ”Alice told Jim that Bill
does not like him” (that is, does not like Jim), that sentence would be
called P (Alice, Jim,Bill, Jim).

• And, if, for some reason, you want to talk about the sentence with two
open variables ”x told y that Bill does not like Mary”, that sentence
would be P (x, y, Jim,Mary).

4.4.2 Universal sentences bound variables but at the end let them
free

If P (x) is a sentence with the open variable x, and C is a set, then the
sentence

(∀x ∈ C)P (x)

should be read as
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Let x be an arbitrary member of C; then P (x) is
true; and now the value declaration of “x” expires,
and x is a free variable again.

Why do we want to do this?
The reason is that the value declaration (“Let x be an arbitrary member

of C”) was made for the sole purpose of explaining which condition this
arbitrary member of C is supposed to satisfy. Once this has been explained,
there is no need to keep the variable x bound forever. It is better to let it be
free again, so that the next time we need a variable for something, we can
use x.

So, for example, when I explain to you that

(F) If x is an arbitrary integer then (x+ 1)2 = x2 + 2x+ 1 ,

the important thing that I want you to remember is that “if you take an
integer, add one to it, and square the result, then what you get is the sum
of the square of your integer, plus two times it, plus one”. There is no need
for you to remember, in addition, the name that I used for that integer for
the purpose of explaining Fact (F) to you. You should not have to waste any
time or effort trying to remember “was that fact that was explained to me
about x? Or was it about y? Or was it about n?” There is not need for
you to remember that, because it does not matter which variable was
used. And, more importantly: Fact (F) is not really about a specific
integer called x. It is a fact about an arbitrary integer, and it
does not matter whether you call it x, or y, or z, or n, or α, or β,
or ⋄, or even “Suzy” or “my uncle Jimmy”. The letter x is used
as a device within the conversation in which you explain Fact (F)
to me, and once this conversation is over we can forget about x.

Example 18. Suppose you have written, in a proof:

(∀n ∈ Z)n(n+ 1) is even . (4.29)

Can you write, in the next step of your proof:

Since n(n+ 1) = n+ n2, it follows that n+ n2 is even. ?

The answer is no. Why? Because after the end of the sentence (4.29), n is
a free variable again, so it does not have a value, so when you use “n” in the
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next step, nobody knows what you are talking about, so what you wrote is
meaningless, so it’s not acceptable.

Suppose you want to go from (4.29) to

(∀n ∈ Z)n+ n2 is even . (4.30)

How can you do that? The answer is: you use the rules for using and proving
universal sentences. But you do it correctly. And for that you need to
read the next section. �

4.5 Proving and using universal sentences (Rules ∀prove
and ∀use)

Now that we know that for every new symbol we introduce we need a “use”
rule and a “prove” rule, it is natural to ask: What are the “use” rule and the
“prove” rule for the universal quantifier symbol ∀ ?”

Both are very simple, very natural rules.
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Here is the “use” rule:

The rule for using universal sentences
(Rule ∀use, also known as

the “universal specialization rule”)

• If you have proved

(∀x)P (x) ,
and you have an object called a, then you can go
to P (a).

• If you have proved

(∀x ∈ S)P (x) ,

and you have an object called a for which you know
that a ∈ S, then you can go to P (a).

The reason Rule ∀use is called called the universal specialization rule, is
that the rule says that if a statement is true in general (that is, for all things
that belong to some set S), then it is true in each special case (that is, for a
particular thing that belongs to S).

Example 19. If you know that (∀x)x = x, then you can conclude from that,
using Rule ∀use, that

3 = 3 ,

and that
5 + 3 = 5 + 3 .

Example 20. Suppose you know that

(&) All cows eat grass.

and that
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(&&) Suzy is a cow.

Then, from (&) amd (&&) you can conclude, thanks to the specialization
rule, that

(&&) Suzy eats grass.

In formal language. you would say this as follows: Let P (x) be the sentence
“x eats grass”, and let C be the set of all cows. Then P (Suzy) is the sentence
“Suzy eats grass”. And (&) says

(&’) (∀x ∈ C)P (x) ,

whereas (&&) says

(&&’) Suzy ∈ C.

So we are precisely in the situation where we can apply the rule for using
universal sentences, and conclude that P (Suzy), that is that Suzy eats grass.
�.

And here is the “prove” rule:
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The rule for proving universal sentences

• To prove (∀x)P (x), you start by writing

Let x be arbitrary,

and then prove P (x)

If you manage to do that, then you are allowed to
write

(∀x)P (x)
in the next step of your proof.

• To prove (∀x ∈ S)P (x), you start by writing

Let x be an arbitrary member of S,

and then prove P (x)

If you manage to do that, then you are allowed to
write

(∀x ∈ S)P (x)

in the next step of your proof.

This rule is also called the generalization rule, because it says that if you
can prove a statement for an arbitrary object that belongs to a set S then
you can “generalize”, i.e., conclude that the statement is true in general, for
all members of S.

4.6 An example: Proof of the inequality x+ 1
x
≥ 2

Let us illustrate the use of the proof rules for universal quantifiers with an
example. We will first present a version of the proof with lots of comments.
The comments are explanations to help the reader follow what is going on,
but are not really necessary for the proof. We will then present another,
much shorter version, in which the comments are omitted.
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Theorem 7. If x is a positive37 real number, then x + 1
x
≥ 2. (In formal

language: (∀x ∈ IR)(x > 0 =⇒ x+ 1
x
≥ 2).)

PROOF, WITH LOTS OF COMMENTS. (The comments are in Ital-
ics.)
The assertion we want to prove is a universal sentence, so we are going to use
Rule ∀prove. For that purpose, we imagine we have in our hands an arbitrary
real number called x, and we work with that number.

Let x be an arbitrary real number.

Now we want to prove that x > 0 =⇒ x+ 1
x
≥ 2. This is an implication.

So we are going to apply Rule =⇒prove. For that purpose, we assume
that the premise of our implication is true, i.e., that x > 0. The reason
for this is as follows: x is an arbitrary real number, so x could be any
ral number, and in particular x could be positive, negative, or zero. If
x is not positive, then the implication is true, because an implication
whose premise is false is true. So all we need is to look at the cases
when x > 0, and prove in that case that x+ 1

x
≥ 2.

Assume that x > 0.

We want to prove that

x+
1

x
≥ 2 . (4.31)

We will prove this by contradiction.

Assume that (4.31) is not true.

Then

x+
1

x
< 2 . (4.32)

We now use a fact from real number arithmetic, namely, that
if we multiply both sides of a true inequality by a positive real
number then the result is a true inequality, that is:

(∀a ∈ IR)(∀b ∈ IR)(∀c ∈ IR)
(

(a < b ∧ c > 0) =⇒ ac < bc
)

.

(4.33)

37The meaning of the word “positive” was discussed in Lecture 1, in a subsection called
“positive, negative, nonnegative, and nonpositive numbers”. As explained there, “posi-
tive” means “> 0”.
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In our case. we can use Rule ∀use to plug in x + 1
x
for a, 2

for b, and x for c in (4.33), and get

(

x+
1

x
< 2 ∧ x > 0

)

=⇒
(

x+
1

x

)

x < 2x . (4.34)

Since x + 1
x
< 2 ∧ x > 0 is true (because we are assuming

that x + 1
x
< 2 and that x > 0), we can apply Rule =⇒use to

conclude that
(

x+ 1
x

)

x < 2x. But
(

x+ 1
x

)

x = x2 + 1, so we

have shown that x2 + 1 < 2x. Summarizing:

Since x > 0, we can multiply both sides of (4.32) by x, getting

x2 + 1 < 2x . (4.35)

Now we use another fact from real number arithmetic, namely,
that if we add a real number to both sides of a true inequality,
then the result is a true inequality, that is:

(∀a ∈ IR)(∀b ∈ IR)(∀c ∈ IR)(a < b =⇒ a+ c < b+ c) . (4.36)

In our case. we can use Rule ∀use to plug in x2 + 1 for a, 2x
for b, and −2x for c in (4.36), and get

x2 + 1− 2x < 2x− 2x, . (4.37)

Since 2x − 2x = 0, we can conclude that x2 + 1 − 2x < 0.
Summarizing:

We add −2x to both sides, and get

x2 + 1− 2x < 0 . (4.38)

But x2 + 1− 2x = (x− 1)2.

(This is easy to prove it. Try to do it.)

So
(x− 1)2 < 0 . (4.39)

Now we use a third fact from real number arithmetic, namely,
that the square of every real number is nonnegative, that is:

(∀u ∈ IR)u2 ≥ 0 . (4.40)
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We use Rule ∀use to plug in x− 1 for u, and get

(x− 1)2 ≥ 0 . (4.41)

Next, we use a fourth fact from real number arithmetic, namely,
that if a real number is nonnegative then it it is not negative38,
that is:

(∀u ∈ IR)(u ≥ 0 =⇒∼ u < 0) . (4.42)

It then follows from (4.41) that

∼ (x− 1)2 < 0 . (4.43)

From (4.39) and (4.43), we get

(x− 1)2 < 0 ∧
(

∼ (x− 1)2 < 0
)

. (4.44)

So we have proved a contradiction.

We have proved that a world in which the inequality x+ 1
x
> 2 is

not true is an impossible world. Hence

x+ 1
x
> 2.

We have proved that x + 1
x
> 2 assuming that x > 0. Hence Rule

=⇒prove allows us to conclude that

x > 0 =⇒ x+
1

x
≥ 2 . (4.45)

Finally, we have proved (4.45) for an arbitrary real number x. Hence

(∀x ∈ IR)(x > 0 =⇒ x+
1

x
≥ 2) . (4.46)

Q.E.D.

38Remember that: “positive” means “> 0”, “negative” means “< 0”, “nonnegative”
means “≥ 0”, and “nonpositive” means “≤ 0”.
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THE SAME PROOF, WITHOUT THE COMMENTS.

Let x be an arbitrary real number.

Assume that x > 0.

We want to prove that

x+
1

x
≥ 2 . (4.47)

Assume that (4.47) is not true.

Then

x+
1

x
< 2 . (4.48)

Since x > 0, we can multiply both sides of (4.48) by x, getting

x2 + 1 < 2x . (4.49)

We add −2x to both sides, and get

x2 + 1− 2x < 0 . (4.50)

But x2 + 1− 2x = (x− 1)2. So

(x− 1)2 < 0 . (4.51)

Now we use the fact that the square of every real number is
nonnegative, that is:

(∀u ∈ IR)u2 ≥ 0 . (4.52)

We use Rule ∀use to plug in x− 1 for u, and get

(x− 1)2 ≥ 0 . (4.53)

Then
∼ (x− 1)2 < 0 . (4.54)

From (4.51) and (4.54), we get

(x− 1)2 < 0 ∧
(

∼ (x− 1)2 < 0
)

. (4.55)
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So we have proved a contradiction.

Hence

x+ 1
x
> 2.

We have proved that x + 1
x
> 2 assuming that x > 0. Hence Rule

=⇒prove allows us to conclude that

x > 0 =⇒ x+
1

x
≥ 2 . (4.56)

Finally, we have proved (4.54) for an arbitrary real number x. Hence

(∀x ∈ IR)(x > 0 =⇒ x+
1

x
≥ 2) . (4.57)

Q.E.D.



Math 300, Fall 2018 80

THE SAME PROOF, IN A MUCH SHORTER VERSION.

Let x be an arbitrary real number.

Assume that x > 0. We want to prove that

x+
1

x
≥ 2 . (4.58)

Assume that (4.58) is not true. Then

x+
1

x
< 2 . (4.59)

Since x > 0, (4.59) impliues

x2 + 1 < 2x . (4.60)

Therefore
x2 + 1− 2x < 0 . (4.61)

But x2 + 1− 2x = (x− 1)2. So

(x− 1)2 < 0 . (4.62)

On the other hand.

(x− 1)2 ≥ 0 . (4.63)

Clearly, 4.62 and 4.63 lead to a contradiction.

Hence

x+ 1
x
> 2.

Therefore

(∀x ∈ IR)(x > 0 =⇒ x+
1

x
≥ 2) . (4.64)

Q.E.D.
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4.6.1 A few more examples of proofs involving universal sentences

Theorem 8. If a, b are real numbers, then

ab ≤ a2 + b2

2
.

(In formal language: (∀a ∈ IR)(∀b ∈ IR)ab ≤ a2+b2

2
.)

PROOF. YOU DO IT

Problem 12. Prove Theorem 8.

Problem 13. Explain what is wrong with the following proof of Theorem
8.

Take the inequality ab ≤ a2+b2

2
.

Multiplying both sides by 2, we get 2ab ≤ a2 + b2.
Subtracting 2ab from both sides, we get

0 ≤ a2 + b2 − 2ab .

But a2 + b2 − 2ab = (a− b)2. So we have 0 ≤ (a− b)2 , which is true.
So the inequality checks out. Q.E.D.

Theorem 9. If x, α, β are positive real numbers then

αx+
β

x
≥ 2
√

αβ .

(In formal language: (∀α ∈ IR)(∀β ∈ IR)(∀x ∈ IR)
(

(α > 0 ∧ β > 0 ∧ x >

0) =⇒ αx+ β

x
≥ 2

√
αβ
)

.)

I am going to give you two proofs. The first one follows the same pattern
as the proof of Theorem 7. The second one, much shorter, uses Theorem 7.

FIRST PROOF.

Let α, β, x be arbitrary positive real numbers39.

39In this one step I am conflating six real steps: let α be an arbitrary real number, let
β be an arbitrary real number, let x be an arbitrary real number, assume α > 0, assume
β > 0, assume x > 0.
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Let q = 2
√
αβ, so q2

4α
= β..

Assume ∼ αx+ β

x
≥ q.

Then αx+ β

x
< q.

Therefore αx2 + β < qx.

Hence αx2 − qx+ β < 0.

But

αx2 − qx+ β = αx2 − 2
√
αx

q

2
√
α
+ β

= αx2 − 2
√
αx

q

2
√
α
+
q2

4α
− q2

4α
+ β

=
(√

αx− q

2
√
α

)2

≥ 0 .

So we obtain a contradiction, and then we can conclude that αx+ β

x
≥ q,

i.e. that

αx+
β

x
≥ 2
√

αβ .

Q.E.D.

SECOND PROOF. Let us try to write αx+ β

x
as p

(

u+ 1
u

)

for some positive

u, and use the fact that u + 1
u
≥ 2. Let x = hu, where h and u are to be

determined later.
Then αx+ β

x
= αhu+ β

hu
. If we could make αh = β

h
, we would get

αx+
β

x
= αhu+

β

hu

= αhu+ αh
1

u

= αh
(

u+
1

u

)

,

as desired.

So we need to chose h such that αh = β

h
, that is, such that h =

√

β

α
.
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With this choice of h, we get

αx+
β

x
= αh

(

u+
1

u

)

≥ 2αh

= 2α

√

β

α

= 2
√

αβ .

Q.E.D.

4.6.2 *The inequality xn

n
− ax ≥ −n−1

n
a

n

n−1 : a proof using Calculus

Theorem 10. Let a and b be positive real numbers, and let n be a positive
integer. Then

ab ≤ 1

n

(

an + (n− 1)b
n

n−1

)

. (4.65)

Remark 5. For n = 2, inequality (4.65) says that

ab ≤ a2 + b2

2
,

which is Theorem 8.
So (4.65) is a generalization of Theorem 8. �

Proof of Theorem 10. We will use Calculus.

Let a, b be arbitrary positive real numbers.

Define a function f by letting

f(x) =
xn

n
− bx for x ∈ IR , x ≥ 0 .

We would like to find the value of x where f has its minimum value
of f for all positive x. That is, we would like to find a positive real
number c such that f(c) ≤ f(x) for all positive x.

For this purpose, we compute the derivative f ′ of f .
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We have
f ′(x) = xn−1 − b for every x ∈ IR .

Let c = b
1

n−1 . Then cn−1 = b, so f ′(c) = cn−1 − b = 0.

This means that c is a candidate for our minimum. That is, it is possible
that c is where f has its minimum value, in which case it would follow
that

f(x) ≥ f(c) for all x ∈ IR such that x > 0 . (4.66)

We now prove (4.66) rigorously

If 0 < x < c, then xn−1 < cn−1 = b, so xn−1 − b < 0, so f ′(x) < 0.

This means that the function f is decreasing for 0 < x < c. So f(x) ≥
f(c) for 0 < x < c.

If x > c, then xn−1 > cn−1 = b, so xn−1 − b > 0, so f ′(x) > 0.

This means that the function f is increasing for x > c. So f(x) ≥ f(c)
for x > c.

We have shown that f(x) ≥ f(c) when 0 < x < c and when x > c.
And clearly f(x) = f(c) when x = c. Hence (4.66) is true.

It follows from (4.66) that for every positive x ∈ IR we have f(x) ≥ f(c),
that is,

xn

n
− bx ≥ cn

n
− bc . (4.67)

Since (4.67) holds for every positive x, we can use it for x = a, thereby
obtaining

an

n
− ab ≥ cn

n
− bc . (4.68)
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Since c = b
1

n−1 and cn−1 = b, we have

cn

n
− bc =

b
n

n−1

n
− b× b

1

n−1

=
b

n

n−1

n
− b1+

1

n−1

=
b

n

n−1

n
− b

n

n−1

=
( 1

n
− 1
)

b
n

n−1

= −n− 1

n
b

n

n−1 .

In view of (4.68), we get

an

n
− ab ≥ −n− 1

n
b

n

n−1 , (4.69)

that is,
an

n
− ab+

n− 1

n
b

n

n−1 ≥ 0 , (4.70)

from which it follows that

ab ≤ an

n
+
n− 1

n
b

n

n−1 , (4.71)

that is,

ab ≤ 1

n

(

an + (n− 1)b
n

n−1

)

, (4.72)

which is exactly what we were trying to prove. Q.E.D.
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5 Existential sentences

5.1 Existential quantifiers

• The symbol

∃
is the existential quantifier symbol.

• An existential quantifier is an expression “(∃x)” or “(∃x ∈ S)” (if
S is a set). More precisely,

“(∃x)” is an unrestricted existential quantifier,

and

“(∃x ∈ S)” is a restricted existential quantifier.

• Existential quantifiers are read as follows:

1. “(∃x)” is read as

∗ “there exists x such that”

or

∗ “for some x”

or

∗ “it is possible to pick x such that”.

2. “(∃x ∈ S)” is read as

∗ “there exists x belonging to S such that”

or

∗ “there exists a member x of S such that”

or

∗ “for some x in S”

or

∗ “it is possible to pick x in S such that”
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or

∗ “it is possible to pick a member x of S such that”

Example 21. The sentence

(∃x ∈ IR)x2 = 2 (5.73)

could be read as

There exists an x belonging to the set of real numbers such
that x2 = 2 .

But this is horrible! A much better way to read it is:

There exists a real number x such that x2 = 2 .

An even better way is

There exists a real number whose square is 2.

And the nicest way of all is

2 has a square root.

And you can also read (5.73) as:

It is possible to pick a real number x such that x2 = 2 .

I strongly recommend this reading, because when you read an existen-
tial sentence this way it becomes clear that the next thing to do is to actually
pick an x, that is, to apply the rule for using an existential sentence, i.e. Rule
∃use �

5.1.1 How not to read existential quantifiers

Students sometimes read an existential sentence such as

(∃x ∈ IR)x2 = 2) (5.74)

as follows: there exists a real number x and x2 = 2.
This is completely wrong, and should be avoided at all costs, because

if you read an existential sentence that way you are going to be led to making
lots of other mistakes.

Why is this wrong?
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• If you read (5.74) as “there exists a real number x and x2 = 2”, then
you give the impression that (5.74) makes two assertions:

1. that there exists a real number,

2. that x2 = 2.

• But (5.74) does not say that at all! What it does is make one assertion,
namely, that there exists a real number x such that x2 = 2. (“Such
that” means “for which it is true that”.)

If you are asked to prove (5.74) and you read is as “there exists a real
number x and x2 = 2”, then you will think that you have to prove two things,
namely, (1) that there exists a real number, and (2) that x2 = 2. But what
you have to prove is one thing: that it is possible to pick a real number whose
square is 2.

The word “and” in this bad reading is particularly pernicious, because it
makes you see two sentences where there is only one sentence. The quan-
tifier (∃x ∈ IR) is not a sentence.

You can see this even more clearly if you read (5.74) as “for some real
numbers x, x2 = 2”. It is clear that “for some real numbers x” is not a
sentence. And it’s nonsense to say “for some real numbers x and x2 = 2”.

Since “for some real numbers x” is another way to read the quantifier
(∃x ∈ IR), it should be clear that there is no “and” in such a quantifier,

5.1.2 Witnesses

A witness for an existential sentence (∃x)P (x) is an object a such that P (a)
is true.

A witness for an existential sentence (∃x ∈ S)P (x), is an object a such
that a ∈ S and P (a) is true.

5.2 How do we work with existential sentences in
proofs?

As you may have guessed, I am going to give you two rules, one for proving
existential sentences, and one for using them. And the names of these rules
are going to be—yes, you guessed it!—Rule ∃prove and Rule ∃use.
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5.2.1 The rule for using existential sentences (Rule ∃use)

Rule ∃use says something very simple and natural: if you know that an
object of a certain kind exists, then you can pick one and give it
a name.

In other words, if you know that (∃x)P (x) or that (∃x ∈ S)P (x),
then you are allowed to pick a witness and give it a name.

Example 22. Suppose “P (x)” stands for “x eats grass”, and C is the set of
all cows. Suppose you know that

(∃x ∈ C)P (x) , (5.75)

that is, you know that there are grass-eating cows.
Then the thing you can do, according to Rule ∃use, is pick a cow and give

her a name.
So, for example, you could write

Pick a cow that eats grass and call her Suzy.

Or you could write

Let Suzy be a witness for the sentence (5.75,
so Suzy is a grass-eating cow.

or

Let Suzy be a grass-eating cow.

Example 23. Suppose you have a real number x and you know that

(∃y ∈ IR)y5 − y3 = x . (5.76)

Then you can say, in the next step of your proof: :

Pick a witness for (5.76) and call it r, so r ∈ IR and r5−r3 = 5.

or you could write

Let r be a real number such that r5 − r3 = 5.

And you could even say



Math 300, Fall 2018 90

Let y be a real number such that y5 − y3 = 5.

�

Remark 6. When you pick a witness, as in the previous example, you can
give it any name you want: you can call it r, k, m, u, r̂, a, α, ⋄, ♣, Alice,
Donald Duck, whatever.

You can even call it y, if you wish.
The key point is: the name you use cannot be already in use as

the name of something else.
So “y” qualifies as an acceptable name because, within the sentence

“(∃y ∈ IR)y5 − y3 = x”, y is a bound variable, but as soon as the sen-
tence ends, “y” becomes a free variable, with no declared value, so you are
allowed to use it.

However, I recommend that you do not use the same letter that appeared
in the existential quantifier. �

There is, however, one thing that is absolutely forbidden:

You cannot give the new object that you
are picking a name that is already in
use as the name of another object.

The reason for this prohibition is very simple: if you could use the name r to
name this new object that you are introducing, while r is already the name
of some other object that was introduced before, then you would be forcing
these two objects to be the same. But there is no reason for them to be the
same, so you cannot give them the same name.

Example 24. Suppose you know that Mr. Winthrop has been murdered.
That means, if we use “P (x)” for the predicate “x murdered Mr. Winthrop”.
that you know that (∃x)P (x) (that is, somebody murdered Mr. Winthrop).
Then you can introduce a new character into your discourse, and call this
person “the murderer”, or “the killer”. (This is useful, because you want to
be able to talk about that person, and say things such as “the murderer must
have had a key so as to be able to get into Mr. Winthrop’s apartment”.)
But you cannot call the murderer “Mrs. Winthrop”, because if you do so you
would be stipulating that it was Mrs. Winthrop that killed Mr. Winthrop,
which could be true but you do not know that it is. �
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And here is a precise statement40 of Rule ∃use:

Rule ∃use
(I) If

1. P (x) is a sentence,
2. the letter a is not in use as the name of anything,
3. you have proved (∃x)P (x),

then

* you can introduce a witness and call it a, so that this
new object will satisfy P (a)

(II) In addition, if S is a set, and you have proved that (∃x ∈
S)P (x), then you can stipulate that a ∈ S as well.

5.2.2 The rule for proving existential sentences (Rule ∃prove)

This rule is very simple, and very easy to remember:

• to prove that there is money here, show me the money;

• to prove that cows exist, show me a cow;

• to prove that good students exist, show me a good student,

• to prove that incorruptible politicians exist, show me an in-
corruptible politician,

• to prove that prime numbers exist, show me a prime number,

and so on.

Example 25. Suppose you want to prove that (∃x ∈ Z)x2 + 3x = 10.
You can say “Take x = 2. Then x2 + 3x = 10, because x2 = 4 and

3x = 6, so x2 + 3x = 4 + 6 = 10”. So 2 is a witness for the sentence
(∃x ∈ Z)x2+3x = 10. Then Rule ∃prove allows us to go to (∃x)x2+3 ·x = 10.
�

40In this statement, we use the same convention explained earlier: P (a) is the sentence
obtained from P (x) by substituting a for x. For example, if P (x) is the sentence “x
eats grass”, then P (Suzy) is the sentence “Suzy eats grass”. If P (x) is the sentence
“x+ 3y = x2”, then P (a) is the sentence “a+ 3y = a2”.
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And here is a precise statement of the witness rule:

Rule ∃prove
If:

1. P (x) is a sentence,

2. a is a witness for (∃x)P (x) (that is, you have proved that
P (a)),

then

* you can go to (∃x)P (x).

In addition, if S is a set, and you have proved that a ∈ S, then you
can go to (∃x ∈ S)P (x).

In other words, Rule ∃prove says that you can prove the sentences
(∃x)P (x) or (∃x ∈ S)P (x) by producing a witness.

5.3 Examples of proofs involving existential sentences

5.3.1 Some simple examples

Problem 14. Consider the sentence

(∃x ∈ Z)(∃y ∈ Z)x2 − y2 = 17 . (5.77)

Is this sentence true or false? If it is true, prove it. If it is false, prove that
it is false (that is, prove its negation).

SOLUTION. Sentence (5.77) is true. Here is a proof:

Take x = 9, y = 8. Then x2 = 81 and y2 = 64. So x2 − y2 = 81 − 64 = 17.
Therefore the pair (9, 8) is a witness for (5.77). By Rule ∃prove, this proves
(5.77). Q.E.D.

Problem 15. Consider the sentence

(∀m ∈ Z)(∃n ∈ Z)n < m . (5.78)

Is this sentence true or false? If it is true, prove it. If it is false, prove that
it is false (that is, prove its negation).
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SOLUTION. Sentence (5.78) is true. Here is a proof.

Let m be an arbitrary integer.

We want to prove that (∃n ∈ Z)n < m.

For this purpose, we produce a witness. First we say who the witness
is, and then we prove it works, that is, that it really is a witness.

Let n̂ = m− 1.

Then n̂ ∈ Z and n̂ < m. So the integer n̂ is a witness for the sentence
(∃n ∈ Z)n < m

Therefore (∃n ∈ Z)n < m. [Rule ∃prove]

Since we have proved that (∃n ∈ Z)n < m for an arbitrary integer m, we
can conclude that (∀m ∈ Z)(∃n ∈ Z)n < m. [Rule ∀prove] Q.E.D.

Problem 16. Consider the sentence

(∀m ∈ IN)(∃n ∈ IN)n < m . (5.79)

Is this sentence true or false? If it is true, prove it. If it is false, prove that
it is false (that is, prove its negation).

SOLUTION. Sentence (5.79) is false. Here is a proof.

Asssume (5.79) is true.

Them by Rule ∀use we can plug in a value for m, and the result wil be
a true sentence. So we plug in m = 1.

Them by Rule ∀use iimplies that (∃n ∈ IN)n < 1.

But there is no natural number that is less than 1, so so ∼ (∃n ∈
IN)n < 1.

So we have attained a contradcition.

Therefore (5.79) is false.

Problem 17. Consider the sentence

(∃n ∈ Z)(∀m ∈ Z)n < m . (5.80)

Is this sentence true or false? If it is true, prove it. If it is false, prove that
it is false (that is, prove its negation).
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SOLUTION. Sentence (5.80) is false. Here is a proof of its negation, that
is, of

∼ (∃n ∈ Z)(∀m ∈ Z)n < m . (5.81)

We are going to prove (5.81) by contradiction .

Assume that
(∃n ∈ Z)(∀m ∈ Z)n < m . (5.82)

Pick a witness for Statement (5.82), that is, an integer n for which the
statement “(∀m ∈ Z)n < m” holds, and call it n0. [Rule ∃use]

Then n0 ∈ Z and (∀m ∈ Z)n0 < m.

Since n0 ∈ Z, we can conclude that n0 < n0. [Rule ∀use, from

(∀m ∈ Z)n0 < m]

Then ∼ n0 = n0. [Trichotomy law]

But n0 = n0. [Equality Axiom (∀x)x = x.]

So we have proved a contradiction assuming (5.82). Hence, by the proof-by-
contradiction rule, (5.82) is false, that is, (5.81) is true. Q.E.D.

Problem 18. For each of the following sentences,

1. Indicate whether the sentence is true or false.

2. If it is true, prove it.

3. If it is false, prove that it is false (that is, prove its negation).

(∀m ∈ Z)(∃n ∈ IN)n > m , (5.83)

(∀m ∈ IN)(∃n ∈ IN)n < m , (5.84)

(∃n ∈ IN)(∀m ∈ Z)n < m , (5.85)

(∃n ∈ IN)(∀m ∈ IN)n < m , (5.86)

(∃n ∈ IN)(∀m ∈ IN)n ≤ m, (5.87)

(∃x ∈ IR)(∀m ∈ IN)x < m . (5.88)
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5.3.2 A detailed proof of an inequality with lots of comments

Problem 19. Let C be a circle with center (5, 1). Let L be the line with
equation y = x+ 4. Prove that if the radius of the circle is less than 5 then
C and L do not intersect.

Solution.
Let R be the radius of C.
COMMENT: This is very important. Every time you will have to deal re-
peatedly with some object—a number, a set, an equation, a statement—give
it a name.

Assume that R < 5.

We want to prove that

∼ (∃x ∈ IR)(∃y ∈ IR)
(

(x− 5)2 + (y − 1)2 = R2 ∧ y = x+ 4
)

. (5.89)

Assume (5.89) isn’t true.

Then

(∃x ∈ IR)(∃y ∈ IR)
(

(x−5)2+(y−1)2 = R2∧y = x+4
)

. (5.90)

Pick witnesses for (5.90) and call them x, y.

COMMENT: Remember that after a quantified sentence ends the
quantified variables become free again, so they can be re-used.
That’s why it is perfectly legitimate to name the witnesses x and
y.

Then
(x− 5)2 + (y − 1)2 = R2 ∧ y = x+ 4 . (5.91)

In particular,
(x− 5)2 + (y − 1)2 = R2 . (5.92)

And also
y = x+ 4 . (5.93)

COMMENT: How did we go from (5.91) to (5.92) and (5.93)?
It’s clear, isn’t it? But in a proof every step must be justfied
(or justifiable) by the rules. So which is the rule used here?
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The answer is: it’s the logical rule for using conjunctions, that is,
Rule ∧use: if you have a conjunction A ∧ B, then you can go to
A, and you can go to B. You may think this is a very stupid rule,
but it is certainly a reasonable rule. When we went from (5.91)
to (5.92) and (5.93), it seemed obvious to you, didn’t it? That’s
because Rule ∧use is an obvious rule, so obvious that you use it all
the time without even noticing it. But that doesn’t mean that the
rule isn’t there. It is there. If you wanted to write a computer
program that checks proofs and tells you whether a proof is valid,
how would the program know that going from (5.91) to (5.92) and
(5.93) are valid steps? You have to put that in the program. That
is, you have to put Rule ∧use in your program.

Since y = x+ 4, we can substitute x+ 4 for y in (5.92), and get

(x− 5)2 + (x+ 4− 1)2 = R2 , (5.94)

that is
(x− 5)2 + (x+ 3)2 = R2 . (5.95)

But

(x− 5)2 + (x+ 3)2 = x2 − 10x+ 25 + x2 + 6x+ 9

= 2x2 − 4x+ 34

= 2(x2 − 2x+ 17)

= 2(x2 − 2x+ 1− 1 + 17)

= 2(x2 − 2x+ 1 + 16)

= 2
(

(x− 1)2 + 16
)

≥ 2× 16

= 32

so
(x− 5)2 + (x+ 3)2 ≥ 32 . (5.96)

But
(x− 5)2 + (x+ 3)2 = R2 . (5.97)

So
R2 ≥ 32 . (5.98)
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COMMENT: How did we go from (5.96) and (5.97) to (5.98)?
It’s clear, isn’t it? But in a proof every step must be justfied
(or justifiable) by the rules. So which is the rule used here?
The answer is: it’s the logical rule for using equality, that is, Rule
=use (also called Rule SEE, “susbtitution of equals for equals”): if
you know that an equality s = t—or t = s—holds, and you also
know that some statement P involving s holds, then you can go to
P (s → t), where P (s → t) is the statemenet pbtained from P by
substituting t for s in P . You may think this is a very stupid rule,
but it is certainly a reasonable rule. When we went from (5.96)
and (5.97) to (5.98), it seemed obvious to you, didn’t it? That’s
because Rule SEE is an obvious rule, so obvious that you use it all
the time without even noticing it. But that doesn’t mean that the
rule isn’t there. It is there. If you wanted to write a computer
program that checks proofs and tells you whether a proof is valid,
how would the program know that going from (5.96) and (5.97) to
(5.98) is a valid step? You have to put that in the program. That
is, you have to put Rule SEE in your program.

But we are assuming that R < 5, and then R2 < 25.

COMMENT: That’s because R is positive. If all you know about
was that R is a real number and R < 5, then R could be −10, in
which case it would not follow that R2 > 25. But in our case R is
the radius of a circle, so R > 0, and the conclusion that R < 25
follows.

So ∼ R2 ≥ 32. But R2 ≥ 32. So we have proved a contradiction.

COMMENT: The contradiction is the statement “R2 ≥ 32∧ ∼
R2 ≥ 32”. This is a contradiction because it is fo the form Q∧ ∼
Q, where Q is the statement “R2 ≥ 32”.

So (5.89) is proved. Q.E.D.

5.3.3 The same proof without the comments

Proof. Let R be the radius of C.

Assume that R < 5.
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We want to prove that

∼ (∃x ∈ IR)(∃y ∈ IR)
(

(x− 5)2 + (y − 1)2 = R2 ∧ y = x+ 4
)

. (5.99)

Assume (5.99) isn’t true. Then

(∃x ∈ IR)(∃y ∈ IR)
(

(x−5)2+(y−1)2 = R2∧y = x+4
)

. (5.100)

Pick witnesses for (5.100) and call them x, y.

Then (x− 5)2 + (y − 1)2 = R2 ∧ y = x+ 4, so in particular,

(x− 5)2 + (y − 1)2 = R2 . (5.101)

Since y = x+ 4, we can substitute x+ 4 for y in (5.101), and get
(x− 5)2 + (x+ 4− 1)2 = R2, that is

(x− 5)2 + (x+ 3)2 = R2 . (5.102)

But

(x− 5)2 + (x+ 3)2 = x2 − 10x+ 25 + x2 + 6x+ 9

= 2x2 − 4x+ 34

= 2(x2 − 2x+ 17)

= 2(x2 − 2x+ 1− 1 + 17)

= 2(x2 − 2x+ 1 + 16)

= 2
(

(x− 1)2 + 16
)

≥ 2× 16

= 32

so
(x− 5)2 + (x+ 3)2 ≥ 32 . (5.103)

But (x− 5)2 + (x+ 3)2 = R2, so R2 ≥ 32.

But we are assuming that R < 5, and then R2 < 25.

So ∼ R2 ≥ 32. But R2 ≥ 32. So we have proved a contradiction.

So (5.99) is proved. Q.E.D.
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5.4 Existence and uniqueness

Suppose P (x) is a one-variable predicate. We write

(∃!x)P (x)
for “there exists a unique x such that P (x).”

This means “there is one and only one x such that P (x)”.
The precise meaning of this is that

1. there exists an x such that P (x),

and

2. if x1, x2 are such that P (x1) ∧ P (x2), then x1 = x2.

In formal language:

(∃!x)P (x) ⇐⇒
(

(∃x)P (x) ∧ (∀x1)(∀x2)(P (x1) ∧ P (x2)) =⇒ x1 = x2

)

.

It follows that, in order to prove that there exists a unique x such that P (x),
you must prove two things:

Existence: There exists x such that P (x),

Uniqueness: Any two x’s that satisfy P (x) must be equal.

That is:

To prove

(∃!x)P (x)
it suffices to prove

(∃x)P (x) (5.104)

and

(∀x1)(∀x2)
(

(P (x1) ∧ P (x2)) =⇒ x1 = x2

)

.

(5.105)
(Formula (5.104) is the existence assertion, and
Formula (5.105) is the uniqueness assertion.)
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Example 26. “I have one and only one mother” means:

• I have a mother,

and

• Any two people who are my mother must be the same person. (That
is: if u is my mother and v is my mother than u = v.) �

5.4.1 Examples of proofs of existence and uniqueness

Problem 20. Prove that there exists a unique natural number n such that
n3 = 2n− 1.

Solution. We want to prove that

(∃!n ∈ IN)n3 = 2n− 1 .

First let us prove existence. We have to prove that (∃n ∈ IN)n3 = 2n−1. To
prove this, we exhibit a witness: we take n = 1. Then n is a natural number,
and n3 = 2n− 1. So (∃n ∈ IN)n3 = 2n− 1.

Next we prove uniqueness. We have to prove that if u, v are natural
numbers such that u3 = 2u− 1 and v3 = 2v − 1, then it follows that u = v.

So let u, v be natural numbers such that u3 = 2u − 1 and v3 = 2v − 1.
We want to prove that u = v.

Since u3 = 2u− 1 and v3 = 2v − 1, we have

u3 − v3 = 2u− 1− (2v − 1)

= 2u− 2v

= 2(u− v) ,

so
u3 − v3 − 2(u− v) = 0 .

But it is easy to verify that

u3 − v3 = (u− v)(u2 + uv + v2) .

(If you do not believe this, just multiply out the right-hand side and you will
find that the result equals u3 = v3.) Hence

0 = u3 − v3 − 2(u− v)

= (u− v)(u2 + uv + v2)− 2(u− v)

= (u− v)(u2 + uv + v2 − 2) .
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We know that if a product of two real numbers is zero then one of the numbers
must be zero. Hence

u− v = 0 or u2 + uv + v2 − 2 .

But u2 + uv + v2 − 2 cannot be equal to zero, because u2, uv and v2 are
natural numbers, so each of them is gretar than or equal to 1, and then
u2 + uv + v2 ≥ 3, so u2 + uv + v2 − 2 ≥ 1, and then u2 + uv + v2 − 2 6= 0.
Therefore u− v = 0, so u = v, and our proof of uniqueness is complete.

Problem 21. Prove that there exists a unique real number x such that

x7 + 3x5 + 23x = 6 .

You are allowed to use everything you know from Calculus. �

6 An introduction to logic

6.1 First-order predicate calculus

The language most mathematicians use to talk about mathematical objects
(numbers of various kinds, sets, functions, lists, points, lines, planes, curves
of various kinds, spaces where we can do geometry, graphs, and millions of
other things) is a first-order predicate calculus.

So let us explain what this means.

• The language is a “predicate calculus” because we can use it to express
predicates.

So let us review what “predicates” are.

6.1.1 Predicates

Remember that

A predicate is a sentencea involving one or more (or zero) variables,
in such a way that the sentence has a definite truth valueb for each
choice of values of the variables.

a“Sentence” means the same as “statement”, or “assertion”.
bThe truth value of a sentence is “true” if the sentence is true and “false”

if the sentence is false.
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For example:

• “Alice likes Mark” is a zero-variables predicate. It is either true or
false.

• “x likes Mark” is a one-variable predicate. It is true or false depending
on who x is. For example, suppose that Alice likes Mark but Andrew
does not like Mark. Then “x likes Mark” is true when x =Alice but “x
likes Mark” is false when x =Andrew.

If we call this predicate P (x), then P (Alice) is true and P (Andrew) is
false.

• “x likes y” is a two-variables predicate. It is true or false depending
on who x and y are. For example, suppose that Alice likes Mark,
Andrew does not like Mark, Andrew likes Alice, and Mark does not
like Andrew. Then “x likes y” is true when x =Alice and y =Mark,
and when x =Andrew and y =Alice, but “x likes y” is false when
x =Andrew and y =Mark.

If we call this predicate P (x, y), then P (Alice,Mark) is true but on
the other hand P (Mark,Andrew) is false.

• If S is the set of all people, then “(∀x ∈ S)x likes y” says “everybody
likes y”. This is a one-variable predicate. We could call this predicate
Q(y), and then we could define Q(y) as follows:

if y ∈ S then Q(y) means (∀x ∈ S)P (x, y) , (6.106)

or, in purely formal language:

(∀y ∈ S)
(

Q(y) ⇐⇒ (∀x ∈ S)P (x, y)
)

(6.107)

• “x likes y more than x likes z” is a three-variables predicate.

• “2 + 2 = 4” and “2 + 2 = 5” are zero-variables predicates. They are
either true or false. (And, of course, “2+2 = 4” is true and “2+2 = 5”
is false.)

• “x > 0” and “2|n” are one-variable predicates. They are true or false
depending on who x (or n) is. For example, “x > 0” is true x = 3 but
is false for x = −5. And “2|n” is true for n = 4 but is false for n = 5.
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• “x > y” and “m|n” are two-variables (i.e., binary) predicates. They
are true or false depending on who x and y (or m and n) are. For
example, “the sentence x > y” is true for x = 5 and y = 4, but is false
for x = 5 and y = 6. And “m|n” is true for m = 3 and y = 6, but is
not true for m = 3 and y = 7.

• “x+y = z”, “x+y > z”, and “n|m+q2” are three-variables predicates.
The predicate “x + y = z” is,true for x = 2, y = 3 and z = 5, but is
false for x = 2, y = 3 and z = 4. The predicate “x+ y > z” is true for
x = 2, y = 3 and z = 4. but is false for x = 2, y = 3 and z = 5. The
predicate “n|m + q2” is true for n = 5, m = 9, and q = 6, but is false
n = 5, m = 7, and q = 6.

• “x+ 2y2 − z > u” and “a = bq + r and 0 ≤ r < |b|” are four-variables
predicates. The predicate “x + 2y2 − z > u” is true for x = 2, y = 4.
z = 3, u = 4, but is false for x = 2, y = 1. z = 3, u = 3, The predicate
“a = bq+ r and 0 ≤ r < |b|” is true for a = 23, b = 5, q = 4 and r = 3,
but is false for a = 23, b = 5, q = 4 and r = 2.

6.2 Free and bound variables, quantifiers, and the num-
ber of variables of a predicate

As was explained in the previous section, in a predicate such as “x > y”, the
variables x, y are free variables, that is, variables that are free to be given
any value we want. We can plug in values for x and y, and for each choice
of values the resulting sentence has a definite truth value, that is, is true or
false.
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You should think of a predicate as a processing device,
with several “input channels”. The input channels are
the open variables. Each input channel is open, in
the sense that the entrance to the channel is open so
you can can put things in, or free, in the sense that we
are free to put things in there. Once you have put in a
value for, say, the variable x, then x is no longer open:
it becomes closed, or bound.
Once you have put in values in all the input channels, the
device processes these inputs, and produces a answer:
true, or false.

If, on the other hand, the predicate “x > y” appears in a text after a
statement such as

Let x = 5, y = 3.

then the variables x and y are no longer free: they are bound variables41,
because they are “attached” to particular values.

We now look at another, very important way to turn free variables into
bound variables.

Let us consider, for example, the predicates

(∀y ∈ IR)x+ 2y2 − z > u (6.108)

and
(∃q ∈ Z)(∃r ∈ Z)(a = bq + r , and 0 ≤ r < |b|) . (6.109)

You may think that these are four-variables predicates, because each one of
them contains four variables. (Predicate (6.108) contains the variables x, y,
z and u. Predicate (6.109) contains the variables a, b, a and r.)

But this is not right:

(6.108) is a three-variables predicate, and
(6.109) is two-variables predicate..

Let me explain.

41Bound variables are also called closed variables, because they are not open: the
“input channel” through which we can input values for the variables is closed.
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6.2.1 An example: a predicate with three free variables and one
bound variable

We first look at the predicate

(∀y ∈ IR)x+ 2y2 − z > u . (6.110)

• The predicate (6.110) is built from the predicate “x+ 2y2 − z > u” by
quantifying it, i.e., putting a universal quantifier (∀y ∈ IR) in front.

• The unquantified predicate “x+2y2 − z > u” contains the variables x,
y, z, u. These are four open variables.

• So, if you are asked the “truth question”

Is “x+ 2y2 − z > u” true or false?

then you have to reply with a question of your own:

Who are x, y, z and u?

• But in the quantified predicate (6.110) the variable y is quantified.

• So, if you are asked the “truth question”

Is “(∀y ∈ IR)x+ 2y2 − z > u” true or false?

then you have to reply with the question:

Who are x, z and u?

• In the predicate “x+2y2 − z > u”, the four variables x, y, z and u are
open variables, that is, “slots”, or “input channels”, where you can put
in (or “plug in”) values for each of the variables.

• When you fill in the four slots by plugging in values for the variables,
you get a proposition, i.e., a sentence that has a definite truth value.
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A proposition is a sentence with no open vari-
ables
So a proposition is just true or false, whereas a predicate
with open variables is true or false depending on the
values of the variables.
Example:

1. The sentence “m ≥ n” has two open variables. It
is true if, for example, m = 3 and n = 1, and it is
false if, for example, m = 3 and n = 4.

2. The sentence “(∀m ∈ IN)m ≥ n” is true if, for
example, n = 1, and it is false if, for example, n =
2. So this sentence has one open variable, namely,
n.

3. The sentences

(∃n ∈ IN)(∀m ∈ IN)m ≥ n

and
(∀n ∈ IN)(∀m ∈ IN)m ≥ n

do not have any open variables. So they are propo-
sitions. The first one is true. (Reason: Take n = 1.
Then for arbitrary m ∈ IN m ≥ 1.) The second one
is false. (Reason: Take m = 1, n = 2. Then it is
not true that m ≥ n.)

• So, for example, if you plug in the values x = 2, y = 4, z = 3, u = 4,
into the sentence

x+ 2y2 − z > u
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you get the proposition
19 > 4, ,

which is true.

• But in the quantified predicate “(∀y ∈ IR)x+2y2 − z > u”, there is no
y-slot. The three variables x, z and u are open variables, that is, slots
or input channels where you can put in values. But y is not an open
variable.

• When you fill in the slots by plugging in values for the three open
variables, you get a proposition.

• So, for example, if you plug in the values x = 2, z = −3, u = 4, into
the sentence

(∀y ∈ IR)x+ 2y2 − z > u

then you get the sentence

(∀y ∈ IR)2 + 2y2 + 3 > 4

which is equivalent to the sentence

(∀y ∈ IR)2y2 + 5 > 4 .

And this sentence is true. (Proof: Let y ∈ IR be arbitrary. Then
2y2 ≥ 0. But 5 > 4. So 2y2 + 5 > 4. Hence “2y2 + 5 > 0” is true for
arbitrary y ∈ IR. Therefore “(∀y ∈ IR)2y2 + 5 > 4” is true.)

• The key point here is that the sentence “(∀y ∈ IR)x+ 2y2 − z > u”
does not have a y-slot where you can plug in a value of y.
That’s because the sentence itself decides which value or values
of y to plug in. The quantifier (∀y ∈ IR) says: “let y be an arbitrary
real number”. And then, with the values of x, z and u supplied by you,
the truth value of the resulting sentence is determined. There is no
need to ask “who is y?”

Another way to see this is as follows: when you universally quantify a
sentence by putting in front of it the universal quantifier “(∀y ∈ IR)”, this
adds to the sentence a “generator of y-values”, that is, a new component
that tells the sentence what value of y to use. More precisely, the universal
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quantifier “(∀y ∈ IR)” says “Let y be an arbitrary real number”. And this
closes the y-input channel, so that it is no longer possible to plug a y-value
into the sentence from outside.

  x+2y −z >  u 2

u

z

y

x

T or F

u=4

z=3

x=2

y=4 T x+2y −z >  u 
2

The sentence x+ 2y2 − z > u is a processing device that has four

input channels: the x-channel, the y-channel, the z-channel, and the
u-channel. When values for the four variables are inputted into the sen-
tence, the sentence produces a truth value. The four variables x, y, z, u
are open, or free. They are open, because the input channels are open
so that values of the variables can be put into them. They are free,
because the variables are not tied to any particular value.
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The quantified sentence (∀y ∈ IR)x+ 2y2 − z > u is a combination of

two interconnected processing units: the original unquantified sentence
“x + 2y2 − z > u”, and the quantifier “(∀y ∈ IR)”. The quantifier
generates a value for the quantified variable y (by saying “let y be an
arbitrary real number”) and, by doing so, it closes the y input channel,
so that y is no longer free; we cannot choose a value for y and plug it
in. The other three channels remain open. So in this sentence x, z and
u are open variables. but y is closed, or bound.

The other three letter variables (x, z and u) remain open. So we can plug
in values for them in order to obtain propositions that have a definite truth
value.

Summarizing:

• Even though the predicate “(∀y ∈ IR)x + 2y2 − z > u” appears to
contain four letter variables, only three of these variables (x, z and u)
are open. The other variable, y, is bound, or closed.

• This means that the predicate “(∀y ∈ IR)x + 2y2 − z > u” is a three
variables, or three arguments, predicate. Therefore:

– For each choice of values for x, z and u, the predicate becomes a
proposition, i.e. a sentence with a definite truth value.
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– If we want to give a name to this predicate, then we can of course
call it P , but if we want to indicate the names of the free variables,
we should call it P (x, z, u).

– But we must not call it P (x, y, z, u), because if we give it such
a name we would erroneously be suggesting that this predicate
has a “y-channel” where we can input values for the variable y.

• For example, “(∀y ∈ IR)x + 2y2 − z > u” is true for x = 4, z = 2,
u = 1. (Proof: We want to prove that (∀y ∈ IR)4 + 2y2 − 2 > 1,
that is, that (∀y ∈ IR)2 + 2y2 > 1. Let y ∈ IR be arbitrary. Then
y2 ≥ 0, so 2y2 ≥ 0, so 2 + 2y2 ≥ 2, and 2 > 1, so 2 + 2y2 > 1. Since
“2+2y2 > 1” has been proved to be true for arbitrary real y, it follows
that (∀y ∈ IR)2 + 2y2 > 1. Q.E.D.)

• The predicate “(∀y ∈ IR)x + 2y2 − z > u” is false for x = 4, z = 2,
u = 8. (Proof: We want to prove that “(∀y ∈ IR)4 + 2y2 − 2 > 1” is
not true, i.e., that “(∀y ∈ IR)2 + 2y2 > 8” is not true. Take y = 0.
Then “2 + 2y2 > 8” is not true, because “2 + 0 > 8” is not true. So
“(∀y ∈ IR)4 + 2y2 − 2 > 1” is not true.Q.E.D.)

• The “truth question”, i.e., the extra question we need to ask is order
to be able to tell if “(∀y ∈ IR)x + 2y2 − z > u” is true or false, is the
question: “who are x, z and u?”

• in order to have enough information to determine if the sen-
tence “(∀y ∈ IR)x+2y2−z > u” is true or false, we do not have
to ask “who is y?”, because once you are given the values of
x, z and u, the quantified sentence itself determines if it is
true or false, because it is up to the sentence to decide if it’s
true for all y or not, and it’s not up to you to choose a value
for y.

6.2.2 A second example: a predicate with two free variables and
two bound variables

We now look at the predicate

(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|) . (6.111)

As I said before, on page 104, (6.109) is a two-variables predicate..
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• Predicate (6.111) contains the variables a, b, q and r. But q and r
are quantified. So, if you are asked the “truth question”

Is “(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|)” true or false?

then you have to reply with a question of your own:

Who are a and b?

The variables a and b in (6.111) are “slots”, or “input channels”, where
you can put in (or “plug in”) a value for each of the variables, and then
you get a proposition.

• So, for example, if you plug in the values a = 23, b = 11, into the
sentence

(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|)
then you get the sentence

(∃q ∈ Z)(∃r ∈ Z)(23 = 11q + r ∧ 0 ≤ r < 11) .

And this sentence is true. (Proof: To prove an existential statement
we use rule ∃use: we exhibit values of q and r for which the proposition
“23 = 11q + r ∧ 0 ≤ r < 11” is true. Take q = 2, r = 1. Then 23 =
11q + r and 0 ≤ r < 11. Hence “23 = 11q + r ∧ 0 ≤ r < 11” is true for
some q, r ∈ Z. Therefore “(∃q ∈ Z)(∃r ∈ Z)(23 = 11q+r∧0 ≤ r < 11”
is true.)

• The key point here is that the sentence

(∃q ∈ Z)(∃r ∈ Z)(23 = 11q + r ∧ 0 ≤ r < 11)

does not have a q-slot or an r-slot where you can plug in
values for q and r. That’s because the sentence itself decides
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which value or values of q and r to plug in. The sentence itself42

decides which values of q and r it has to look at, and then, with the
values of a and b supplied by you, the truth value of the resulting
sentence is determined.

• Another way to see this is as follows: the sentence “a = bq + r ∧ 0 ≤
r < |b|” has four input channels that are open, or free, so you can put
into each channel a value of the corresponding variable.

But when you existentially quantify the sentence twice by putting in
front of it the two existential quantifiera “(∃q ∈ Z)” and “(∃r ∈ Z)”,
this adds to the sentence a “generator of q-values” and a “generator
of r-values”, that is, two new components that tell the sentence what
values of q and r to look at. More precisely, the existential quantifiers
“(∃q ∈ IR)” and “(∃r ∈ IR)” do the following:

– They look for a q-value and an r-value that make the sentence
“a = bq + r ∧ 0 ≤ r < |b|” true.

– If they find such values, then they send to the sentence the message
“yes, we have found values that make you true”, and then the
sentence produces the final verdict “yes, true”.

– If they do not find such values, then they send to the sentence the
message “no, we have not found values that make you true”, and
then the sentence produces the final verdict “no, not true”.

42Remember: you must think of a sentence as a processing device. The unquantified
sentence “a = bq+r∧0 ≤ r < |b|” does the following: once it has been fed values for a, b, q
and r, it finds out if “a = bq+r∧0 ≤ r < |b|” is true or not; if it is true is says “yes”; if it is
false it says “no”. The quantified sentence “(∃q ∈ Z)(∃r ∈ Z)(23 = 11q+ r ∧ 0 ≤ r < 11)”
does a much more complicated job: once it has been fed values for a and b, the sentence
looks at all possible values of q and r, and sees whether it can find one choice of values of q
and r for which “23 = 11q+ r∧0 ≤ r < 11” is true; and then, if it find such values, it says
“yes”; and if it cannot find any values of q and r for which “23 = 11q+ r ∧ 0 ≤ r < 11” is
true, it says “no”.
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 T or F

T0<r<|b|a=bq+r

a=bq+r 0<r<|b|

a

a=23

q

r

b

q=4

r=3

b=5

The sentence a = bq + r ∧ 0 ≤ r < |b| is a processing device that has

four input channels:the a-channel, the q-channel, the r-channel, and
the b-channel. When values for the four variables are inputted into
the sentence, the sentence produces a truth value. The four variables
a, q, r, b are open, or free. They are open, because the input channels
are open so that values of the variables can be put into them. They
are free, because the variables are not tied to any particular value.
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The quantified sentence (∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|) is

a combination of three interconnected processing units: the original
unquantified sentence “a = bq + r ∧ 0 ≤ r < |b|)”, and the two
quantifiers “(∃q ∈ Z”, “(∃r ∈ Z”. The quantifiers generate values
for the quantified variablea q, r. (They look for values of q, r that
will make “a = bq + r ∧ 0 ≤ r < |b|)” true. If they find them,
then they send one pair of such values to the main processing unit
“a = bq+ r ∧ 0 ≤ r < |b|)”, which then says “yes, true”. If they do not
find them, then they send some values to the main processing unit, but
these values will not work, so the main processing unit wil say “no, not
true”.) By doing so, the quantifiers close the q and r input channels,
so that q and f are no longer free; we cannot choose values for q and
r and plug them in. The other two channels remain open. So in this
sentence a and b are open variables. but q and r are closed, or bound.

The other two letter variables (a and b) remain open. So we can plug
in values for them in order to obtain propositions that have a definite truth
value.

Summarizing:

• Even though the predicate

(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|)



Math 300, Fall 2018 115

appears to contain four letter variables, only two of these variables (a
and b) are open. The other variables, q and r, are bound, or closed.

• This means that the predicate

(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|)

is a two variables, or two arguments, predicate. Therefore:

– For each choice of values for a and b, the predicate becomes a
proposition, i.e. a sentence with a definite truth value. (And
the Division Theorem tells us that the truth value is “true” for
all choices of integers a and b such that b 6= 0, that is, that the
proposition43

(∀a ∈ Z)(∀b ∈ Z)
(

b 6= 0 =⇒

(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|)
)

(6.112)

is true.

– Suppose we want to give a name to the two-variables predicate

(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|) .

We can, of course, call it P . But if we want to indicate the names
of the free variables, we should call it P (a, b).

– But we must not call it P (a, b, q, r), because if we give it such a
name we would erroneously be suggesting that this predicate has
a “q-channel” and an “r-channel”, where we can input values for
the variables q, r.

• The “truth question”, i.e., the extra question we need to ask is order
to be able to tell if “(∃q ∈ Z)(∃r ∈ Z)(a = bq+ r∧ 0 ≤ r < |b|)” is true
or false, is the question: “who are a and b?”

43Notice that (6.112) is a proposition, i.e., a predicate with no open variables at all (or,
if you prefer, with zero open variables), because in (6.112) all four variables that occur
are quantified, so a, b, q and r are closed variables. For the sentence (6.112), if you are
asked “is this true”, you do not need to ask any “truth question”, because you do not
need values of any variables to determine if the sentence is true.
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• in order to have enough information to determine if the sen-
tence “(∃q ∈ Z)(∃r ∈ Z)(a = bq+r∧0 ≤ r < |b|)” is true or false,
we do not have to ask “who are q and r?”, because once you
are given the values of a and b, the quantified sentence it-
self determines if it is true or false, because it is up to the
sentence to decide if the required values of q and r exists or
not, and it’s not up to you to choose valuea for q and r.

6.2.3 Another example, illustrating the fact that only open vari-
ables really matter

Some natural numbers are products of two prime numbers; for example,
4 = 2 × 2, 6 = 2 × 3, 35 = 5 × 7, and so on, Other natural numbers are
not products of two prime numbers; for example, 18 = 2 × 3 × 3, and the
Fundamental Theorem of Arithmetic tells us that that there is no other way
to write 18 as a product of primes, so in particular 18 is not the product of
two primes.

So we can consider the predicate “n is a product of two prime numbers”.
And we can call this predicate A(n). (We could just have called is “A”, but
we choose the name “A(n)” to emphasize the fact that this predicate has the
open variable n.) Then, according to the conventions we made before about
naming predicates, A(6) is the proposition “6 is the product of two primes”,
and A(7) is the proposition “7 is the product of two primes”, so A(6) is true,
and A(7) is false.

You can think of the predicate A(n) as a “black box”: you input a value of
n, the predicate does some work, and produces an answer: “true” or “false”.
(For example, for n = 6 A(n) is true, and for n = 7 A(n) is false.)

But we can also look inside the box, and analyze in more detail how this
predicate works. That is, we can observe that A(n) says that

There exist prime numbers p, q such that n = pq.

So now our predicate has three variables, p, q, and n!
How come? Has the number of variables of A(n) suddenly changed? Has

A(n) become a three-variables predicate? You may think so, because now
A(n) seems to have three variables: p, q and n.

But the answer is: No! A(n) is still a one-variable pred-
icate! The variables p and q are bound, because they are quantified.
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Precisely, A(n) says, in semiformal (almost formal) language:

(∃p ∈ IN)(∃q ∈ IN)(p is prime ∧ q is prime ∧ n = pq) . (6.113)

So, even though A(n) appears to have three variables, namely, p, q and
n, two of them are internal variables44, within the sentence (6.113). The
sentence itself generates the values of p and q that it needs in order to answer
its true-false question, and when the sentence ends p and q are free variables
again. And, in particular, outside the sentence

(∃p ∈ IN)(∃q ∈ IN)(p is prime ∧ q is prime ∧ n = pq)

the variables p and q have no value.
Another way to see that p and q have no value, is to observe that A(n)

can equally well be written as

(∃x ∈ IN)(∃y ∈ IN)(x is prime ∧ y is prime ∧ n = xy) , (6.114)

or as

(∃u ∈ IN)(∃v ∈ IN)(u is prime ∧ v is prime ∧ n = uv) . (6.115)

Sentences (6.113), (6.114), and (6.115) say exactly the same
thing. The only difference is in the names of the variables that, inside
the box, the sentence uses to process the inputs and produce an output.

From outside the box, we do not see these variables. That’s why the
letters p, q in (6.113), as well as the letters x, y in (6.114), and the
letters u, v in (6.115), are internal variables, that have no value
outside the sentence.

And this is not the end of the story. “p is prime” is itself a complex
predicate. In fact, “p is prine” stands for

p > 1 ∧ (∀k ∈ IN)
(

k|p =⇒ (k = 1 ∨ k = p)
)

. (6.116)

44If you think of the sentence “(∃p ∈ IN)(∃q ∈ IN)(p is prime)” as a processing unit, you
will see that it has two existential quantifiers that generate values of p and q. But outside
the processing unit all one sees is that certain values of n are fed in and certain ‘true”s
and “false”s come out. The variables p and q are part of the internal operation of the
device.
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This means that A(n) can also be written as

(∃p ∈ IN)(∃q ∈ IN)

((

p > 1 ∧ (∀k ∈ IN)
(

k|p =⇒ (k = 1 ∨ k = p)
)

)

∧
(

q > 1 ∧ (∀k ∈ IN)
(

k|q =⇒ (k = 1 ∨ k = q)
)

)

∧ n = pq

)

.(6.117)

Now one may think that A(n) is a four-variables predicate, because it involves
the variables n, p, q and k. But by now you know better: the new variable
k is also bound, so the only open variable in (6.117)) is still n. That means
that even if you write it in the form (6.117), A(n) is still a one-
variable predicate.

Actually, the story doesn’t end here either. “k|p” is also a complex pred-
dcate with an internal structure of its own: is stands for “(∃j ∈ Z)p = kj”.
So, if we substitute this for “k|p” in (6.117), we get an even more detalied
version of A(n), namely,

(∃p ∈ IN)(∃q ∈ IN)
((

p > 1 ∧ (∀k ∈ IN)
(

(∃j ∈ Z)p = kj =⇒ (k = 1 ∨ k = p)
)

)

∧
(

q > 1 ∧ (∀k ∈ IN)
(

(∃j ∈ Z)q = kj =⇒ (k = 1 ∨ k = q)
)

)

∧n = pq

)

. (6.118)

Now A(n) apears to involve five variables: n, p, q, k and j. But this time
you will have no problem figuring out that A(n) is still a one-variable
predicate, because the only open variable in (6.118) is still n, and
all the other variables are bound.

Problem 22. Draw a diagram of the sentence (6.118) as a processing unit,
similar to the diagrams that appear on pages 109 and 114.

Make sure that your diagram shows that there is only only one input
channel. �
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6.2.4 Dummy variables

So far, we have seen that variables that appear in a sentence but are quan-
tified are “internal variables”, or “closed variables”, or “bound variables”. If
you think of a sentence as a “processing unit”, or “processing device”, that
takes in certain inputs and produces “true-false” outputs, then the closed (or
bound, or internal) variables are variables that the sentence itself generates
and uses to do its processing work. So the sentence does not need to be fed
the values of these variables, and does not produce values of those variables
that an outside obsevrer can see.

There is another way in which a variable appearing in a sentence can be
a closed (or bound, or internal) variable. The sentence may contain a part
that generates values of some variable in order to do a computation.

Consider. for example, the sentence

n
∑

k=1

(a+ rk) = b , (6.119)

This sentence contains five letter variables, namely, a, r, b, k, and n.
Which ones of these five variables are open?
The best way to answer this question is by thinking of (6.119) as a pro-

cessing device, opening it up to look into its internal structure, and figuring
out what the device does.

Suppose you ask the device the truth question:

Is it true that
∑n

k=1(a+ rk) = b?

Then the device will not know what to do, because in order to get started
the device needs to be given the values of a, b, r, and n. (Maybe we should
think of (6.119) as an inteligent device, that can ask questions. Then if you
ask the truth question, the device will answer with a question: who are a,
b, r and n?)

Suppose you do feed the device by inputting values for a, b,r and n. Then
the device will do the following:

1. First, the CPU (central procssing unit) will report to the summation
component Σ—that is, the component that computes the summation
∑n

k=1(a+ rk)—the values of a, b, r and n that it has received from you.

2. Then Σ will perform the following calculation:
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(a) First, it will write the list of all values of k, from 1 to n. (This
is something it can do, because it knows who n is, since it has
received this information from the CPU.)

(b) Then it will compute a+ rk for each of the values of k in the list.
(Again, Σ knows how to do this, because it knows who a and r
are.)

(c) Then it will take all those values of a + rk that it has computed,
and add them.

(d) Finally, it will report the result to the CPU. (Maybe, in order
to facilitate communication between Σ and the CPU, they will
introduce letter variables. For example, they may decide to call
the result of the summation s, and then Σ will report the value of
s to the CPU. But we need not concern ourselves with the variable
s, because that’s an internal variable used within the device for
the various parts to communicate with each other.)

3. The CPU will then compare the result reported by the summation unit
with b, and determine if they are equal.

4. If they are equal, the CPU will report to you the answer “true”.

5. If they are not equal, the CPU will report to you the answer “false”.

The main point of this is that k is an internal variable used by the
sentence to perform its calculation. The values of k are generated
by the sentence itself. So the sentence need not be given the value
of k. And that’s why

1. If asked the truth question, the sentence will ask “who are a, b, r and
n””.

2. The sentence will not ask “who is k?”, because the sentence itself
generates the values of k it needs.

3. k is not an open variable in (6.119)

4. The open variables of (6.119) are a, b, r and n.
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Let’s just look at one more example. Let us analyze the following four sen-
tences

(∀n ∈ IN)
(

(∃m ∈ IN)
m
∑

k=1

k3 = n =⇒ (∃p ∈ IN)n = p2
)

, (6.120)

(∀n ∈ IN)
(

(∃m ∈ IN)
m
∑

k=1

k3 = n =⇒ (∃p ∈ IN)n = p3
)

, (6.121)

(∀n ∈ IN)(∃m ∈ IN)
(

m
∑

k=1

k3 = n =⇒ (∃p ∈ IN)n = p2
)

(6.122)

and

(∀n ∈ IN)(∃m ∈ IN)
(

m
∑

k=1

k3 = n =⇒ (∃p ∈ IN)n = p3
)

(6.123)

Each of these sentences contains four variables, namely, n, m, k, and p.
And I am sure that this time you can see right away what is going on: all

four variables are closed. Three of them (n, m, and p) are quantified.
and the variable k is also closed because the sentence itself generates the
values of k that it needs to perfom its calculations.

So the sentences (6.120), (6.121), (6.122), and (6.123), are
propositions.

And then of course each of the sentences is true or false. Which leads me
to a natural question, that I will ask you to answer.

Problem 23. Which of the propositions (6.120), (6.121), (6.122), (6.123),
are true, and which ones are false?

NOTE: All these propositions are of the form (∀n ∈ IN)P (n), where P (n)
is a one-variable predicate having n as the open variable.

If you want to prove that a sentence of this form is true, then you need
a reasoned argument, starting with “Let n be an arbitrary natural num-
ber.” (You may also try a proof by induction, but in this case I would not
recommend that.) If you want to prove that it is false, then you need a
counterexample, i.e., an example of an n for which the one-variable sentence
P (n) is false.
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HINT: The answer to this problem is actually very easy. All you have to do
is use the result of one of your earlier homework problems. (I can narrow
this down a bit further: it’s one of the problems in the third set of lecture
notes.) Using this, plus a little bit of logic (for example, truth values of
implications), each of the four propositions should just require a couple of
lines on your part.) �

A variable such as the k in
∑n

k=1 t(k) (where t(k) is some expression
containing k, such as k, or k2, or rk, or a+rk), is called a “dummy variable”.

Let us define this term precisely. (The definition I am about to give is
taken from Wolfram MathWorld.)

Definition 6. A dummy variable is a variable that appears in a cal-
culation only as a placeholder and which disappears completely
in the final result. �

And every dummy variable is bounded.

Example 27. Naturally, summations are not the only type of expressions
where some of the variables are bound variables

Examples of dummy variables are:

1. the k in a summation such as
∑n

k=1 t(k),

2. the k in a product such as
∏n

k=1 t(k),

3. the k in the name of a list, such as (pk)
n
k=1,

4. the x in the name {x : P (x)} of a set,

5. the x in an integral such as
∫ b

a
f(x)dx.

6. the x in a limit such as limx→a f(x). �

Example 28. Let us look at the sentence

(∃a ∈ IR)(∃b ∈ IR)
(

{u ∈ IR : a ≤ u ≤ b} 6= ∅ ∧
∫ b

a

x2dx = c
)

. (6.124)

This sentence contains the letter variables a, b, u, x, and c.
Of these five letters, four are bound variables:
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1. the variables a and b are bound because they are quantified;

2. the variable u is bound because it is a dummy variable, used as part of
the name {u ∈ IR : a ≤ u ≤ b} of a set;

3. the variable x is bound because it is a dummy variable, used as a
variable of integration.

It follows from this analysis that

1. Sentence (6.124) defines a one-variable predicate.

2. The open variable in sentence (6.124) is c.

3. If you think of sentence (6.124) as a processing device, then this device
will take values of c as inputs, and produce a true-false answer as
output.

4. If you ask the “truth question” is (6.124) true?, then the device
(6.124) cannot answer because it does not know who c is. So the device
will answer your question with another question: who is c?

5. But, in order to be able to answer the truth question, the device does
not need to ask “who is a?”, or “who is b?” or “who is u?”, or “who is
x?”. The device itself will generate the values of a, b, u and x it needs,
and these values will be part of the calculations that (6.124) performs,
and will not be seen by the outside world.

6.2.5 How to tell if a variable is dummy

Here are two ways to see that a variable is dummy.

1. The variable is dummy if “it isn’t really there”, in the sense that we
can eliminate it completely. For example,

(a) The set {u ∈ IR : a ≤ u ≤< b} is an object very well known to
all of us: it is none other than the closed interval [a, b]. So we
can say the same thing as (6.124) by writing “[a, b]” instead of
“{u ∈ IR : a ≤ u ≤< b}”. And we get

(∃a ∈ IR)(∃b ∈ IR)
(

[a, b] 6= ∅ ∧
∫ b

a

x2dx = c
)

, (6.125)
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which says exactly the same thing as (6.124). but now there is no
“u” anymore.

(b) The definite integral
∫ b

a
x2dx is a number that is completely deter-

mined by a and b. We do not need to ask “who is x?” in order to
determine this number. Actually, the integral can be computed,
and the result is 1

3
(b3 − a3). So we can say the same thing as

(6.125) by writing “1
3
(b3 − a3)” instead of “

∫ b

a
x2dx”, and we get

(∃a ∈ IR)(∃b ∈ IR)
(

[a, b] 6= ∅ ∧ 1

3
(b3 − a3) = c

)

, (6.126)

or, more nicely,

(∃a ∈ IR)(∃b ∈ IR)
(

[a, b] 6= ∅ ∧ b3 − a3 = 3c
)

, (6.127)

which say exactly the same thing as (6.125). but now there is no
“x” anymore.

2. A variable is dummy if it can be replaced by any other variable (except
with variables that are already being used for something else) without
changing the meaning of the sentence. For example,

(a) If instead of the expression “{u ∈ IR : a ≤ u ≤ b}” we use a
different letter and write something like “{v ∈ IR : a ≤ v ≤ b}”,
or “{z ∈ IR : a ≤ z ≤ b}”, or maybe “{α ∈ IR : a ≤ α ≤ b}”, or
“{⋄ ∈ IR : a ≤ ⋄ ≤ b}”, nothing changes. So, for example, we can
rewrite (6.124) as

(∃a ∈ IR)(∃b ∈ IR)
(

{q ∈ IR : a ≤ q ≤ b} 6= ∅ ∧
∫ b

a

x2dx = c
)

,

(6.128)
which says exactly the same thing as (6.124). but now there is no
u anymore.

(b) If we replace the definite integral
∫ b

a
x2dx by the expression

∫ b

a
h2dh,

or
∫ b

a
σ2dσ, or

∫ b

a
m2dm, nothing changes. So, for example, we can

rewrite (6.128) as

(∃a∈ IR)(∃b∈ IR)
(

{q∈ IR : a≤q≤b} 6=∅ ∧
∫ b

a

k2dk = c
)

, (6.129)
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which says exactly the same thing as (6.124). but now there is no
u and no x anymore.

Summarizing: Sentence (6.124) defines a one-variable predicate, with
the open variable c. So we can call this predicate P (c).

And then we may ask: can we tell what this predicate P (c) is? Can we
find a simpler expression for P (c)?

It turns out that, in this case, the answer is “yes, we can”:

P (c) just says “c ≥ 0” .

Proof. We want to prove that (∀c ∈ IR)(P (c) ⇐⇒ c ≥ 0).

Let c ∈ IR be arbitrary.

We want to prove that P (c) ⇐⇒ c ≥ 0.

For that purpose, we will prove the implications P (c) =⇒ c ≥ 0 and
c ≥ 0 =⇒ P (c).

Proof that P (c) =⇒ c ≥ 0.

Assume P (c).

This means that

(∃a ∈ IR)(∃b ∈ IR)
(

[a, b] 6= ∅ ∧ b3 − a3 = 3c
)

.

Pick real numbers a, b such that a, b] 6= ∅ and b3 − a3 = 3c.

Since a, b] 6= ∅, it follows that a ≤ b. (Reason: if a > b then the
set [a, b], i.e., the set {u ∈ IR : a ≤ u ≤ b}, would be empty.)

Since a ≤ b, we have a3 ≤ b3.

So b3 − a3 ≥ 9.

So 3c ≥ 0.

Hence c ≥ 0 .

Proof that c ≥ 0 =⇒ P (c).

Assume that c ≥ 0.

Let a = 0, b = 3
√
3c.

Then b ≥ 0.

So the closed interval [a, b] (i.e., the interval [0, b]) is nonemtpy.
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And b3 − a3 = 3c.

Hence [a, b] 6= ∅ ∧ b3 − a3 = 3c.

So
(∃a ∈ IR)(∃b ∈ IR)

(

[a, b] 6= ∅ ∧ b3 − a3 = 3c
)

.

That is, P (c) holds.

Since we gave proved that P (c) =⇒ c ≥ 0 and that c ≥ 0 =⇒ P (c), we
can conclude that P (c) ⇐⇒ c ≥ 0.

Since we have proved that P (c) ⇐⇒ c ≥ 0 for arbitrary real c, we have

proved that (∀c ∈ IR)
(

P (c) ⇐⇒ c ≥ 0). Q.E.D.

6.3 First-order predicate calculus

The language we use in mathematics is a predicate calculus because it
enables us to predicates. And it is first-order because we can quantify
variables, and write things such as “(∀x ∈ P )x likes Mark” (meaning, if P is
the set of all people, “everybody likes Mark”), but we cannot quantify over
predicates. That is,

• We cannot say things such as “‘for every predicate P (x) and every pred-
icate Q(x) if (∀x)P (x) is true and (∀x)Q(x)) is true, then if (∀x)(P (x)∧
Q(x)) is true.”

• We can say this for a particular pair of predicates P (x), Q(x) (for
example, we can say “if everybody likes coffee and everybody likes
milk then everybdoy likes coffee and milk”, or we can say “if everybody
studies and everybody reads books then everybdoy studies and reads
books”), but we cannot say the same thing for arbitrary predicates
P (x), Q(x).

It turns out that there are “second order” languages, in which you can say
things like “‘for every predicate P (x) and every predicate Q(x) if (∀x)P (x)
is true and (∀x)Q(x)) is true, then if (∀x)(P (x) ∧ Q(x)) is true.” But the
language we are using here is a first-order language, in which those things
cannot be said.
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6.4 Logical connectives

In firts-order predicate calculus, one or more sentences can be combined to
form other sentences. The symbols used to combine sentences are called the
logical connectives. And there are exactly seven of them

6.4.1 The seven logical connectives

And here they are, in all their glory:

The seven logical connectives

1. The negation symbol∼
(meaning “no”, “it’s not the case that”).

2. The conjunction symbol,∧
(meaning “and”).

3. The disjunction symbol,∨
(meaning “or”).

4. The implication symbol,=⇒
(meaning “implies”, or “if . . . then”).

5. The biconditional symbol,⇐⇒
(meaning “if and only if”).

6. The existential quantifier symbol,∃
(meaning “there exists . . . such that”, or “it is possible to pick
. . . such that”).

7. The universal quantifier symbol,∀
(meaning “for all”,or “for avery”, or “for an arbitrary”).

6.4.2 How the seven logical connectives are used to form sentences

These seven symbols are used to form new sentences as follows:

1. The negation symbol ∼ is a one-argument connective: it can be
put in front of a sentence A to form the sentence ∼ A (meaning “no
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A”, or “it’s not the case that A”). For example: “∼ 3|5” means “3
does not divide 5”.

2. The conjunction symbol ∧ is a binary connective, or two-argument
connective: it can be put between two sentences A, B to form the
sentence A ∧ B, (meaning “A and B”). For example: “(∼ 3|5) ∧ 3|6”
means “3 does not divide 5 and 3 divides 6”.

3. The disjunction symbol ∧ is a binary connective, or two-argument
connective: it can be put between two sentences A, B to form the
sentence A ∨ B, (meaning “A or B”). For example: “x > 0 ∨ x < 0”
means “x > 0 or x < 0”.

4. The implication symbol =⇒ is a binary connective, or two-argument
connective: it can be put between two sentences A, B to form the
sentence A =⇒ B, (meaning “A implies B”, or “if A then B”). For
example: “x 6= 0 =⇒ x2 > 0” means “if x > 0 then x2 > 0”.

5. The biconditional symbol ⇐⇒ is a two-argument connective, that
is binary connective: it can be put between two sentences A, B to
form the sentence A ⇐⇒ B, (meaning “A if and only if B”). For
example: “(2|n ∧ 3|n) ⇐⇒ 6|n” means “2 divides n and 3 divides n if
and only if 6 divides n”.

6. The existential quantifier symbol ∃ has a more complicated grammar:

(a) Using ∃ we can form existential quantifiers.

(b) There are two kinds of existential quantifiers:

i. Unrestricted existential quantifiers are expressions

(∃x),
that is: left parenthesis, ∃, variable, right parenthesis.

ii. Restricted existential quantifiers are expressions

(∃x ∈ S),
that is: left parenthesis, ∃, variable, ∈, name of a set, right
parenthesis.
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(c) Then we can take a sentence A (or A(x)) and put a restricted or
unrestricted existential quantifier in front, forming the sentences
(∃x)A (“there exists x such that A”, or “it is possible to pick x
such that A”) and (∃x ∈ S)A (“there exists x belonging to S such
that A”, or “it is possible to pick x belonging to S such that A”).

7. The universal quantifier symbol ∀ has a grammar similar to that of the
existential quantifier symbol:

(a) Using ∀ we can form universal quantifiers.

(b) There are two kinds of universal quantifiers:

i. Unrestricted universal quantifiers are expressions

(∀x),
that is: left parenthesis, ∀, variable, right parenthesis.

ii. Restricted universal quantifiers are expressions

(∀x ∈ S),
that is: left parenthesis, ∀, variable, ∈, name of a set, right
parenthesis.

(c) Then we can take a sentence A (or A(x)) and put a restricted
or unrestricted universal quantifier in front, forming the sentences
(∀x)A (“for all x, A”, or “A i strue for arbitrary x”) and (∀x ∈ S)A
(“for all x belonging to S, A”, or “A is true for arbitrary x in S”).

6.5 Conjunctions (“∧”, i.e., “and”)
The symbol

∧
is the conjunction symbol, and means “and”.

Hence,

• If P is the sentence

Today is Friday

and Q is the sentence



Math 300, Fall 2018 130

Tomorrow is Saturday

then “P ∧Q” stands for the sentence

Today is Friday and tomorrow is Saturday.

• A sentence of the form P ∧Q is a conjunction.

• In a conjunction P ∧Q, the sentences P , Q are the conjuncts.

6.5.1 Proving a conjunction: a stupid but important rule

The rule for proving a conjunction (Rule ∧prove)

If P , Q are sentences, and you have proved P and you have proved
Q, then you are allowed to go to P ∧Q.

IMPORTANT REMARK. You may wonder “what is the point of such a
rule?” But you cannot dispute that it is a reasonable rule! Of course, if you
know that “today is Friday” and you also know that “tomorrow is Saturday”,
then you will have no doubt that “today is Friday and tomorrow is Saturday”
is true. So you should have no problem accepting (and remembering) this
rule. You may not understand why it is needed. So let me tell you why.
Suppose it was a computer doing proofs, rather than a human being like
you. Suppose the computer is told that today is Friday and then it is told
that tomorrow is Saturday. How will the computer know that it can write
“today is Friday and tomorrow is Saturday”. It won’t, unless you tell it.
Computers do not ”know” anything on their own. If you want the computer
to “know” that once it knows that “today is Friday” and also that “tomorrow
is Saturday”, then it can write “today is Friday and tomorrow is Saturday”,
then you have to tell the computer. In other words, you have to input Rule
∧prove into the computer. Proofs are mechanical manipulations of strings of
symbols, and should therefore be doable by a computer. So Rule ∧prove is
needed.

And now let’s go back to you, the human being. How do you know
that, once you find out that “today is Friday” and also that “tomorrow is
Saturday”, then you can say (or write) “today is Friday and tomorrow is
Saturday”. You know this because you know Rule ∧prove. You know
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this rule so well, it is embedded so deeply in your mind, that you don’t even
realize that the rule is there. But the rule is there!

Here is another way to think about this. Suppose you didn’t know any
English at all. Then you would not know what the word “and” means, and
you would not know that, if you have two sentences P and Q, then you can
say or write “P and Q”. As you learn English, at some point you would
learn the meaning of the word “and” and then you would learn that when
you have two sentences P and Q, then you can say or write “P and Q”.
(And I would even argue that this rule about that use of “and” is in fact
what “and” means, but I will not pursue this now.) The point is: there are
rules for using the word “and”, and those rules have to be learned, and they
only look obvious to you because you already learned them a long time ago
and have grown accustomed to them.

What we are doing in Logic is elucidating the laws of thought, mak-
ing them explicit, bringing them to the surface, as it were, so that
we can, for example, pass them on from our minds to a computer: the com-
puter does not “know” any of the things that you know, unless you tell the
computer those things. And this applies even to the rules that you know so
well that they are deeply embedded in your subconscious, so you take them
for granted without even realizing that there is something to be known there.

Once you understand this, you will also see that it is not an accident
that modern Logic developed first, at the end of the 19th century
and the beginning of the 20th century, and computers came into
being soon afterwards. �

6.5.2 Using a conjunction: another stupid but important rule

The rule for using a conjunction (Rule ∧use)

If P , Q are sentences, and you have proved P ∧ Q, then you are
allowed to go to P , and you are also allowed to go to Q.

IMPORTANT REMARK. This looks like a very stupid rule. But you
should reread the “Important Remark” on Page 130, where we talked about
another “stupid rule”, namely, Rule ∧prove. That remark also applies to Rule
∧use. �
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6.6 Disjunctions (“∨”, i.e., “or”)
The symbol

∨
is the disjunction symbol, and means “or”.

So, for example,

• If P is the sentence

today is Friday

and Q is the sentence

today is Saturday

then “P ∨Q” stands for the sentence

today is Friday or today is Saturday.

• A sentence of the form P ∨Q is a disjunction.

• In a disjunction P ∨Q, the sentences P , Q are the disjuncts.

6.6.1 Using a disjunction: the “proof by cases” rule

The rule for using a disjunction, that we are going to call “Rule ∨use”, as
you may have guessed, is extremely important. It is also called the “proof
by cases rule”, and is one of the most widely used rules in theorem proving.

Before I state the rule, let us look at an example.

Example 29. Suppose you want to prove that

(∀x ∈ IR)(x 6= 0 =⇒ x2 > 0 . (6.130)

Then you could reason as follows. Since x 6= 0, there are two possibilities:
0 < x or x < 0. We consider each of these two possibilities separately.
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First we assume that 0 < x.

Then we use the fact that we can multiply both sides of an inequality
by a positive number45. Since 0 < x (because we are assuming that
0 < x), we can multiply both sides of “0 < x” by x, and get x.0 < x.x.

But x · 0 = 0 by a theorem46

And x·x = x2. (This is because the definition of x2 says that x2 = x·x.)

So 0 < x2 .

Next we assume that x < 0.

Then we usethat axiom that says that we can add a real number to
both sides of an inequality and the result is an inequality going in the
same direction47. So we add −x to both sides of “x < 0” and get
0 < −x.

Then we use the axiom about multiplication of both sides of an in-
equality by a positive number. Since −x is positive, because we have
proved that it is (under the assumption that x < 0), we can multiply
both sides of “0 < −x” by −x, and get (−x).0 < (−x).(−x).

But x · 0 = 0 by a theorem proved before.

And (−x) · (−x) = x · x.

So 0 < x · x.

And x · x = x2, by the definition of “square”.

So 0 < x2 in this case as well.

So we have analyzed each of the two possibilities 0 < x and x < 0, and in
each case we arrived a the same conclusion, namely, that 0 < x2.

45This is one of the axioms of real number theory, that we will discuss later. Tha axiom

says: (∀x ∈ IR)(∀y ∈ IR)(∀z ∈ IR)
(

(x < y ∧ 0 < z) =⇒ xz < yz
)

.
46The theorem says that (∀x ∈ IR)x.0 = 0. This was proved earlier for integers, but the

proof for real numbers is the same.
47Precisely, the axiom says: (∀x ∈ IR)(∀y ∈ IR)(∀z ∈ IR)(x < y =⇒ x+ z < y + z

)

.
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Hence we have proved that 0 < x2 .

What we have done in this example is this: we knew that a disjunction
A∨B was true. (In our example, A was “0 < x” and B was “x < 0”.) Then
we proved that a ceartain conclusion C must hold if A is true, and also if B
is true. (In our example, C was “0 < x2”.) Then we concluded that C must
be true. And the reason is quite simple: one of A, B is true, and in either
case C is true, so C is true.

This is exactly what the proof by cases rule says.

The rule for using a disjunction (Rule ∨use,
a.k.a. the proof by cases rule)

If P and Q are sentences, and you have proved P ∨Q in a previous
step, and then you prove another sentence R both assuming P and
assuming Q, then you can go to R.

6.6.2 Proving a disjunction

The rule for proving a disjunction (Rule ∨prove)

Suppose P and Q are sentences, and you want to prove P ∨Q. Here
is what you can do. You look at the two possible cases, when P is
true and when P is false. If P is true then of course P ∨Q is true,
so we are O.K. So all we have to do is look at the other case, when
P is false, and prove that in that case Q is true.
So here is the rule:

I. If, assuming that P is false, you can
prove Q, then you can go to P ∨Q.

II. If, assuming that Q is false, you can
prove P , then you can go to P ∨Q.

6.7 Implications (“=⇒”, i.e., “if . . . then”)

Implication: The symbol
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=⇒
is the implication symbol, and means “implies”.

A sentence “P =⇒ Q” is read as

P implies Q

or as

If P then Q .

Then

• If P is the sentence

Today is Friday

and Q is the sentence

Tomorrow is Saturday

then “P =⇒ Q” stands for the sentence

If today is Friday then tomorrow is Saturday.

• A sentence of the form P =⇒ Q is an implication, or a conditional
sentence.

• In a conditional sentence P =⇒ Q, P is the premiss (or antecedent),
and Q is the conclusion (or consequent.

6.7.1 The rule for using an implication (Rule =⇒use, a.k.a. “Modus
Ponens”)

We now come to one of the most important rules in Logic: the rule for using
an implication. For us, this rule will be called— guess what!—“Rule =⇒use”,
but it also has a couple of much more impressive names: Modus Ponens,
and implication elimination48

48“Modus Ponens” is an abbreviation of “modus ponendo ponens”, which is Latin for
“the way that affirms by affirming”.
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The rule for using an implication
(Rule =⇒use, a.k.a. Modus Ponens)

Suppose P , Q are sentences. Suppose you have the sen-
tences P =⇒ Q” and “P” in previous steps of your
proof. Then you can go to Q.

Example 30. Suppose you know that “If you are a student then you are
entitled to a discount” and you also know that you are a student. Then you
can conclude that you are entitled to a discount.

6.7.2 The “for all...implies” combination

One of the most important and widely used combinations of moves in proofs
is what we may call the “for all...implies” combination.

It works like this:

• First, you bring into your proof a statement S of the form “for every
x of some kind, if something happens then something else happens”.
That is, (∀x)(A(x) =⇒ B(x)), or

(∀x ∈ S)(A(x) =⇒ B(x)) . (6.131)

• Then, you bring into your proof an object a for which you know that
this object satisfies Property A, that is, you know that

A(a) . (6.132)

• Then you derive the conclusion that B(a) is true, in two steps:

Step 1: Use the specialization rule to go from (6.131) to

A(a) =⇒ B(a) . (6.133)

Step 2: Use Modus Ponens to go from (6.133) and (6.132) to

B(a) . (6.134)
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This combination is used all the time in proofs. The reason is that many
theorems in Mathematics are of the form: “whenever something is true of an
object, then something else is also true of that object”, that is

(∀x)(A(x) =⇒ B(x)) . (6.135)

And what you often do in proofs is take one of those theorems and apply
it to a particular situation. And this is exactly what the “for all...implies”
combination does.

Here are some examples:

1. Take the statement that “Every positive real number has a real square
root”, which translates into

(∀x ∈ IR)(x > 0 =⇒ (∃y ∈ IR)y2 = x) .

This is exactly of the form (6.135), with “x > 0” in the role of A(x),
and “(∃y ∈ IR)y2 = x” in the role of B(x).

Then you can prove that 2 has a square root, by applying the “for all
... implies” combination, with a = 2, and getting “(∃y ∈ IR)y2 = 2”.

2. Suppose you know that “If x is a positive real number then x+ 1
x
≥ 2”,

that is, in formal language,

(∀x ∈ IR)(x > 0 =⇒ x+
1

x
≥ 2) .

(We will prove this later.) Suppose you have a real number a, and
have proved that a is positive (that is, a > 0). Then you can draw the
conclusion that a+ 1

a
≥ 2 by using the “for all...implies” combination,

as follows:

1. (∀x ∈ IR)(x > 0 =⇒ x+ 1
x
≥ 2) [Fact proven before]

2. a > 0 .[Known]

3. a > 0 =⇒ a+ 1
a
≥ 2 .[Rule ∀use, from Step 1]

4. a+ 1
a
≥ 2 .[Rule =⇒use, from Steps 2,3]
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6.7.3 Proving an implication (Rule =⇒prove)

The rule for proving an implication
(Rule =⇒prove)

Suppose P , Q are sentences. Suppose you start a proof with “As-
sume P”, and you prove Q. Then you can go to P =⇒ Q.

Example 31. Say you are a Martian who just landed on Earth,
you know nothing about the days of the week, and you want to
prove that to your own satisfaction that “If today is Friday then
tomorrow is Saturday”. To apply Rule =⇒prove, you would begin
by “assuming that today is Friday.” This means that you would
imagine that today is Friday, and see what would happen in that
case. For example, you could go to a public library and look at
lots of newspapers published on a Friday, and you would see that
every time such a paper talks about the following day it says some-
thing like “tomorrow is Saturday.” Then you would be reasonably
confident that the sentence “If today is Friday then tomorrow is
Saturday” is true. And it would not matter whether today is Fri-
day or not. �

6.7.4 The connectives “∧” and “=⇒” are very different

Students sometimes think that “If P then Q” is basically the same as “P
and Q”, or “P then Q”. But this is very wrong and it important that you
should understand the difference between “P and Q” and “If P then Q”.

Take, for example, the sentences

Today is Friday and tomorrow is June 12.

and

If today is Friday then tomorrow is June 12.

Using “P” to represent the sentence “Today is Friday” and “Q” to represent
the sentence “Tomorrow is June 2”, the first sentence is P ∧ Q, and the
second one is P =⇒ Q.

What conditions have to be satisfied for P ∧Q to be true? What condi-
tions have to be satisfied for P =⇒ Q to be true?
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The sentence P ∧Q is true if both P and Q are true. In our ex-
ample, the only way the sentence “Today is Friday and tomorrow is June 12”
can be true is if today is Friday and tomorrow is June 12, So the sentence
“Today is Friday and tomorrow is June 12” is true if today is
Friday June 11, and in no other case.

On the other hand, The sentence P =⇒ Q when Q is true, and
also when P is false. And if neither one of these conditions hold
(that is, if Q is false and P is true) then P =⇒ Q is false. So, in our
example, the only possible situation when “If today is Friday then tomorrow
is June 12” would be false is if today is Friday but tomorrow is not June 12.
So he sentence “If today is Friday then tomorrow is June 12” is
true if today is not Friday, is also true if tomorrow is June 12,
and is false if today is Friday but tomorrow is not June 12.

We can summarize these observations by means of the following “truth
tables” for the connectives “∧” and “=⇒”:

P Q P ∧Q
T T T
T F F
F T F
F F F

P Q P =⇒ Q
T T T
T F F
F T T
F F T

The first table gives you the truth value49 of P ∧Q in terms of the truth
values of P and Q, and the second table gives you the truth value of P =⇒ Q
in terms of the truth values of P and Q.

Notice that what makes the truth tables for “wedge” and “=⇒”
is the last two lines. In particuler:

49Every sentence, when used correctly, has a truth value: the truth value is T is the
sentence is true, and F is the sentence is false. For example: the truth value of “3 > 5”
is F, the truth value of “3 < 5” is T. How about the truth value of “x < 5”. If you tell
me that x < 5 without having told me who x is, then I do not knwo the truth value of
“x < 5”. But this would be an incorrect us of “x < 5”. If you were writing a proof, then
you could never have “x < 5” as one of the steps, unless you have told the reader before,
in some previous step, who x is, and once you have done that, the truth value of “x < 5”

would be known. For example, if you said in a previous step “Let x = 1+
√
5

2
”, then I

would know that “x < 5” is true. (Proof:
√
5 < 5. So 1 +

√
5 < 6. So 1+

√
5

2
< 3. Hence

1+
√
5

2
< 5. So x < 5.)
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P =⇒ Q is always true when Q is true,
no matter whether P is true or false.

and

P =⇒ Q is always true when P is false,
no matter whether Q is true or false.

So for example, the following sentences are true:

• If the Earth is a planet then 3 is a prime number.

• If the Earth is a comet then 3 is a prime number.

• If the Earth is a comet then 6 is a prime number.

The first one and the second one are true because the conclusion (that is, “3
is a prime number) is true. . (It does not matter, for the second sentence,
that the premiss—“the Earth is a comet”— is false.)

And the second one and third one are true because the premiss (“the
Earth in a comet” is false. (It does not matter whether for the second
sentence, that the conclusion—“6 is a prime number”— is false.)

On the other hand, the sentence “If the Earth is a planet then 6 is a prime
number” is false, because the premiss (“The Earth is a planet”) is true, but
the conclusion (“6 is a prime number”) is false.

6.7.5 Isn’t the truth table for =⇒ counterintuitive?

Students often ask questions about the implication connective =⇒ Q and in
partuclar about the truth table for the implication.

One often raise question is “how can ‘P =⇒ Q’ be true if P and Q have
nothing to do with each other?”.

For example, we said that the sentence “If the Earth is a planet then 3 is
a prime number” is true, but what does the fact that the Earth is a planet
have to do with 3 being a prime number? That sounds like a good question,
but let us think about it. I suggest that you do do this:



Math 300, Fall 2018 141

Think of “P =⇒ Q” as saying “it does
not happen that P is true without Q also
being true”.

In other words: what “P =⇒ Q” does is exclude the possibility that you
might ever run into a “bad situation”, menaing, “a situation where P is true
but Q is not”. And this is the only possibilty excluded the implication. So,
in particular,

• if P is false then you will not be in a bad situation, so “P =⇒ Q” is
true.

• if Q is true then you will not be in a bad situation, so “P =⇒ Q” is
true.

Once you understand this, you will see that it does not matter very much
whether P and Q have something to do with each other. Maybe Pand Q
are totally unrelated, but if, for example, they both happen to be true then
“P =⇒ Q” is true. And also, “P =⇒ Q” will be true if both P and Q are
false, or if P is false and Q is true.

Example 32. Suppose a street sign says:

IF YOU ARE DRIVING AT MORE
THAN 25MPH YOU WILL GET A
FINE.

Supoose you want to prove to a friend of yours that the municipal government
that put up the sign isn’t really enforcing its own rule. What do you have to
do to prove this?

Let “P” represent the premiss, i.e., “you are driving at more than 25mph”,
and let “Q” represent the conclusion, that is, “you will get a fine”. Then the
street sign asserts the implication “P =⇒ Q”.

Certainly,
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• If you find someone driving at 20mph, that will do nothing to prove your
case. That’s because in that case the implication “P =⇒ Q”
is true, according to the truth table for the implication. It
does not matter whether that driver got a fine or not50.

• If you find someone who got a fine, that will do nothing to prove your
case. That’s because in that case the implication “P =⇒ Q”
is true, according to the truth table for the implication. It
does not matter whether that driver was driving at more than 25mph
or not.51.

• The only way to prove that the injunction in the street sign is not
being enforced is to find cases of drivers that were driving at more
than 25mph but did not get a fine. That’s because the onlt case
when the implication “P =⇒ Q” is false, according to the
truth table for the implication, is when the premiss is true
but the conclusion is false.

Example 33. Alice is a cashier at a department store, and she has to follow
the rule that

IF A CUSTOMER PAYS CASH FOR
A PURCHASE THEN ALICE HAS
TO PUT THE MONEY SHE COL-
LECTED IN A DRAWER.

Suppose you are a detective and you want to prove that Alice is not
obeying the rule. What do you have to do?

• If you find a situation when there was not customer at all, or there was
customer that did not pay cash, then that will do nothing prove your
case. That’s because in that case the implication “P =⇒ Q”
is true, according to the truth table for the implication. It
does not matter whether Alice put money is the drawer or not52.

50The driver may have been given a fine for some other reason, e.g., using a cell phone
while driving.

51The driver may have been driving at 20mph but may have been given a fine for some
other reason, e.g., using a cell phone while driving.

52Why would Alice have put money in the drawer if she did not collect any cash from
the customer? Who knows?
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• If you find a situation where Alice put cash in the drawer even though
she did not collect any money from a customer, then that will do noth-
ing to prove your case. That’s because in that case the implica-
tion “P =⇒ Q” is true, according to the truth table for the
implication. It does not matter that there was no customer poaying
cash53.

• The only way you can prove that Alice is violating the rules is by
showing that a customer paid cash but Alice did notput themoney in
the drawer.That’s because the only case when the implication
“P =⇒ Q” is false, according to the truth table for the im-
plication, is when the premiss is true but the conclusion is
false.

Example 34. Suppose you have a natural number n, but you do not know
which number it is. (For example, maybe someone gave you a sealed envelope
containing a card where the number is written. So the number is there, it’s
a fixed number, but you just do not knwo which specific number it is.)

Suppose you are asked to prove that

(*) If n is even then n2 is divisible by 4.

Then you could ask: could (*) possibly be false? Could there be a possible
value of n for which (*) is false. (Remember that you do not know who n is.
So if you want be able to assert for sure that (*) is true you have to consider
all possible values of n. If you find one value of n for which (*) is not true,
then you cannot be sure that n is true, because the number that you have in
the envelope could be the one you have found, the one for which (*) is false.
But if you can make sure that no such number exists, then you can be sure
that (*) is true, even though you do not know who n is.)

What would have to happen for (*) to be false? Well, according to our
truth table, the only case when the implication (*) is false is when the premiss
is true but the conclusion is not. So to make sure that (*) is true, you have
to consider numbers n that are even, because if n is not even then (*) is true.
You indicate that you are going to do that by writing:

53Again, why would Alice put money in the drawer even if she did not collect the money
from a customer? Who knows? And who cares? The point is: even if she put money
in the drawer when there had been no customer that paid her the money, so
P was false but Q was true, she did not violate the rules.
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Assume that n is even.

(In other words: you are allowed to assume that n is even because
if n is not even then (*) is automatically true thanks to the truth
table for the implication.)

And then you move on to prove that n2 is divisible by 4. (Since n is even,
we can pick a natural number k such that n = 2k. Then b2 = 4k2, so n2 is
divisible by 4.)

And now you can be sure that (*) is true. The number n is even or odd,
but in either case (*) is true, even though in each case it’s true for a different
reason: if n is not even, then (*) is true because of the truth table for the
implication, and if n is even then (*) ia true because in that case we have
proved that the conclusion (that is, “n2 is divisble by 4”) must be true.

Finally, we have prove that (*) must be true for any natural number,
because we have proved for n, but n could be any number. So we can
conclude that

(∀n ∈ IN)
(

n is even =⇒ n2 is divisible by 4
)

,

or, if you prefer,

(∀n ∈ IN)
(

2|n =⇒ 4|n2
)

.

So we can structure our proof as follows:

THEOREM. (∀n ∈ IN)
(

2|n =⇒ 4|n2
)

.

PROOF We want to prove that (∀n ∈ IN)
(

2|n =⇒ 4|n2
)

.

Let n ∈ IN be arbitrary.

We want to prove that 2|n =⇒ 4|n2.

Assume that 2|n.
Then (∃k ∈ IN)n = 2k.

Pick one such k and call it k∗.

Then k∗ ∈ IN and n = 2k∗.

Then n2 = (2k∗) · (2k∗) = 4k2∗.

Let q = k2∗.
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Then n2 = 4q.

So (∃k)n2 = 4k.

Hence 4|n2.

We have proved that 4|n2 assuming that 2|n. Hence

2|n =⇒ 4|n2 .

We have proved that 2|n =⇒ 4|n2 for an arbitrary n. Therefore

(∀n ∈ IN)
(

2|n =⇒ 4|n2
)

.

Q.E.D.

I hope that these remarks will suffice to clarify they way implication
works. Implication will be discussed in great detail later.

6.8 Biconditionals (“⇐⇒”, i.e., “if and only if”)

The biconditional is the symbol

⇐⇒.
It is a binary connective, like ∧, ∨, and =⇒. That means that ⇐⇒ can be
used to connect two sentences.

If P and Q are sentences, the sentence “P ⇐⇒ Q” is read as

P if and only if Q

or

P is equivalent to Q .

And mathematicians often use “iff” as shorthand for “if and only if”, so they
write “P iff Q.”

P iff Q .

The precise meaning of “equivalence” will be explained later. But, if you
want to know right away what it means, it’s very simple:
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When you know that P is equivalent to Q then you can
pass freely from P to Q. That is, if you know that P is
true then you can write Q, and if you know that Q is
true then you can write P .
So for all practical purposes if “P ⇐⇒ Q” is true then
P and Q are interchangeable.

6.8.1 The meaning of “if and only if”

You should think of “P iff Q” as meaning

(P ⇐⇒ Q) ∧ (Q ⇐⇒ P ) .

That is, “P ⇐⇒ Q” means54

If P then Q and if Q then P ,

or

P implies Q and Q implies P .

In order to make this true, we will choose the rules for proving and using
biconditional sentences as follows:

54This note is only for philosophically minded nitpickers. What does “means” mean?
The point of view adopted here is that the meaning of a word, phrase or symbol consists

of the rules for the use of that word, phrase or symbol. For example, the meaning of “and”
is the specification that if P , Q are two sentences, then (i) if you have “P and Q” you can
go to P and you can go to Q, and (ii) if you have P and you have Q then you can go to “P
and Q.” That is, the meaning of “and” is captured by Rules ∧use and ∧prove. Naturally,
this does not cover all the uses of “and” in our culture, such as, for example, to indicate
a progression (as in “this is getting better and better”), or to indicate a causal relation,
(as in “do that and I’ll hit you”), or the literary use full of nuances (as ‘in ‘tomorrow and
tomorrow and tomorrow”). And, most importantly for us, it does not cover the use of
“and” to connect nouns, as in “slings and arrows”. But it’s what “and” means in logic and
mathematics. If you want to program a computer so that it will know what “and” means,
you have to tell the computer how to use “and”. And this amounts to programming the
computer to use rules ∧use and ∧prove. And you don’t need to tell the computer anything
else. A similar situation arises with the biconditional. A computer that “knows” the rules
⇐⇒ use and ⇐⇒ prove “knows” all it needs to know to work with the biconditional, and
for that reason I believe that knowing the meaning of “⇐⇒ ” amounts to knowing the two
rules for working with it.
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• To prove “P ⇐⇒ Q” you do exactly the same thing that
you would do to prove (P ⇐⇒ Q) ∧ (Q ⇐⇒ P ) .

• To use “P ⇐⇒ Q” you do exactly the same thing that you
would do to use (P ⇐⇒ Q) ∧ (Q ⇐⇒ P ) .

So, for example, suppose you want to prove that

(∀x ∈ IR)
(

x2 = 4 ⇐⇒ (x = 2 ∨ x = −2)
)

. (6.136)

Then you would start by introducing into your proof an arbitrary real number
called x, and then you would prove that

(x2 = 4 ⇐⇒ (x = 2 ∨ x = −2) . (6.137)

And to prove (6.137), which is an “iff” sentence, you would prove both im-
plications x2 = 4 =⇒ (x = 2 ∨ x = −2) and (x = 2 ∨ x = −2) =⇒ x2 = 4.
(The proof of these two sentences is very simple: to prove that x2 = 4 =⇒
(x = 2∨x = −2), you use the fact that a positive real number r cannot have
more than two square roots55. Since 2 and −2 are two distinct square roots
of 4, there cannot be a third square root. So, if x2 = 4, so x is a square root
of 4, it follows that x must be 2 or −2. So x2 = 4 =⇒ (x = 2 ∨ x = −2).
To prove the other implication, i.e., that (x = 2 ∨ x = −2) =⇒ x2 = 4, just
observe that if x = 2 then x2 = 4, and if x = −2 then x2 = 4 as well,)

6.8.2 The rules for proving and using biconditionals

Now let us state explicitly the rules for proving and using biconditional sen-
tences.

As I explained in the previous subsection, these rules are designed
so as to make “P ⇐⇒ Q” mean precisely what we want it to
mean, that is “(P =⇒ Q) ∧ (Q =⇒ P )”.

The rules are as follows.

55This was proved in the notes for Lectures 2,3,4 but, just in case, here is a quick proof:
suppose r has three distinct square roots a, b, c. Then a2 = r, b2 = r and c2 = r. Hence
a2 − b2 = 0. So (a − b)(a + b) = 0. Therefore a − b = 0 or a + b = 0. Since a and b are
different, it cannot be the case that a − b = 0, so a + b must be zero, and then b = −a.
Now we can use exactly the same argument with c instead of b, and conclude that c = −a.
But then c = b, contradicting the fact that b 6= c.
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Rule ⇐⇒ prove

If P , Q are sentences, and you have proved the sentences

P =⇒ Q

and

Q =⇒ P ,

then you can go to

P ⇐⇒ Q .

Rule ⇐⇒ use

If P , Q are sentences, and you have proved the sentence

P ⇐⇒ Q ,

then you can go to

P =⇒ Q

and you can also go to

Q =⇒ P .

6.9 The other six rules

So far I have given you eight rules, two for each of the connectives ∧, ∨, =⇒,
and ⇐⇒.

In addition, there are six more rules that we have already discussed:

1. Rule ∀prove, the rule for proving a universal sentence. (This rule is
sometimes called “universal generalization”.)

2. Rule ∀use, the rule for using a universal sentence. (This rule is some-
times called the “specialization rule”.)

3. Rule ∃prove, the rule for proving an existential sentence.. (This rule is
sometimes called the “existential generalization rule”.)
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4. Rule ∃use, the rule for using a universal sentence. (This rule is some-
times called the “existential specialization rule”.)

5. The proof by contradiction rule.

6. Rule SEE, substitution of equals for equals (also called “Rule =use”).

So we now have all fourteen rules!
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6.10 Are the logical rules hard to understand and to
learn and remember ?

Most of the logical rules are very simple and

easy to remember. For example,

• The rules for using and proving ∧ sentences are so
stupid that you might object to having them be-
cause they are so obvious, but you certainly cannot
find it hard to understand them.

• The rules for using and proving universal sentences
are also natural:

– if you know that all the items in this store cost
1 dollar, and you pick an item in this store,
you can be sure that it costs 1 dollar. That’s
all that Rule ∀use says.

– if you prove that a schmoo must be green, with-
out using any information about that schmoo
other than the fact that it is a schmoo, then you
can conlude that all schmoos are green. And
that’s= all that Rule ∀prove says.

• And the rules for using and proving existential sen-
tences are natural as well:

– if you know that somewhere in this store there
is a schmoo, then you can go and get a schmoo
and call it any way you want, for example “my
woderful schmoo”. That’s all that Rule ∃use
says.

– if you find a schmoo, then you can conclude
that schmoos exist. And that’s all that Rule
∃prove sats.
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6.10.1 Proofwriting and rules for proofs

Writing proofs is like playing chess, checkers, or some
other board game.

• There are rules that tell you which moves are al-
lowed. (Notice that the rules for proofs never say
“you have to do this”. They say “you are al-
lowed to do this”. It’s exactly like the moves you
are allowed to make in a board game.)

• You have to obey the rules all the time.

• If you cheat, by violating the rules once, then you
are out of the game.

• If you know how to play, you will never make a
move that violates the rules.

• Once you know the moves, then the hard part be-
gins: you have to figure out how to choose which
moves to make in order to win. And that is
where proofwriting becomes difficult and challeng-
ing: some people are better than others at figuring
out how to win.

• From 1637 until 1995, many mathematicians tried
very hard to prove Fermat’s last theorem. Finally,
Andrew Wiles suceeded in doing it in 1995.

• But the proofs we do in this course are not that
hard.
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7 What is a proof, really?

Proofs employ logic but usually include some amount of
natural language which usually admits some ambiguity.
In fact, the vast majority of proofs in written mathe-
matics can be considered as applications of rigorous in-
formal logic. Purely formal proofs, written in symbolic
language instead of natural language, are considered in
proof theory. The distinction between formal and in-
formal proofs has led to much examination of current
and historical mathematical practice, quasi-empiricism
in mathematics, and so-called folk mathematics (in both
senses of that term). The philosophy of mathematics is
concerned with the role of language and logic in proofs,
and mathematics as a language.

From the Wikipedia article on “Mathematical Proof”.

So far, we have been talking about “proofs” but I have not given you a
completely precise definition of what a proof is. This is so for a reason: as
the statement from Wikipedia quoted above says, the “proofs” we normally
write “include some amount of natural language56”, and that means that
they “admit some ambiguity”. (The precise meaning of “ambiguity” is “a
situation where a statement occurs whose meaning has several different pos-
sible interpretations. Examples of ambiguous statements are “The university
president promised to stop drinking on campus”, “I am having an old friend
for dinner57”, “Duck!”, “A passerby helped a dog bite victim”, “One morning
I shot an elephant in my pajamas58.)”.

56That is, English, or French, or Chinese, or whatever language we are writing in.
57A line spoken by Hannibal Lecter in the 1991 film The Silence of the Lambs
58Line spoken by Groucho Marx in the 1930 film Animal Crackers. But Groucho then

says “How he got in my pajamas, I don’t know”, and that removes the ambiguity.
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Since natural language always contains some ambiguity, mathematicians have
given up on the idea of having a completely precise definition of “proof” that
would apply to proofs that we write in semiformal language59

Wnat mathematicians have been able to do, instead, is this:

1. We have a completely precise definition of “proof” for proofs written
in formal language.

2. For proofs written in natural language or semiformal language, we re-
gard these proofs as narratives explaining to the reader how a true
proof in formal language could be written.

59Semiformal language is a language that is a mixture of formal language and natural
language. All the proofs we have written so far are in smeiformal language.
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For example, in a proof in semiformal language we could write, after
we have introduced an integer called a, and proved that 2|a (that is,
that a is even):

(*) Since a is even, we pick an integer k such that a = 2k.

This tells the reader “I know how to go from ‘2|a’ to ‘k ∈ Z ∧ a = 2k’
in a precise, rigorous way, in formal language, and I hope you accept
this. If you don’t know how to do it, or you don’;t believe that I know
how to do it, then I can show you”.

The reader will probably understand how this could be done in formal
language, following the rules for proofs, and will leave it there.

But, in case the reader does not know, or does not believe that the
author knows, here is how the author could do it in formal language:

(i) 2|a.

(ii) (∀m ∈ Z)(∀n ∈ Z)
(

m|n ⇐⇒ (∃k ∈ Z)n = mk
)

[Definition of “|”]

(iii) (∀n ∈ Z)
(

2|n ⇐⇒ (∃k ∈ Z)n = 2k
)

[Rule ∀use from (ii)]

(iv) 2|a ⇐⇒ (∃k ∈ Z)a = 2k [Rule ∀use from (iii)]

(v) 2|a =⇒ (∃k ∈ Z)a = 2k [Rule ⇐⇒use from (iv)]

(vi) (∃k ∈ Z)a = 2k [Rule =⇒use from (i),(vi)]

(vii) Pick a witness for (vi) and call it k, so k ∈ Z ∧ a = 2k. [Rule (∃use,
from (vi)]

3. Writing (*) is of course much shorter than writing the seven steps listed
above. And the reader can figure out easily how those seven steps would
go, so there is no need for the author to spell them out.

But sometimes a reader may not agree that an author really has a
proof in formal language. The author may say “I don’t see how step
(*) goes”. In that case, the way to decide who is right is very simple:
If the author can do it in formal language, then the author is right. If
the author cannot do it in formal language, then the author does not
have a proof.
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4. A situation where an author writes a proof, some readers are not con-
vinced and ask for a detailed proof in formal language, the author
provides such a proof, and the readers do no agree that it is a proof,
will almost never arise, because once you have written a text in formal
language then it is either clear to everybody that it is corect, or clear
clear to everybody that it is not corect60

5. For this reason, in mathematics it is very rare for a dispute
as to whether a proof is right to remain unsettled for a long
time. A famous example of this is the 1995 proof by Andrew Wiles of
Fermat’s Last Theorem. Wiles announced his proof on June 23 1993.
In September 1993 an arror in the proof was found. But there was no
dispute. Wiles acknowledged immediately that the proof had an error.
And then he went to work trying to fix it. It took him a year, until
on September 19 1994 he figured out how to give a completely correct
proof. The proof was published in 1996. Many mathematians have
read it, and they all agree that the proof is right.

60A good analogy is the game of chess. If a player makes a move and the other player
claims that this move is forbidden, the matter will be settled very quickly, because the
rules for which moves are permitted in chess and which moves are not permitted are very
clear and precise, so it will never happen that two players disagree about a move and go
on disagreeing for ever. Compare this with, say, the rules set up by the U.S. Constituion.
One clause in the Consitution says that to be eligible for holding the office of President
or Vice President a person has to be a “natural-born citizen of the United Staes”. But
the Constitution does no say what “natural-born citizen” means. So disputes about the
meaning of this rule continue and will continue forever. For example, Ted Cruz was born
in Canada, his mother was a U.S. citizen, and his father was born in Cuba but became a
naturalized U.S. Citizen. Did that make Ted Cruz eligible? Senator Cruz’s supprters say
“yes”, his opponents say “no” and there is no way to settle this dispute.
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7.1 The precise definition of “proof” in formal lan-
guage

A proof in formal language. or formal proof, is a sequence
of steps, such that

1. Each step consists of a closed sentencea in formal language,
possibly preceded by the words “assume that” or by the word
“Let” or by the words “Pick a witness for ... and call it ...,
so”

2. In each step one of the following is true:

(i) The step introduces an assumption A, by saying “As-
sume that A”,

(ii) The step declares a value for a variable ξ, by saying
“Let ξ = · · · ” or “Let ξ be arbitrary”, or “Let ξ ∈ S be
arbitrary”, for some set S..

(iii) The step declares a value for a variable ξ by saying “Pick
a witness for · · · and call it ξ, so · · · ”.

(iv) The step follows from previous steps by one of the four-
teen logical rules.

(v) The step is a sentence known to be true for one of the
following reasons:

(a) the sentence appears as a previous step in the proofb,

(b) the sentence is a theorem that we are allowed to use,

(c) the sentence is a definition,

(d) the sentence is an axiom.

aA closed sentence is a sentence that has no open variables. This means
that every variable that appears in the sentence either has a value declared in
a previous step, or is under the scope of a quantifier.

bThis just says that you are allowed to repeat a previous step
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7.2 Some “pure logic” proofs

In this section we temporaraily forget about mathematics, and do some “pure
logic”.

As far back as in classical Greece, people realized that there are infer-
ences61 that are valid by virtue of the form of the sentences involved. For
example, the inference

All men are mmortal.
Socrates is a man.

Therefore Socrates is mortal.

is valid. (A valid inference is one in which the conclusion follows from the
premises.)

But it is clear that it does not matter very much who Socrates is, what
“man” means, or what “mortal” means. For example, the following inferences
are equally valid:

Inference 2:

All men are immortal.
Socrates is a man.

Therefore Socrates is immortal.

(In this case, one of the premises and the conclusion are false, but the infer-
ence is valid, in the sense that the conclusion is a consequence of the premises:
if the premises were true, the conclusion would have to be true as well.)

Inference 3:

All Klingons are mortal.
Gnugnuux is a Klingon.

Therefore Gnugnuuux is mortal.

Inference 4:

All borogoves are mimsy.
Gnugnuux is a borogove.

Therefore Gnugnuuux is mimsy.

61An inference is a deduction, in which a conclusion is derived from some premises,
in the sense that we assert that the conclusion follows from the premises, meaning that
the conclusion must betrue if the premises are true.
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Let’s just look at Inference No. 4. You probably have no idea what a
“borogove” is62, or what “mimsy” means, or who “Gnugnuuux” is, but I
am sure it is clear to you that, if it is true that all borogoves are mimsy and
that Gnugnuux is a borogove, then undoubtedly Gnugnuuux is mimsy.

What seems to be happening here is that there are certain inferences that
are valid just because of the form of the sentences involved. For example,
all the inferences in the above examples are of the form

(*) All X are Y.
A is an X.

Therefore A is a Y.

The general principle then seems to be: every inference of the form (*) is
valid.

And this observation suggests a general idea:

• Sentences have a “form”. (For example, the sentences “All men are
mortal”, “All men are immortal”, “All Klingons are mortal”, ‘All boro-
goves are mimsy”, are all of the form “All X are Y ”.)

• The validity of many inferences just depends on the form of the sen-
tences involved.

This idea leads to a program for developing the science of logic: try to find
and list all the valid inference forms. (An ’inference form” is the specification
of one or two or three “forms of premises” and a “form of the conclusion”.
A valid inference form is an inference form such that, if we plug in actual
sentences for the sentence forms involved, then the conclusion istrue if thee
premises are true. For example, the inference form (*) is valid because, if we
plug in actual sentences

And there are inferences that are valid just by virtue of the form of the
sentences involved.

In classical Greece and the Middle Ages, logicians and philosophers sin-
gled out several forms of “syllogisms” (i.e., inferences in which a conclusion
follows from two premises by virtue of the form of the sentences involved,
and gave them various names such as Barbara, Celarent, Darii, Ferioque,
Baroco, Bocardo, Barbari, Celaront, Camestros, Felapton, Darapti.

62Unless you have read Lewis Carroll’s Alice books
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In the Nineteenth Centtury, it became clear that this list of valid infer-
ences was insuficient to capture the needs of mathematical reasoning, and a
new form of logic, called the “predicate calculus”, was developed.

This is the logic we have been presenting gradually in these notes. The
equivalent for us of the classical syllogisms are our logical rules.

For example, take the Modus Ponens Rule , i.e., Rule =⇒use:

(=⇒use)
P
P =⇒ Q

Therefore Q

and the Specialization Rule, i.e., Rule ∀use:

(∀use) (∀x ∈ S)P (x)
a ∈ S

Therefore P (a)

These infereences are valid no matter which sentences P,Q, predicate
P (x), set S, and object a we plug in.

Using this, we can do complicated proofs using only logic, without bring-
ing in any details about the actual sentences involved.

In order to make this apparent, we introduce the notion of sentence
form: a sentence form is an expression such as A ∧ (∀x ∈ S)P (x), or
(∀x ∈ S)(∃y ∈ T )P (x, y), in which A, P (x), P (x, y) are just symbolic ex-
pressions for which one can plug in sentences or predicates. For example,
in the sentence form (∀x ∈ S)(∃y ∈ T )P (x, y), if we plug in for P (x, y) the
2-variable predicate “y is x’s mother” and we take S and T to be the set of
all people, then we get the sentence “every person has a mother”. If, on the
other hand, we plug in for P (x, y) the 2-variable predicate “y is a shoe size
that fita x”, we take S to be the set of all people, and T to be the set of
all shoe sizes, then we get the sentence “for every person there is a shoe size
that fits him/her”.

So we say that the sentences “every person has a mother”. and
“for every person there is a shoe size that fits him/her” are of
the form (∀x ∈ S)(∃y ∈ T )P (x, y), in which A.

Using the rules of logic, one can prove certain sentence forms without
plugging in particular predicates or sentences. Any sentence that can be
proved that way is said to be logically valid. And, if you know that a certain
sentence form is logically valid, then every sentence of that form is true.
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Example 35. We are going to see soon that the sentence form

(

(∀x ∈ S)P (x) ∧ (∀x ∈ S)Q(x)
)

⇐⇒ (∀x ∈ S)
(

P (x) ∧Q(x)
)

(7.138)

is logically valid.
This means that if you plug in any set for S and any two one-variable

predicates for P (x) and Q(x) then you get a true sentence.
And, indeed, the following sentences are true:

1. Everybody likes tea and everybody likes coffee if and only if everybody
likes tea and coffee.

2. I work every day and I sleep every day if and only if I work and sleep
every day.

3. All borogoves are mimsy and all borogoves are slippy63 if and only if
all borogoves are mimsy and slippy.

And here is the proof that (7.138) is a logically valid sentence form.

Theorem 11. The sentence form (7.138) is logically valid.

1. Assume (∀x ∈ S)P (x) ∧ (∀x ∈ S)Q(x).

2. Let u ∈ S be arbitrary.

3. (∀x ∈ S)P (x). [Rule ∧use, from step 1]

4. (∀x ∈ S)Q(x). [Rule ∧use, from step 1]

5. P (u). [Rule ∀use, from step 3]

6. Q(u). [Rule ∀use, from step 4]

7. P (u) ∧Q(u). [Rule ∧prove, from steps 5,6]

8. (∀u ∈ S)
(

P (u) ∧Q(u)
)

. [Rule ∀prove, from steps 2,7]

9. (∀x ∈ S)
(

P (x) ∧Q(x)
)

. [Change of variables]

10.
(

(∀x ∈ S)P (x) ∧ (∀x ∈ S)Q(x)
)

=⇒ (∀x ∈ S)
(

P (x) ∧Q(x)
)

.[Rule =⇒use]

from steps 1,9]

11. Assume (∀x ∈ S)
(

P (x) ∧Q(x)
)

.

12. Let u be arbitrary.

13. P (u) ∧Q(u). [Rule ∀use, from step 11]
63If you don’t know what “slippy” means, don’t worry. I don’t either. But it does no

matter: the sentence is true.
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14. P (u). [Rule ∧use, from step 13]

15. (∀u ∈ S)P (u). [Rule ∀prove, from steps 12,14]

15. (∀x ∈ S)P (x). [Change of variables]

16. Let u be arbitrary.

17. P (u) ∧Q(u). [Rule ∀use, from step 11]

18. Q(u). [Rule ∧use, from step 17]

19. (∀u ∈ S)Q(u). [Rule ∀prove, from steps 16,17]

20. (∀x ∈ S)Q(x). [Change of variables]

21. (∀x ∈ S)P (x) ∧ (∀x)Q(x). [Rule ∧prove, from steps 15,20]

22. (∀x ∈ S)
(

P (x) ∧Q(x)
)

=⇒
(

(∀x ∈ S)P (x) ∧ (∀x ∈ S)Q(x)
)

. [Rule

=⇒prove, from steps 11,21]

23.
(

(∀x ∈ S)P (x) ∧ (∀x)Q(x)
)

⇐⇒ (∀x ∈ S)
(

P (x) ∧Q(x)
)

. [Rule ⇐⇒prove,

from steps 10,22]

Q.E.D.

On the other hand, there are lots of sentences that are not true. If A is such
a sentence, and S is a sentence form such that A is of the form S, then S
cannot be provable, because if S could be proved then every sentence of the
form S, including A, would have to be true.

This suggests a method for proving that a sentence form F is not logically
valid: find a sentence of the form F which is not true.

Here is an example,

Theorem 12. The sentence form

(

(∀x)P (x) ∨ (∀x)Q(x)
)

⇐⇒ (∀x)
(

P (x) ∨Q(x)
)

(7.139)

is not logically valid.

Proof. To prove that (7.139) is not logically valid, it suffices to exhibit
examples of one-variable predicates p(x), q(x) for which the sentence

(

(∀x ∈ S)p(x) ∨ (∀x ∈ S)q(x)
)

⇐⇒ (∀x ∈ S)
(

p(x) ∨ q(x)
)

(7.140)

is not true.
Let us take p(x) to be the sentence “x is a Democrat”, and q(x) to be the

sentence “x is a Republican”, and let S be the set of all U.S. Representatives.
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Then the sentence “(∀x ∈ S)p(x) ∨ (∀x ∈ S)q(x)” says “either all the
representatives are Democrats or they are all Republicans”, which is false.

And the sentence “(∀x ∈ S)
(

p(x) ∨ q(x)
)

”says “every representative is a

Democrat or a Republican”, which is true. So the biconditional sentence
(7.140) is false.

Now let us give a mathematical example. Let us take p(x) to be the
sentence “x is even”, and q(x) to be the sentence “x is odd”, and let S be
the set of all integers.

Then the sentence “(∀x ∈ S)p(x) ∨ (∀x ∈ S)q(x)” says “either all the
integers are even or they are all odd”, which is false. And the sentence

“(∀x ∈ S)
(

p(x) ∨ q(x)
)

” says “every integer is even or odd”, which is true.

So the biconditional sentence (7.140) is false.

Theorem 13. The sentence form

(∀x ∈ S)(P (x) =⇒ Q(x)) =⇒
(

(∀x ∈ S)P (x) =⇒ (∀x ∈ S)Q(x)
)

(7.141)

is logically valid.

An example. Suppose S is the set of all people, P (x) stands for “x likes tea”
and Q(x) stands for “x likes coffee”.

Then

• “P (x) =⇒ Q(x)” says “if x likes tea then x likes coffee”.

• “(∀x ∈ S)(P (x) =⇒ Q(x))” says every person who likes tea likes cof-
fee”.

• “(∀x ∈ S)P (x)” says “everybody likes tea”.

• “(∀x ∈ S)Q(x)” says “everybody likes coffee”

• “(∀x ∈ S)P (x) =⇒ (∀x ∈ S)Q(x)” says “if everybody likes tea then
everybdy likes coffee”.

• sentence (7.141) says “if everybody who likes tea likes coffee, then if
everybody likes tea then everybody likes coffee”. which is clearly treu.

Proof.

1. Assume (∀x ∈ S)(P (x) =⇒ Q(x)).
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2. Assume (∀x ∈ S)P (x).

3. Let u ∈ S be arbitrary.

4. P (u) =⇒ Q(u). [Rule ∀use, from step 1]

5. P (u). [Rule ∀use, from step 2]

6. Q(u). [Rule =⇒use, from steps 4,5]

7. (∀u ∈ S)Q(u). [Rule ∀prove, from steps 3,6]

8. (∀x ∈ S)Q(x). [Change of variables]

9. (∀x ∈ S)P (x) =⇒ (∀x ∈ S)Q(x). [Rule =⇒prove, from steps 2,8[

10. (∀x ∈ S)(P (x) =⇒ Q(x)) =⇒
(

(∀x ∈ S)P (x) =⇒ (∀x ∈ S)Q(x)
)

.

[Rule =⇒prove, from steps 1,9[

Q.E.D.

Theorem 14. The sentence form
(

(∀x ∈ S)P (x) =⇒ (∀x ∈ S)Q(x)
)

=⇒ (∀x ∈ S)(P (x) =⇒ Q(x)) (7.142)

is not logically valid.

Proof. To prove that (7.142) is not logically valid, it suffices to exhibit
examples of one-variable predicates p(x), q(x) for which the sentence
(

(∀x ∈ S)p(x) =⇒ (∀x ∈ S)q(x)
)

=⇒ (∀x ∈ S)(p(x) =⇒ q(x)) (7.143)

is not true.
Take S to be the set of all people. Let p(x) stand for “x likes tea”, and

let q(x) stand for “x likes coffee”. Then

• “(∀x ∈ S)p(x)” says “everybody likes tea”, which is clearly false.

• “(∀x ∈ S)q(x)” says “everybody likes coffee”, which is also false.

• the implication “(∀x ∈ S)p(x) =⇒ (∀x ∈ S)q(x)” says “if everybody
likes tea then everybody likes coffee”, which is clearly true, because it
is an implication with a false premise.

• For a particular x, the open sentence p(x) =⇒ q(x) says “if x likes tea
then x likes coffee”. This is true of some people, but is not true of all
people. (For example, if a is any person who likes tea but not coffee,
then “p(x) =⇒ q(x)” is false for x = a.)
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• Therefore the sentence “(∀x ∈ S)(p(x) =⇒ q(x))” is false.

• So the sentence (7.143) is an implication whose premise is true and
whose conclusion is false.

• Hence (7.143) is false.

7.3 A very important example: the order of the quan-
tifiers matters

When we write formulas involving several different quantifiers, does the order
of the quantifiers matter? For example, if a formula contains quantifiers
(∃x ∈ S) and (∀y ∈ S), does it matter which one comes first?

The answer is it matters a lot.
Here is an example:

Theorem 15. The sentence forms (∀x ∈ S)(∃y ∈ S)P (x, y) and (∃y ∈
S)(∀x ∈ S)P (x, y) are not logically equivalent.

Proof. We give an example of a two-argument predicate p(x, y) such that
(∀x ∈ S)(∃y ∈ S)p(x, y) is true by (∃y ∈ S)(∀x ∈ S)p(x, y) is false.

Let S be the set of all people, and let p(x, y) stand for ‘y is x’s mother”.
Then

• “(∀x ∈ S)(∃y ∈ S)P (x, y)” says “everybody has a mother”,

• “(∃y ∈ S)(∀x ∈ S)P (x, y)” says ‘there is one person who is everybody’s
mother”.

Clearly, “(∀x ∈ S)(∃y ∈ S)P (x, y)” is true, but “(∃y ∈ S)(∀x ∈ S)P (x, y)”
is false. So the sentences are not logically equiva;ent. Q.E.D.

7.4 Examples of real proofs written fully in formal lan-
guage

In this section we show some examples of true proofs, written completely in
formal language, and not skipping any steps.
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As you will see from these examples, a true proof, written in formal
language, without skipping steps, can be extremely long. For that reason,
once we know what a true formal proof really is, we never write true formal
proofs. What we write is narratives in natural language (English, French,
Chinese, Spanish, Italian, whatever) that tell the reader how you would go
about writing a real proof.

These narratives are much shorter, but they have no value unless it is
clear that behind the narrative there is a real proof.

If you write, for example, a vague statement that I don’t see how to turn
it into a real proof, then I will ask you “write this in formal language” and
if yoiu cannot do it then you don’t have a proof.

7.4.1 Proving that 2 + 2 = 4 in only 15 steps

In this section we will prove that 2+2 = 4. We will use the following axioms
and definitions:

Definition 7.
2 = 1 + 1 .

Definition 8.
3 = 2 + 1 .

Definition 9.
4 = 3 + 1 .

AXIOM 1. 1 ∈ IR.

AXIOM 2. (∀x ∈ IR)(∀y ∈ IR)x+ y ∈ IR .

AXIOM 3. (∀x ∈ IR)(∀y ∈ IR)(∀z ∈ IR)x+ (y + z) = (x+ y) + z .
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Theorem 16. 2 + 2 = 4.

Proof.

[ 1.] 1 ∈ IR. [Axiom 1]
[ 2.] (∀x ∈ IR)(∀y ∈ IR)x+ y ∈ IR . [Axiom 2]
[ 3.] (∀y ∈ IR)1 + y ∈ IR . [Rule ∀use, from steps 1,2]
[ 4.] 1 + 1 ∈ IR . [Rule ∀use, from steps 1,3]
[ 5.] 2 = 1 + 1. [Definition 7]
[ 6.] 2 ∈ IR. [Rule SEE, from steps 4,5]
[ 7.] (∀x ∈ IR)(∀y ∈ IR)(∀z ∈ IR)x+ (y + z) = (x+ y) + z . [Axiom 3]
[ 8.] (∀y ∈ IR)(∀z ∈ IR)2 + (y + z) = (2 + y) + z .[Rule ∀use, from steps 6,7]
[ 9.] (∀z ∈ IR)2 + (1 + z) = (2 + 1) + z . [Rule ∀use, from steps 1,8]
[ 10.] 2 + (1 + 1) = (2 + 1) + 1 . [Rule ∀use, from steps 1,9]
[ 11.] 3 = 2 + 1. [Definition 8]
[ 12.] 2 + (1 + 1) = 3 + 1 . [Rule SEE, from steps 10,11]
[ 13.] 2 + 2 = 3 + 1 . [Rule SEE, from steps 5,12]
[ 14.] 4 = 3 + 1. [Definition 9]
[ 15.] 2 + 2 = 4. [Rule SEE. from steps 13,14]

Q.E.D.

7.4.2 Proving that 2× 2 = 4 in only 24 steps

AXIOM 4. (∀x ∈ IR)(∀y ∈ IR)(∀z ∈ IR)x(y + z) = xy + xz .

AXIOM 5. (∀x ∈ IR)x× 1 = x.
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Theorem 17. 2× 2 = 4.

Proof.
[ 1.] 1 ∈ IR. [Axiom 1]
[ 2.] (∀x ∈ IR)(∀y ∈ IR)x+ y ∈ IR . [Axiom 2]
[ 3.] (∀y ∈ IR)1 + y ∈ IR . [Rule ∀use, from steps 1,2]
[ 4.] 1 + 1 ∈ IR . [Rule ∀use, from steps 1,3]
[ 5.] 2 = 1 + 1. [Definition 7]
[ 6.] 2 ∈ IR. [Rule SEE, from steps 4,5]
[ 7.] (∀x ∈ IR)(∀y ∈ IR)(∀z ∈ IR)x+ (y + z) = (x+ y) + z . [Axiom 3]
[ 8.] (∀y ∈ IR)(∀z ∈ IR)2 + (y + z) = (2 + y) + z .[Rule ∀use, from steps 6,7]
[ 9.] (∀z ∈ IR)2 + (1 + z) = (2 + 1) + z . [Rule ∀use, from steps 1,8]
[ 10.] 2 + (1 + 1) = (2 + 1) + 1 . [Rule ∀use, from steps 1,9]
[ 11.] 3 = 2 + 1. [Definition 8]
[ 12.] 2 + (1 + 1) = 3 + 1 . [Rule SEE, from steps 10,11]
[ 13.] 2 + 2 = 3 + 1 . [Rule SEE, from steps 5,12]
[ 14.] 4 = 3 + 1. [Definition 9]
[ 15.] 2 + 2 = 4. [Rule SEE. from steps 13,14]
[ 16.] (∀x ∈ IR)(∀y ∈ IR)(∀z ∈ IR)x(y + z) = xy + xz . [Axiom 4]
[ 17.] (∀y ∈ IR)(∀z ∈ IR)2(y + z) = 2y + 2z . [Rule ∀use, from steps 6,16]
[ 18.] (∀z ∈ IR)2(1 + z) = 2× 1 + 2z . [Rule ∀use, from steps 1,17]
[ 19.] 2× (1 + 1) = 2× 1 + 2× 1 . [Rule ∀use, from steps 1,18]
[ 20.] 2× 2 = 2× 1 + 2× 1 . [Rule SEE, from steps 6,19]
[ 21.] (∀x ∈ IR)x× 1 = x. [Axiom 5]
[ 22.] 2× 1 = 2. [Rule ∀use, from steps 6,21]
[ 23.] 2× 2 = 2 + 2 . [Rule SEE, from steps 20,22]
[ 24.] 2× 2 = 4 . [Rule SEE, from steps 15,23]

Q.E.D.

7.4.3 Organizing the theorems into a systematic theory

In the previous two subsections we have seen how one can begin developing
elementary arithmetic by proving a couple of simple theorems such as, for
example, that 2 + 2 = 4 and that 2× 2 = 4.

But if you look at the proofs of Theorems 16 and 17, you see that these
proofs are very long. And there are several reasons for it:

• In both proofs, we devote several steps (six, in fact) to proving that
2 ∈ IR. Wouldn’t it be better if we just proved this once, and then used
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it every time we need it, without having to reprove it again? In other
words: we can make our proofs shorter by first proving as a separate
theorem the fact that 2 ∈ IR, so that then we can use it later.

• However, “2 ∈ IR” is not a particularly interesting or important result.
We just prove it because we are going to need it in order to prove other
things we really want to prove. A theorem like that, that we prove
because we are going to use it later, is usually called a lemma. So we
are going to ptove as a lemma that 2 ∈ IR.

• In the proof of Theorem 17, the first 15 steps are devoted to proving
that 2 + 2 = 4. But this is unnecessary, if we allow ourselves the right
to use previously proved theorems.

So we reorganize the first few steps in the development of elementary
arithmetic into one lemma and two theorems.

And we get the following.

Lemma 1. 2 ∈ IR.

Proof.
[ 1.] 1 ∈ IR. [Axiom 1]
[ 2.] (∀x ∈ IR)(∀y ∈ IR)x+ y ∈ IR . [Axiom 2]
[ 3.] (∀y ∈ IR)x+ y ∈ IR . [Rule ∀use, from steps 1,2]
[ 4.] 1 + 1 ∈ IR . [Rule ∀use, from steps 1,3
[ 5.] 2 = 1 + 1. [Definition 7]
[ 6.] 2 ∈ IR. [Rule SEE, from steps 4,5]

Q.E.D.

Theorem 18. 2 + 2 = 4.

Proof.
[ 1.] 1 ∈ IR. [Axiom 1]
[ 2.] (∀x ∈ IR)(∀y ∈ IR)(∀z ∈ IR)x+ (y + z) = (x+ y) + z . [Axiom 3]
[ 3.] 2 ∈ IR ∧ 3 ∈ IR. [Lemma 1]
[ 4.] 2 = 1 + 1 . [Definition 7]
[ 5.] (∀x ∈ IR)(∀y ∈ IR)(∀z ∈ IR)x+ (y + z) = (x+ y) + z . [Axiom 3]
[ 6.] (∀y ∈ IR)(∀z ∈ IR)2 + (y + z) = (2 + y) + z .[Rule ∀use, from steps 2,5]
[ 7.] (∀z ∈ IR)2 + (1 + z) = (2 + 1) + z . [Rule ∀use, from steps 1,6]
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[ 8.] 2 + (1 + 1) = (2 + 1) + 1 . [Rule ∀use, from steps 1,9]
[ 9.] 3 = 2 + 1. [Definition 8]
[ 10.] 2 + (1 + 1) = 3 + 1 . [Rule SEE, from steps 8,9]
[ 11.] 2 + 2 = 3 + 1 . [Rule SEE, from steps 4,10]
[ 12.] 4 = 3 + 1. [Definition 9]
[ 13.] 2 + 2 = 4. [Rule SEE. from steps 13,14] Q.E.D.

Theorem 19. 2× 2 = 4.

Proof.
[ 1.] 1 ∈ IR. [Axiom 1]
[ 2.] 2 = 1 + 1. [Definition 7]
[ 3.] 2 ∈ IR. [Lmma 1]
[ 4.] (∀x ∈ IR)(∀y ∈ IR)(∀z ∈ IR)x(y + z) = xy + xz . [Axiom 4]
[ 5.] (∀y ∈ IR)(∀z ∈ IR)2(y + z) = 2y + 2z . [Rule ∀use, from steps 3,4]
[ 6.] (∀z ∈ IR)2(1 + z) = 2× 1 + 2z . [Rule ∀use, from steps 1,57]
[ 7.] 2× (1 + 1) = 2× 1 + 2× 1 . [Rule ∀use, from steps 1,6]
[ 8.] 2× 2 = 2× 1 + 2× 1 . [Rule SEE, from steps 2,79]
[ 9.] (∀x ∈ IR)x× 1 = x. [Axiom 5]
[ 10.] 2× 1 = 2. [Rule ∀use, from steps 3,9]
[ 11.] 2× 2 = 2 + 2 . [Rule SEE, from steps 8,10]
[ 12.] 2 + 2 = 4 . [Theorem 18]
[ 13.] 2× 2 = 4 . [Rule SEE, from steps 11,12]

Q.E.D.

7.4.4 Another example of a real proof: proof that if a|b and a|c
then a|b+ c

Theorem 20. If a, b, c are integers and a and b are divisible by c, then a+ b
is divisible by c.

Proof. We want to prove

(∀a ∈ Z)(∀b ∈ Z)(∀c ∈ Z)
(

(c|a ∧ c|b) =⇒ c|a+ b
)

. (7.144)
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[ 1.] (∀x ∈ Z)(∀y ∈ Z)
(

x|y ⇐⇒ (∃k ∈ Z)y = xk
)

. [Definition of “|”]
[ 2.] Let a be an arbitrary integer. [Declaring a value]
[ 3.] Let b be an arbitrary integer. [Declaring a value]
[ 4.] Let c be an arbitrary integer. [Declaring a value]
[ 5.] Assume c|a ∧ c|b. [Assumption]
[ 6.] c|a. [Rule ∧use from step 5
[ 7.] c|b. [Rule ∧use from step 5]

[ 8.] (∀y ∈ Z)
(

c|y ⇐⇒ (∃k ∈ Z)y = ck
)

. [Rule ∀use from step 1]

[ 9.] c|a ⇐⇒ (∃k ∈ Z)a = ck. [Rule ∀use from step 8]
[10.] (∃k ∈ Z)a = ck. [Rule ⇐⇒use from steps 6,9]
[11.] Pick a witness for the sentence of step 10 and call it i, so i ∈ Z ∧ a = ci. [Rule ∃use]
[12.] i ∈ Z. . [Rule ∧use from step 11.]
[13.] a = ci. [Rule ∧use from step 11.]
[14.] c|b ⇐⇒ (∃k ∈ Z)b = ck. [Ru;e (∀use from step 8]
[15.] (∃k ∈ Z)b = ck. [Ru;e (⇐⇒use from steps 7, 14]
[16.] Pick a witness for the sentence of step 15 and call it j, so j ∈ Z ∧ b = cj. [Rule ∃use]
[17.] j ∈ Z. [Rule ∧use from step 16]
[18.] b = cj. [Rule ∧use from step 16]
[19.] (∀x)x = x. [Equality axiom]
[20.] a+ b = a+ b. [Rule ∀use, from step 19]
[21.] a+ b = ci+ b. [Rule SEE, from steps 13,20]
[22.] a+ b = ci+ cj. [Rule SEE, from steps 18,21]
[23.] (∀x ∈ Z)(∀y ∈ Z)(∀z ∈ Z)x(y + z) = xy + xz. [Axiom about the integers (distributive law)]
[24.] (∀y ∈ Z)(∀z ∈ Z)c(y + z) = cy + cz. [Rule ∀use, from step 23]
[25.] (∀z ∈ Z)c(i+ z) = ci+ cz. [Rule ∀use, from step 24]
[26.] c(i+ j) = ci+ cj. [Rule ∀use, from step 25]
[27.] a+ b = c(i+ j). [Rule SEE, from steps 22,26]
[28.] Let ℓ = i+ j. [Declaring a value]
[29.] (∀x ∈ Z)(∀y ∈ Z)x+ y ∈ Z. [Axiom about the integers]
[30.] (∀y ∈ Z)i+ y ∈ Z. [Rule ∀use, from step 29]
[31.] i+ j ∈ Z. [Rule ∀use, from step 30]
[32.] ℓ ∈ Z. [Rule SEE, from steps 28,31]
[33.] a+ b = cℓ. [Rule SEE, from steps 27,28]
[34.] ℓ ∈ Z ∧ a+ b = cℓ. [Rule ∧prove, from steps 32,33]
[35.] (∃k ∈ Z)a+ b = ck. [Rule ∃prove, from step 34]

[36.] (∀y ∈ Z)
(

c|y ⇐⇒ (∃k ∈ Z)y = ck
)

. [Step 8]

[37.] c|a+ b ⇐⇒ (∃k ∈ Z)a+ b = ck. [Rule ∀use, from step 36]
[38.] (∃k ∈ Z)a+ b = ck =⇒ c|a+ b. [Rule ⇐⇒use, from step 37]
[39.] c|a+ b. [Rule =⇒use, from steps 35,38]
[40.] (c|a ∧ c|b) =⇒ c|a+ b. [Rule =⇒prove, from steps 5,39]

[41.] (∀c ∈ Z)
(

c|a ∧ c|b) =⇒ c|a+ b
)

. [Rule =⇒prove, from steps 4,40]

[42.] (∀b ∈ Z)(∀c ∈ Z)
(

c|a ∧ c|b) =⇒ c|a+ b
)

. [Rule =⇒prove, from steps 3,41]

[43.](∀a ∈ Z)(∀b ∈ Z)(∀c ∈ Z)
(

c|a ∧ c|b) =⇒ c|a+ b
)

. [Rule =⇒prove, from steps 2,42]

Q.E.D.

7.4.5 The proof that x.0 = 0 for every x

Theorem 21. If x is a real number, then x.0 = 0. (In formal language:
(∀x ∈ IR))x.0 = 0.

Let us first write a narrative version, the kind of narrative that we often call
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a “proof”.

Proof. Let x ∈ IR be arbitrary. Since 0 + 0 = 0, we have x.(0 + 0) = x.0.
But x.(0 + 0) = x.0 + x.0. Hence x.0 + x.0 = x.0 .

Subtracting x.0 from both sides we get

x.0 = 0 .

Q.E.D.

Most people will find this persuasive enough, and will accept that whoever
wrote this narrative knows how to write a true proof, if necessary. But, just
in case somebody doubts it, here is a true proof.

Proof. [ 1.] 0 ∈ IR
[ 2.] Let x ∈ IR be arbitrary.
[ 3.] (∀u)u = u.
[ 4.] x.0 = x.0
[ 5.] (∀u ∈ IR)u+ 0 = u
[ 6.] 0 + 0 = 0
[ 7.] x.(0 + 0) = x.0
[ 8.] (∀u ∈ IR)(∀v ∈ IR)(∀w ∈ IR)u.(v + w) = u.v + u.w
[ 9.] (∀v ∈ IR)(∀w ∈ IR)x.(v + w) = x.v + x.w
[ 10.] (∀w ∈ IR)x.(0 + w) = x.0 + x.w
[ 11.] x.(0 + 0) = x.0 + x.0
[ 12.] x.0 + x.0 = x.0
[ 13.] (∀u ∈ IR)(∀v ∈ IR)u.v ∈ IR.
[ 14.] (∀v ∈ IR)x.v ∈ IR.
[ 15.] x.0 ∈ IR.
[ 16.] (∀u ∈ IR)u+ (−u) = 0
[ 17.] x.0 + (−x.0) = 0
[ 18.] (x.0 + x.0) + (−x.0) = 0
[ 19.] (∀u ∈ IR)(∀v ∈ IR)(∀w ∈ IR)u+ (v + w) = (u+ v) + w
[ 20.] (∀v ∈ IR)(∀w ∈ IR)(x.0) + (v + w) = (x.0 + v) + w
[ 21.] (∀w ∈ IR)(x.0) + (x.0 + w) = (x.0 + x.0) + w
[ 22.] x.0 + (x.0 + (−x.0)) = (x.0 + x.0) + (−x.0)
[ 23.] (∀u ∈ IR)u+ 0 = u.
[ 24.] x.0 + (x.0 + (−x.0)) = 0.
[ 25.] x.0 + 0 = 0.
[ 26.] x.0 + 0 = x.0
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[ 27.] x.0 = 0.
[ 28.] (∀x ∈ IR) x.0 = 0.

Q.E.D.

Problem 24. Provide the justifications for the steps of the proof of
Theorem 21. Use as your model the justficiations we gave for the proofs of
Theorems 16, 17, 18, 19, and 20. �
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Part III

8 Sets

The language of sets was introduced into mathematics in the 19th cen-
tury, when the great mathematicianGeorge Cantor (1845-1918) almost
single-handedly created Set theory.

You should read the article “A history of set the-
ory”, in MacTutor.

Today, set theory is not only an important branch of mathematics, but the
foundational pillar on which all of mathematics rests. Most mathematicians
no longer ask questions that they used to ask, such as “what is a natural
numebr?”, or “what is a real number?”, or “what is a function?”, because
they think that all these objects are just special kinds of sets.

This does not mean that they have answered those questions. It just
means that they have reduced those questions to just one question: what
is a set? Once you know what a set is, then all the other questions are
answered.

As for the fundamental question “what is a set?”, I am not going to
answer it here. What I am going to do is start telling you about sets, until
you get used to working with them and talking about them. The question
about the ultimate nature of sets will remain unanswered.

8.1 What kind of thing is a set?

Sets are things that we invent in order to combine several objects and form
with them a single thing, so that we can talk about the objects as one thing,
a “collective entity”.

This “grouping” operation, of forming a single thing out of several things,
is something we perform very often, using different words, called “collective
nouns”, to create these collective objects.
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Here are some examples.

1. Crowds. When you see a number of people standing together and
shouting something (say, “long live the Queen”), you create a single
thing, called “the crowd”, so that, instead of saying

the people are shouting “long live the Queen”

you can use the collective noun “crowd” and say

the crowd is shouting “long live the Queen”

Notice that “the people” have become a single object, “the crowd”. So,
instead of using the verb in plural (“the people are shouting”) when
you talk about the people, you use the verb in singular (“the crowd is
shouting”) when we talk about the crowd.

2. Flocka of birds. When we see a number of birds flying in formation,
we create an entity called “the flock”, so that, instead of saying

I see several birds, and they are flying East,

we can use the collective noun “flock” and say

I see a flock of birds, and it is flying East.

Notice that “the birds” have become a single object, “the flock”. So,
instead of using the verb in plural (“the birds are flying”) when we talk
about the birds, we use the verb in singular (“the flock is flying”) when
we talk about the flock.

3. Orchestras. When several musicians are playing together, we intro-
duce into our discourse the collective noun “orchestra”, so that, instead
of saying
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The musicians are playing

we can use the collective noun “orchestra” and say

The orchestra is playing.

Once again, “the musicians” have become a single object, “the band”.
So, instead of using the verb in plural (“the musicians are playing”)
when we talk about the musicians, we use the verb in singular (“the
orchestra is playing”) when we talk about the orchestra.

4. Juries. When several people are brought together to sit in judgemebnt
and decide if a defendant is guilty, the people are called jurors, and
are said to be members of the jury.

And we say things like

The jurors find the defendant guilty

or

The jury finds the defendant guilty.

Once again, when we talk about “the jurors” we use the verb in plural
(“find”) but when we talk about “the jury” itself we use the verb in
singular (“finds”) because the jury is a single object.

5. The sets IN, Z, and IR. When numbers of a certain kind are discussed
together, we create entities called IN (“the set of all natural numbers”),
Z (“the set of all natural integers”), IR (“the set of all real numbers”),
so that, instead of saying

there are infinitely many natural numbers

we can use the collective noun “IN” and say
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the set IN is infinite.

Similarly, instead of saying

all integers are real numbers,

we can use the collective nouns “IN” and “Z” and say

Z is a subset of IR.

And, instead of saying

the real numbers form a complete ordered field,

we can use the collective noun “IR” and say

IR is a complete ordered field.

Notice that “the natural numbers”, “the integers”, and “the real num-
bers” have become single objecta, “IN”. “Z”. “IR”. So, instead of using
verbs in plural (“there are infinitely many natural numbers”, “all in-
tegers are real numbers”, “the real numbers form...”), when we talk
about the numbers, we use verbs in singular (“the set IN is infinite”,
“Z is a subset of IR”, “IR is a complete ordered field”) when we talk
about the sets.

8.1.1 Sets with structure

Most of these collective entities have a structure; that is,

1. The members are not all equal and interchangeable. On the contrary,
some play special roles.

2. The pairs of members are not all equal and interchangeable. On the
contrary, some pairs of members are different from others.
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3. The triples of members are not all equal and interchangeable. On the
contrary, some triples of members are different from others.

For example,

1. A flock of birds flying in formation has a special member, the leader.
And, even more importantly, each bird has neighbors, that is, a few
other birds that are right next to it, to the left or to the right or in front
or behind, and the bird communicates with its neighbors. The flock
stays in formation because each bird, knowing which way its neighbors
are moving, tries to move in the same way. “Being neighbors” is what
we have called in these notes a binary relation. If we use “xNy” for
“x is a neighbor of y”, then the “neighbor” relation N singles out some
pairs (x, y) of birds as different from other pairs.

2. A number system such as IN, or Z, or IR has

• special members (1 for IN, 0 and 1 for Z and IR),

• special sets of members (for example, for Z or for IR, the set of all
positive members of the set),

• special pairs of members of the set (for example, for IN, Z, or IR,
the pairs (x, y) such that x < y are different from the other pairs),

• special triples (x, y, z) of members. (For example, the triples
(x, y, z) such that z = x + y play a special role: they determine
the operation of addition, in the sense that if you know the set
S of all the triples (x, y, z) such that x + y = z then you know
the operation of addition, because, if I give you numbers x, y, then
you can compute x, y by looking in the set S until you find a triple
(x, y, z) that is in S, and then the sum x+ y is z.)

8.1.2 How sets are different from other collective entities

Usually, you cannot form collective entities by putting together any objects
you want, because the objects have to be related in some way. For example,

• You would never form a “crowd” consisting of yourself, the prime min-
ister of Australia, and five people living in Wyoming.
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• And you would never take a bunch of wolves living in Wyoming together
with some other wolves who live in Sweden and call that a “pack”. To
form a pack, the wolves have to be together, run together, and hunt
together.

Sets are different, in that they are collective entities that can be formed to
put together into a single object any objects you want. The things you
put together to form a set do not have to be related in any way. For example,

1. You can form a set whose members are all the wolves in Wyoming.

2. You can form a set whose members are all the wolves in Wyoming
together with all the wolves in Sweden.

3. You can form a set whose members are three wolves you like who live in
Wyoming, together with the musicians of the New York Philharmonic,
your uncle Billy, the planets Earth, Mars and Jupiter, the numbers 5, 7
and 23, the numbers π and 3+

√
5, and all the integers that are larger

than 377.

The only thing you need in order to be able to form a set S, is a “mem-
bership criterion”, i.e., a sentence C(x) that specifies the condition that an
object x has to satisfy in order to qualify as a member of the set. And any
sentence will do64.

8.1.3 Terms and sentences with variables: a review

In mathematical writing, there are two kinds of meaningful phrases65, namely,
terms and sentences.

64At least for now. Later we will se that we cannot allow absolutely any sentence,
because if you do allow that serious trouble ensues, in the form of the “Russell paradox”.
So we will have to put some limitations. But we are not there yet.

65A “phrase” in a particular language is, according to the dictionary, “a small group of
words standing together as a conceptual unit”. (The “small group” could be just a single
word. Most phrases are meaningless. For example, the words “Obama” and “Alice” and
the longer phrases “Ronald Reagan”, “the table”, “the case where I put my sunglasses
yesterday”, “cows eat grass”, “the planets move around the Sun”, “cows like to attack
lions and fight them to death”, “2 + 3”, “2 + 3 = 5”, “2 + 3 = 6”, “every odd number is
prime”, are all phrases.
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• Terms are phrases that stand for things or people: for example, “Obama”,
“Alice”, “Ronald Reagan”, “the table”, “the case where I put my sun-
glasses yesterday”, “2 + 3”, are terms, because they stand for specific
things.66

• Sentences are phrases that make an assertion that can be true or false:
for example, “cows eat grass”, “I have no idea where I left the case
where I put my sunglasses yesterday”, “the planets move around the
Sun”, “cows like to attack lions and fight them to death”, “2+ 3 = 5”,
“2+3 = 6, and “every odd number is prime”) are sentences. (Actually,
“cows eat grass” is true, “the planets move around the Sun” is true,
“cows like to attack lions and fight them to death” is false, “2+3 = 5”
is true, “2 + 3 = 6” is false, and “every odd number is prime” is true.)

Remark 7. Terms are basically the same as “noun phrases”, that is, phrases
that can serve as the subject of an “is” sentence. So, for example,

• In the sentence “2 + 3 is an odd number”, the subject is “2 + 2”, so
“2 + 2” is a term.

• In the sentence “the case where I put my sunglasses yesterday is on the
table”, the subject is “the case where I put my sunglasses yesterday”,
so “the case where I put my sunglasses yesterday” is a term. �

Terms and sentence can contain variables, that is, letters or expressions
that do not stand for a definite object, but represent slots where the name
of a person or object can be inserted. Then, when you actually put specific
names of persons or objects in the slots,

• A term has a value, i.e., becomes the name of a specific object.

• A sentence has a truth value, i.e., becomes true or false.

But if you leave some of the the slots unfilled (i.e., if you keep some “free
variables”) then the terms do not have a definite value and the sentences
do not have a truth value. In that case, we say that he term or sentence is
meaningless, because it does not stand for a specific object or assertion.

66These things may be concrete,material objects or people, or abstract entities such as
numbers. For example, “2 + 3” stands for a number, that happens to be the number 5.
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Example 36. The term (i.e., noun phrase) “his mother” contains the posses-
sive adjective “his”, which is a variable. If you plug in “Barack Obama” for
“his” the term becomes “Barack Obama’s mother”, which stands for a defi-
nite person. (In mathematical language, we would talk about “x’s mother”.
And, again, when we plug in “Barack Obama” for “x” the term becomes
“Barack Obama’s mother”, which stands for a definite person.) �

Example 37. The sentence “he is a friend of mine” contains the pronoun
“he”. If you do not tell me who “he” is, then I don’t know what you are
talking about. But if you tell me who “he” is, that is, if you assign a
value to the variable “he” (by saying, for example, that “he” stands for
“Bill Clinton”) then the sentence becomes “Bill Clinton is a friend of mine”,
which has a definite truth value. (In mathematical language, we would say
“x is a friend of mine”, and then, when we plug in “Bill Clinton” for “x”,
we get when we plug in “Barack Obama” for “x” the term becomes “Barack
Obama’s mother”, which stands for a definite person.) �

Example 38. The term “x + 3y” contains the letters “x” and “y”. If you
do not tell me which numbers the letters x and y stand for, then I cannot
make sense of which object (in this case, a number) this term stands for. If,
on the other hand, you assign specific values to x and y then I can figure out
the value of the term. (For example, if you let x = 4, y = −6, then I can tell
that “x+ 3y” has the value −14, i.e., that x+ 3y = −14. �

Example 39. The sentence “x+3y > 6” contains the letters “x” and “y”. If
you do not tell me which numbers the letters x and y stand for, then I cannot
make sense of which assertion the sentence is making, and cannot decide if
it is true or false, If, on the other hand, you assign specific values to x and y
then I can figure out the truth value of the sentence. (for example, if you let
x = 4, y = −6, then I can tell that “x+ 3y = 6” has the truth value “false”,
because x+ 3y = 4− 3× 6 = −14, and ∼ −14 > 6. But if x = 3 and y = 2,
then x+ 3y = 9, and 9 > 6, so “x+ 3y = 6” is true.. �

8.1.4 Forming sets

As long as you can write a sentence C(x) about a variable object x, you can
form the set

{x : C(x)}
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that is, the set of all x for which C(x) is true. And you could give this set a
name. For example, suppose you want to form the set {x : C(x)} and give
it the name S. You would do that by writing

Let S = {x : C(x)}.

Let us formulate this rule for forming sets as an axiom:

The näıve axiom of set formation

Given any sentence C(x) having x as an open vari-
able, we can form the set whose members are all
the objects x for which C(x) is true.

A name for such a set is

{x : C(x)} .
And we read this as

The set of all x such that C(x) .

Remark 8. Why did I call the set formation axiom “näıve”? The reason is
this: in a few days, we will discover that the set formation axiom, as we have
formulated it, causes serious problems that can only be solved by changing
the statement of the axiom. Instead of a “näıve” axiom that allows us to take
any sentence C(x) whatsovever and form the ser {x : C(x)}, we will have to
adopt a “sophisticated” axiom in which nto all sentences are permitted. �

8.1.5 The membership criterion

Suppose we use the sentence “x is a cow”, to form a set S, so

S = {x : x is a cow }

that is, S is “the set of all x such that x is a cow”, or, in much better English,
S is the set of all cows.

Then we can decide whether or not an object a belongs to the set S (that
is, whether or not a ∈ S) by applying the following simple test
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1. Find out if a is a cow or not.

2. If a is a cow, then a belongs to S.

3. If a is not a cow, then a does not belong to S.

In other words, the sentence “x is a cow” is the membership criterion,
or membership condition, for S. A particular object a belongs to the set
{x : x is a cow } if a is a cow, and doesn’t belong to the set of a is not a
cow.

For a general sentence C(x):

Suppose C(x) is a sentence having x

as an open variable, and you define a

set S by writing

Let S = {x : C(x)} .

Then

• The sentence C(x) is called

the membership criterion, or

membership condition, for the

set S.

• An object a belongs to S if

C(a) is true, and doesn’t be-

long to S if C(a) is not true.

8.1.6 Forming sets of members of a given set

Suppose we want to form the set of all natural numbers n that are even, i.e.,
such that 2|n, and we want to call this set A.
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Then we can say:

Let A = {n : n ∈ IN ∧ 2|n} ,

and we can also say

Let A = {n ∈ IN : 2|n} .

The first ssentence is read as “Let A be the set of all things that are natural
numbers and are even”, whereas the second sentence is read as “Let A be
the set of all natural numbers that are even”.

And, clearly, both define the same set.

Suppose U is a set, C(x) is a sentence

having x as an open variable, and you

define a set S by writing

Let S = {x : x ∈ U ∧ C(x) } .
Then the membership criterion is the
sentence “x ∈ U ∧ C(x)”.
And you can also write

Let S = {x ∈ U : C(x) } .

Example 40. Suppose the membership criterion C(x) is the sentence “x is a
natural number that can be written as the sum of the squares of two natural
numbers”. Let

S = {x : C(x)} .
Clearly, C(x) is the sentence

x ∈ IN ∧ (∃m ∈ IN)(∃n ∈ IN)x = m2 + n2 ,
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so we could have written the definition of S as follows:

S = {x : x ∈ IN ∧ (∃m ∈ IN)(∃n ∈ IN)x = m2 + n2} ,

or as
S = {x ∈ IN : (∃m ∈ IN)(∃n ∈ IN)x = m2 + n2} , (8.145)

(We read this as “S is the set of all natural numbers x such that there exist
natural numbers m,n for which m2 + n2 = x”. And an even better reading
is “S is the set of all natural numbers that are the sum of two squares of
natural numbers”.)

Let us consider several possible values of x, and in each case let us figure
out whether this x belongs to the set S.

1. Suppose x is the Math 300 textbook. Then x is a book, not a natural
number. So x /∈ S, that is, x is not a member of S.

2. Suppose x = 5. Then x is a natural number. And x is the sum of
the squares of two natural numbers, because x = 22 + 12. Therefore
x satisfies the criterion for membership in S. So x is a member of S,
that is, x ∈ S.

3. Suppose x = −5. Then x is not a natural number. So C(x) is not true.
That is, x does not satisfy the criterion for membership in S. So x is
not a member of S.

4. Suppose x = 7. Then x is a natural number. Can x be written as the
sum of the squares of two natural numbers? The answer is “no”. How
do we know that? Well, for example, we know that a number that is
of the form k + 3, k ∈ Z, is not the sum of two squares. And 7 is of
the form k + 3, because 7 = 4 + 3. So x /∈ S. �
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8.1.7 How to read the symbol “∈”

How to read the “∈” symbol

If S is a set and a is an object, we write

a ∈ S
to indicate that a is a member of S.

And we write

a /∈ S
to indicate that a is not a member of S.
The expression “a ∈ S” is read in any of the following
ways:

- a belongs to S,

- a is a member of S,

- a is in S.

The expression “a /∈ S” is read in any of the following
ways:

- a does not belong to S,

- a is not a member of S,

- a is not in S.

Remark 9. Sometimes, “a ∈ S” is read as “a belonging to S”, or “a in S”,
rather than “a belongs to S”, or “a is in S.” For example, if we write

Pick an a ∈ S,
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then it would be very bad to say “pick an a belongs to S”. But “pick an a
belonging to S”, “pick an a in S”, is fine. �

Never read “∈” as “is contained in”, or ”is
included in”. The words “contained” and “in-
cluded” have different meanings, that will be dis-
cussed later.

8.2 When are two sets equal?

As we have explained, sets have members. And, even more imprtantly,
knowledge of the members of the set determines the set. Two
sets that have the same members are the same set.

Let us make this precise:

The axiom of set equality

Two sets are equal if and only if they have the same
members.
In semiformal language:
If A, B are sets, then A = B if and only if

(∀x)(x ∈ A⇐⇒ x ∈ B) .

And, in formal language,

(∀A)(∀B)
(

A = B ⇐⇒ (∀x)(x ∈ A⇐⇒ x ∈ B)
)

.

Example 41. Let

A = {x ∈ IR : x ≥ 0} ,
B = {x ∈ IR : (∃y ∈ IR)y2 = x} .

Let us prove that A = B.
To prove that A = B, we have to prove that (∀x)(x ∈ A⇐⇒ x ∈ B).
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So, let x be arbitrary. We have to prove that x ∈ A⇐⇒ x ∈ B.

To prove this, we have to prove that x ∈ A =⇒ x ∈ B and that
x ∈ B =⇒ x ∈ A.

Let us first prove that x ∈ A =⇒ x ∈ B.

Assume that x ∈ A.

Then x ∈ IR and x ≥ 0. (Reason: “x ∈ IR ∧ x ≥ 0” is the
membership criterion for A.)

But every nonnegative real number has a square root.

So x has a square root. That is, (∃y ∈ IR)y2 = x.

So x satisfies the membership criterion for B.

Hence x ∈ B.

Therefore x ∈ A =⇒ x ∈ B.

We now prove that x ∈ B =⇒ x ∈ A.

Assume that x ∈ B.

Then x ∈ IR and (∃y ∈ IR)y2 = x. (Reason: “x ∈ IR ∧ (∃y ∈
IR)y2 = x” is the membership criterion for B.)

Pick y ∈ IR such that y2 = x.

Then y2 ≥ 0. (Reason: (∀u ∈ IR)u2 ≥ 0.)

So x ≥ 0.

So x satisfies the membership criterion for A.

Hence x ∈ A.

Therefore x ∈ B =⇒ x ∈ A.

So x ∈ A ⇐⇒ x ∈ B. Since x is arbitrary, we can conclude that (∀x)(x ∈
A⇐⇒ x ∈ B). Hence A = B. Q.E.D.

Example 42. Let

A = {x ∈ IR : x > 0} ,
B = {x ∈ IR : (∃y ∈ IR)y2 = x} .



Math 300, Fall 2018 188

Let us prove that A 6= B.
To prove that A 6= B, we have to prove that it is not true that (∀x)(x ∈

A⇐⇒ x ∈ B).

Suppose67 (∀x)(x ∈ A⇐⇒ x ∈ B).

Then we can specialize to x = 0, and conclude that 0 ∈ A⇐⇒ 0 ∈ B.

But “0 ∈ B” means that “(∃y ∈ IR)y2 = 0, which is true, because
72 = 0.

On the other hand, “0 ∈ A” means that “0 > 0”, which is false.

Hence it is not true that 0 ∈ A⇐⇒ 0 ∈ B.

So (0 ∈ A ⇐⇒ 0 ∈ B) ∧
(

∼ (0 ∈ A ⇐⇒ 0 ∈ B)
)

, which is a

contradiction .

Hence A 6= B. Q.E.D.

Example 43. Let A = {n ∈ Z : 6|n}, and let B = {n ∈ Z : 2|n ∧ 3|n}.
Let us prove that A = B.
To prove that A = B, we have to prove that (∀x)(x ∈ A⇐⇒ x ∈ B).

So, let x be arbitrary. We have to prove that x ∈ A⇐⇒ x ∈ B.

To prove this, we have to prove that x ∈ A =⇒ x ∈ B and that
x ∈ B =⇒ x ∈ A.

Let us first prove that x ∈ A =⇒ x ∈ B.

Assume that x ∈ A.

Then x ∈ Z and 6|x.
Since 6|x, we may pick k ∈ Z such that x = 6k.

Then x = 2× (3k), and 3k ∈ Z, so 2|x.
Also, x = 3× (2k), and 2k ∈ Z, so 3|x.
Hence 2|x ∧ 3|x.
So x ∈ B.

67A proof by contradiction , of course.
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Therefore x ∈ A =⇒ x ∈ B.

We now prove that x ∈ B =⇒ x ∈ A.

Assume that x ∈ B.

Then x ∈ Z, 2|x, and 3|x.
Since 2|x, we may pick j ∈ Z such that x = 2j.

Since 3|x, we may pick k ∈ Z such that x = 3k.

Then x = 1.x = (3−2)x = 3x−2x = 3×(2j)−2×(3k) = 6(j−k).
So 6|x.
Hence x ∈ A.

Therefore x ∈ B =⇒ x ∈ A.

So x ∈ A ⇐⇒ x ∈ B. Since x is arbitrary, we can conclude that (∀x)(x ∈
A⇐⇒ x ∈ B). Hence A = B. Q.E.D.

Problem 25. Let

A = {x ∈ IR : x3 > x} ,
B = {x ∈ IR : −1 < x < 0 ∨ x > 1}
C = {x ∈ IR : −1 < x} .

Prove or disprove each of the following:

• A = B,

• A = C.

8.2.1 Subsets

Definition 10. Let A, B be sets. We say that A is a subset of B, and write

A ⊆ B ,
if every member of A is a member of B.
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In semiformal language, A is a subset of B if and only if

(∀x)(x ∈ A =⇒ x ∈ B) .

In completely formal language:

(∀A)(∀B)
(

A ⊆ B ⇐⇒ (∀x)(x ∈ A =⇒ x ∈ B)
)

.�

Example 44. The following are true:

• IN ⊆ Z ,

• Z ⊆ Q ,

• Q ⊆ IR ,

• {x ∈ IR : 0 < x < 1} ⊆ {x ∈ IR : 0 ≤ x ≤ 1}. �

Example 45.
The following are true:

• {x ∈ IR : −1 < x < 0} ⊆ {x ∈ IR : x3 > x}.

• {n ∈ IN : n is prime ∧ n 6= 2} ⊆ {n ∈ IN : 2|n− 1}.

• {n ∈ Z : 4|n} ⊆ {n ∈ Z : 2|n} ,

• {x ∈ IR : 0 < x < 1} ⊆ {x ∈ IR : 0 ≤ x ≤ 1} , �
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WARNING!

“is a subset of” is a binary relation. It does not make
sense to say things like “A is a subset”. What does make
sense is to say “A is a subset of B”.
If, in an exam, I ask you to define “subset”, and you
say “a set A is a subset if ....”, then that is completely
wrong and you get zero credita

The definition of “subset” must start with the words:
“Let A, B be sets. We say that A is a subset of B if
. . ..

aAnd if your definition starts with horrendous words “subset is when . . .”
then you lose 10, 000, 000 points, on a sclae from 0 to 10.
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ALWAYS UNDERLINE THE
DEFINIENDUM

In a definition, the term being defined is called the
definiendum. The definiendum must always be under-
lined, or highlighted in some way, in order to indicate
that we are writing a definition of that term, not just
making a true statement.
For example:

• If I write “elephants are four-legged animals”, then
I am making a true statement about elephants.

• If, on the other hand, I write “elephants are four-
legged animals”, then I am saying that I am defin-
ing the word “elephant” to mean “four-legged an-
imal”, and this is of course wrong, because “ele-
phant” does not mean “four-legged animal”: there
are lots of four-legged animals that are not ele-
phants.

• If I write “an even integer is an integer that is di-
visible by 2”, then I am making a true statement.
but I am not saying that this is what “even integer”
means.

• If I want to explain what “even integer” means, i.e.,
give a definition of “even integer”, then I have to
say “an even integer is an integer that is divisible
by 2”. By underlining “even integer” I am convey-
ing the message that this is my definition of “even
inteeger”.

• If in an exam you are asked to give a definition and
you do not underline the definiendum, you will lose
points.
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Question 1. In the first sentence of the previous box, why is the word “definien-
dum” underlined? �

Problem 26. Prove the four statements of Example 45.
The structure of your proofs should be as follows:

We want to prove that A ⊆ B.

For that purpose, we prove that (∀x)(x ∈ A =⇒ x ∈ B).

Let x be arbitrary. We want to prove “x ∈ A =⇒ x ∈ B”.

Assume x ∈ A.
...

x ∈ B.

So x ∈ A =⇒ x ∈ B.

Therefore (∀x)(x ∈ A =⇒ x ∈ B).

So A ⊆ B. Q.E.D.

Problem 27. Prove that the binary relation “⊆” is reflexive, antisymmet-
ric, and transitive. (In the definition of these properties given in the notes,
a set S is mentioned. Here you may think of S as “the set of all sets”, which
means that you can forget about S. Then, for example, the property that

“⊆” is antisymmetric means “(∀A)(∀B)
(

(A ⊆ B ∧ B ⊆ A) =⇒ A = B
)

”.)

8.2.2 The empty set

An important example of a set is the empty set, that is, the set that has
no members at all.

The symbol for the empty set is

∅ .
One possible way to define this set is by the following formula:
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∅ = {x : x 6= x} .

This means that the members of ∅ are the things x that satisfy x 6= x.
But our Equality Axiom says that (∀x)x = x. So “x = x” is true for every x.
This means that no x can be a member of ∅. So, indeed. ∅ has no members.

Let us make this precise:

Theorem 22. The empty set has no members. That is.

(∀x)x /∈ ∅ .
Proof.

Let x be arbitrary. We want to prove that x /∈ ∅.

Assume68 that x ∈ ∅.
Then x satisfies the membership criterion for ∅, i.e.,

x 6= x .

But (∀x)x = x, by the Equality Axiom.

So x = x, by the rule for using universal sentences.

Therefore x = x ∧ x 6= x, which is a contradiction.

So x /∈ ∅.
Therefore (∀x)x /∈ ∅. Q.E.D.

8.2.3 The empty set is a subset of every set

If you have a set A and a subset B of A, and you remove some members
from B, producing a subset C of B, then it is clear that C is still a subset
of A. This ought to be true even in the extreme case when you remove all
the members of B, so that C is the empty set. In other words, the empty set
should be a subset of A, for every set A.

Let us prove a precise theorem:

68A proof by contradiction !.
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Theorem 23. The empty set is a subset of every set. That is,

(∀A)∅ ⊆ A .

Proof.

Let A be an arbitrary set. We want to prove that ∅ ⊆ A.

Assume69 that ∅ is not a subset of A.

That is, assume that it is not true that every member of ∅ is in A.

That means that some members of ∅ are not in A.

In other words, there exists an object x such that x ∈ ∅ and x /∈ A.

Pick one such object and call it a.

Then a ∈ ∅ and a /∈ A.

So in particular a ∈ ∅.
But we know from Theorem 22 that (∀x)x /∈ ∅.
So a /∈ ∅.
Hence a ∈ ∅ ∧ a /∈ ∅.

So we have proved a contradiction.

Therefore ∅ ⊆ A.

So (∀A)∅ ⊆ A. Q.E.D.

8.2.4 Sets with one, two, three or four members

If a is any thing, we can form a set that has a as a member, and no other
members. This name of this set is

{a} ,

which we read as “singleton of a.”
The precise definition of {a} is as follows.

69A proof by contradiction !
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Definition 11. Let a be any object. Then the singleton of a is the set {a}
given by

{a} = {x : x = a} .

In other words: to be a member of the set {a} you have to be a. If you are
a then you are a member, and if you are not a then you are not a member.

We can do a similar thing with two objects, say a and b. We can form the
set {a, b} whose members are a, b, and nothing else. The set {a, b} is the
unordered pair of a and b.

Definition 12. Let a, b be any two objects. Then the unordered pair of a
and b is the set {a, b} given by

{a, b} = {x : x = a ∨ x = b} .

Remark 10. Warning: The set {a, b} is not necessarily a set with two
members. That depends on who a and b are. For example; if a happens to
be equal to b, then {a, b} has only one member. �

Naturally, we can do the same thing with three, four, or any number of
objects. For example:

Definition 13. Let a, b, c be any three objects. Then the unordered triple
of a, b and c is the set {a, b, c} given by

{a, b, c} = {x : x = a ∨ x = b ∨ x = c} .

Definition 14. Let a, b, c, d be any four objects.
Then the unordered quadruple of a, b, c and d is the set {a, b, c, d} given

by
{a, b, c, d} = {x : x = a ∨ x = b ∨ x = c ∨ x = d} .

And, in principle, you could go on like this and define sets with five
members, sets with 6 members, and so on.

But as soon as the number of members gets large, this way of constructing
sets becomes very complicated, so it is better to do it differently.

Example 46. Suppose you want to define a set whose members are the first
five presidents of the U.S., and call this set A. That’s easy to do. We say:
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Let A = {George Washington,John Adams,Thomas Jefferson,James Madi-
son,James Monroe}.

Now suppose you want to define a set whose members are the first 30 U.S.
presidents, and call this set B. That is going to be much more complicated
right? And what if you do not know the names of all those presidents?

Hhere is how you can do it. You can say:
Let

B =
{

x : (∃j ∈ IN)(j ≤ 30 ∧ x = pj)
}

,

where, for each j ∈ IN, pj is the j-th president of the U.S.
This works perfectly! Indeed, let us see what has to be true of an object

x for x to qualify as a member of A. If you are given an object x, and you
have to decide whether x ∈ B or not, you have to find out if there exists a
natural number j such that j ≤ 30 and x is the j-th U.S. president. And
that’s exactly what we want! �

Problem 28. How many members does the set B of Example 46 have?
If you think that the answer is 30, think again! Go to a history book (or

to a history Web site) and read about Grover Cleveland, who was both the
22nd and the 24th president of the United States. �

Problem 29. Let A = {1, 2, 3, 4}. Write a list of all the subsets of A.
(HINT: There are 16 of them.) �

Problem 30. Write a definition, in the style of Example 46, of the set X
whose members are the first 325 prime numbers p such that p− 3 is divisible
by 4. �

8.3 Operations on sets

There are several operations that enable us to construct new sets from given
sets.
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8.4 The power set of a set

Definition 15. Let A be a set. The power set

of A is the set P(A) given by

P(A) = {X : X ⊆ A} .

In other words, P(A) (read as “the power set of A”) is the set whose
members are all the subsets of A.

The membership criterion for the power set P(A) is the sentence
“X ⊆ A”. That is, for an object X to quality as a member of P(A), it has
to be shown that X is a subset of A.

Example 47. If A = {1, 2, 3} then

P(A) =
{

∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}
}

. (8.146)

Notice that A is a finite set with 3 members, and P(A) has turned out to
be a finite set with 8 members. This is not a coincidence. We will
prove later that: if A is a finite set and A has n members, then
the power set P(A) is a finite set with 2n members. �

Problem 31. Let A = {1, 2, 3, 4}. Write a formula similar to (8.146) listing
all the members of P(A).

Problem 32. Let A = { ∅, {∅} }. Write a formula similar to (8.146) listing

all the members of P
(

P(A)
)

.

8.5 The union of two sets

Definition 16. Let A, B be sets. The union of

A and B is the set A ∪B given by

A ∪B = {x : x ∈ A ∨ x ∈ B} .
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In other words, A∪B (read as “A union B”) is the set whose mem-
bers are all the members of A as well as all the members of B.

The membership criterion for A∪B is “x ∈ A∨ x ∈ B.” That is, for
an object x to quality as a member of A∪B, it has to be shown that x is in
A or that x is in B.

Example 48.

• If A = {1, 2, 3} and B = {2, 3, 4} then A ∪ B = {1, 2, 3, 4}.

• IfA = {a, b, c} andB = {d, e, f, g, h, i, j} thenA∪B = {a, b, c, d, e, f, g, h, i, j}.
Notice that

1. A is a finite set with 3 members,

2. B is a finite set with 7 members,

3. A and B have no memebrs in common (that is, using the termi-
nology of the next section, A ∩B = ∅),

4. and A∪B has turned out to be a finite set with 10 members. This
is not a coincidence. We will prove later that: if A, B
are finite sets, A has m members, B has n members, and
A∩B = ∅, then the union A∪B is a finite set with m+ n
members.

5. If A = {n ∈ Z : n > 0} and B = {n ∈ Z : n < 0} then
A ∪ B = {n ∈ Z : n 6= 0}.

6. IN ∪ {0} is the set of all nonnegative integers, i.e., the set {n ∈
Z : n ≥ 0}.

7. If A = {x ∈ IR : 0 < x < 1} and B = {x ∈ IR : 1 ≤ x < 2} then
A ∪ B = {x ∈ IR : 0 < x < 2}.

8. If A = {x ∈ IR : 0 < x < 1} and B = {x ∈ IR : 1 < x < 2} then
A ∪ B = {x ∈ IR : 0 < x < 2 ∧ x 6= 1}. �
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A ∪B :

B

A

(The shaded region is A ∪ B)

8.6 The intersection of two sets

Definition 17. Let A, B be sets. The

intersection of A and B is the set A ∩ B given

by

A ∩B = {x : x ∈ A ∧ x ∈ B} .

In other words, A∩B (read as “A intersection B”) is the set whose
members are all the things that belong both to A and to B.

The membership criterion for A∩B is “x ∈ A∧ x ∈ B.” That is, for
an object x to quality as a member of A∩B, it has to be shown that x is in
A and that x is in B.
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Example 49.

• If A = {1, 2, 3} and B = {2, 3, 4} then A ∩ B = {2, 3}.

• If A = {n ∈ Z : n > 0} and B = {n ∈ Z : n < 0} then A ∩ B = ∅.

• If A = {x ∈ IR : 0 < x < 2} and B = {x ∈ IR : 1 < x < 3} then
A ∩ B = {x ∈ IR : 1 < x < 2}.

A ∩B :

A

B

(The shaded region is A ∩ B)
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8.7 The difference of two sets

Definition 18. Let A, B be sets. The difference

of A and B is the set A− B given by

A−B = {x : x ∈ A ∧ x /∈ B} .

In other words, A−B (read as “A minus B”) is the set whose mem-
bers are all the things that belong to A but do not belong to B.

The membership criterion for A−B is “x ∈ A∧ x /∈ B.” That is, for
an object x to quality as a member of A−B, it has to be shown that x is in
A and that x is not in B.

Example 50.

• If A = {1, 2, 3} and B = {2, 3, 4} then A−B = {1}.

• If A = Z and B = IN then A−B = {n ∈ Z : n ≥ 0}.

• If A = {x ∈ IR : 0 < x < 2} and B = {x ∈ IR : 1 < x < 3} then
A−B = {x ∈ IR : 0 < x ≤ 1}.
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A− B :

B

A

(The shaded region is A− B)

8.8 Complements

As you may have noticed, the operations of union and intersection are cloely
related to the logical connectives ∨ and ∧:

A ∪ B is the set of those x such that x ∈ A ∨ x ∈ B
A ∩ B is the set of those x such that x ∈ A ∧ x ∈ B

Given this, which is rhe set operation that corresponds to the negation
symbol ∼? Since ∼ is a unary connective (i.e., it can be applied to one
sentence S to produce the sentence ∼ S. the corresponding operation, let us
call it #, should be a unary operation defined as follows:

#A is the set of those x such that ∼ x ∈ A.
In other words, #A should be the set of all the things that are not mem-

bers of A. This set #A could be called the “complement” of A, and would
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be defined by #A = {x : x /∈ A}.
Now, the set #A would be truly huge. For example, if A = {1, 2, 3, 4},

then #A would consist of all the things other than the numbers 1, 2, 3, 4. So
the members of #A would be the natural numbers other than 1, 2, 34 (that
is, 5, 6, 7 and so on), as well as the integers that are not hantural numbers, all
the real numbers other than 1, 2, 3, 4, plus all the other things that are not the
numbers 1, 2, 3, 4, that is, all the cows, sheep, giraffes, people, rocks, tables,
planets, stars, cells, viruses, molecules, atoms, electorns, protons, quarks,
black holes, books, teeth, jackets, socks, cars, planes, forks, knives, and on
and on and on.

Usually, when we are doing mathematics, we are studying a specific “uni-
verse” of mathematical objects. For example, when we do number theory
we study the natural numbers or the integers, when we do Calculus we work
with the real nunbers, and when we do Multivariable Calculus we work with
IR2, the set of pairs of real numbers )(i.e., the “xy plane”) or IR3 (the set of
triples (x, y, z) of real numbers, i.e., “3-dimensional space”). If, for example,
our “world” is IR, then when we have a set A of real numbers, i.e., a subset
A of IR, we would be interested in the set of real numbers that are not in A.
And this set is the difference IR− A. Se we give the following definition:

Definition 19. Suppose U is a set that we regard as the “universe”, in the
sense that we are only interested in sets that are subsets of U . Then the
complement of a set A such that A ⊆ U is the set Ac given by

Ac = U − A , (8.147)

that is,
Ac = {x : x ∈ U ∧ x /∈ A} . (8.148)

Remark 11. Strictly speaking, it is inappropriate to define a set as we did
in Definition 19 and call it “Ac”. This set depends very much on who U is,
so the right thing to do would be to call it the complement of A relative
to A, and give it a name such as Ac,U , which shows that the set depends on
U .

But, as long as we are working with a fixed “universe”, and it is clear
who U is, it is O.K. to use a notation such as Ac. �



Math 300, Fall 2018 205

Ac :

A

A

U

c

(The shaded region is Ac)

8.9 The symmetric difference of two sets

Definition 20. Let A, B be sets. The

symmetric difference of A and B is the set A∆B

given by

A∆B = {x : (x ∈ A∧x /∈ B)∨(x /∈ A∧x ∈ B)} .

In other words, A∆B (read as “the symmatric difference of A and
B”) is the set whose members are all the things that belong to A
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but do not belong to B, or belong to B but do not belomng to A.
That is, A∆B is the set of all things that belong to one of the

sets A, B but do not belong to both.
The membership criterion for the symmetric difference A∆B is the

sentence “(x ∈ A ∧ x /∈ B) ∨ (x /∈ A ∧ x ∈ B)”. That is, for an object x to
quality as a member of A−B, it has to be shown that x is in A and that x
is not in B, or that x is in B but not in A.

A∆B :

A

B

(The shaded region is A∆B)

Example 51.

• If A = {1, 2, 3} and B = {2, 3, 4} then A∆B = {1, 4}.
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• If A = {x ∈ IR : |x| > 4} and B = {x ∈ IR : |x| < 10 then A∆B =
{x ∈ IR : |x| ≥ 10 ∨ |x| ≤ 4}.

8.10 The Cartesian product of two sets

8.10.1 Ordered pairs

If a, b are any two objects, we would like to have a set, called “the ordered
pair of a and b”, such that wknowing this set would tell us who a is and who
b is, so we would be able to say things such as “the first coordinate of (a, b)
is a” and “the second coordinate of (a, b) is b”.

For example, suppose we are doing plane geometry, using the standard
procedure of drawing and “x axis” and a “y axis”, and then representing
each point P of the plane by a pair (a, b) of numbers, called the “coordinate
pair” of P . Each point P then has, attached to it, a coordinate pair (a, b)
of real numbers: the number a is the x coordinate (or “abscissa”) and the
number b is the y coordinate (or “ordinate”) of P .

We would like the pair (a, b) to be a set, constructed somehow from a and
b. And then the natural question is: which set is the pair (a, b)?

The most näıve idea is to let the pair (a, b) be the unordered pair {a, b},
that is, the set whose members are a and b.

But this will not do. If we take (a, b) to be {a, b}, then it cannot happen,
for example, that the x-coordinate of (1, 2) is 1, and the x-coordinate of (2, 1)
is 2, because, if (1, 2) = {1, 2} and (2, 1) = {2, 1}, then (1, 2) = (2, 1), so, if

(*) the x-coordinate of (2, 1) is 2,

then it would also be true that
(**) the x-coordinate of (1, 2) is 2,

(because (1, 2) = (2, 1)), but on the other hand
(***) the x-coordinate of (1, 2) is 1,

so we would get 1 = 2, which is definitely not true.

The only solution is to define the ordered pair to be something other than
the unordered pair {a, b}. And then the question is, what set shall (a, b)
be?

There are many ways to answer this question, and it really makes no differ-
ence which one we use. So we shall choose one, but you must be warned that
the specific way we make this choce is not important. What is important is
that the following fact is true:
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Theorem 24. Let a, b, c, d be any objects. Then, if the pairs (a, b) and (c, d)
are equal, that is, if (a, b) = (c, d), it follows that c = a and d = b.

This is exactly the property that we need. For example, the pairs (2, 1) and
(1, 2) are not equal. (Proof: Suppose (2, 1) = (1, 2). Then Theorem 24 (with
a = 2, b = 1, c = 1, and d = 2, would imply that 2 = 1. But 2 6= 1. So
2 = 1 ∧ 2 6= 1, which is a contradiction. So (2, 1) 6= (1, 2).)

Now we show how to define (a, b) in such a way that Theorem 24 is true.

Definition 21. Let a, b be any two objects. Then the ordered pair of a and
b is the set (a, b) given by

(a, b) = { {a} , {a, b} } . (8.149)

Proof of Theorem 24. Suppose that (a, b) = (c, d).
Let p = (a, b), so p is also equal to (c, d) because we are assuming that
(a, b) = (c, d).
Since p = { {a}, {a, b} }, the set p has either two members (if b 6= a) or
one member (if a = b, in which case {a, b} = {a}, so { {a}, {a, b} } =
{ {a}, {a} } = { {a} }).
But in either case, a is the only object that belongs to all the members of p.
And, since p is also equal to (c, d), it follows that c is the only object that
belongs to all the members of p.
So c = a .

Next, let us prove that d = b.
We consider separately the two possible cases: b = a and b 6= a.

Assume that b = a.

Then p has only one member, because, as explained before, {a, b} =
{a}, so p = { {a}, {a, b} } = { {a} }.

But then (c, d) also has only one member, because (c, d) = p. And this
implies that d = c.

So d = c and b = a, and we already know that c = a.

Hence d = b .

Now assume that b 6= a.
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Then the sets {a} and {a, b} are different, because b ∈ {a, b} but b /∈
{a}.
So p has two different members.

And b is the only object that belongs to one of the members of p but
does not belong to both.

And, similarly, d is the only object that belongs to one of the members
of p but does nto belong to both.

So d = b .

We have proved that d = b in both cases, when b = a and when b 6= a.

So d = b .

So we have proved that c = a ∧ d = b . Q.E.D.

8.10.2 The Cartesian product of two sets

Definition 22. Let A, B be sets. The

Cartesian product of A and B is the set A×B given

by

A×B =
{

u : (∃a)(∃b)(a ∈ A∧b ∈ B∧u = (a, b))
}

.

In other words, A×B (read as “A times B”) is the set of all objects u such
that u is an ordered pair (a, b), with a ∈ A and b ∈ B.

Or, more succintly and elegantly, A×B is the set of all ordered pairs
(a, b) for which a ∈ A and b ∈ B.

Example 52.

• Let A == {1, 2, 3} and B = {2, 3, 4, 5}. Then

A× B =
{

(1, 2), (1, 3), (1, 4), (1, 5), (2, 2), (2, 3), (2, 4), (2, 5),

(3, 2), (3, 3), (3, 4), (3, 5)
}

.
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Notice that A is a finite set with 3 members, B is a finite set with 4
members, and A × B is a finite set with 12 members. This is not
a coincidence. We will prove later that: if A, B are finite
sets, A has m members, and B has n members, then A × B
is a finite set and A×B has mn members.

• Let A = IR, B = IR. Then A × B is IR × IR, that is, the set of all
ordered pairs (x, y) such that x and y are real numbers. This is the
“x-y plane” of plane Euclidean geometry. The members of
IR× IR are the “points” of plane geometry.

• Let

A = {x ∈ IR : 0 < x < 1} ,
B = {x ∈ IR : 1 < x < 3} .

Then A is the open interval (0, 1) (not to be confused with the
ordered pair (0, 1)!) and B is the open interval (1, 3) (not to be
confused with the ordered pair (1, 3)!). In this case, A× B, that
is, (0, 1)× (1, 3), is the set of all pairs (x, y) of real numbers such that
0 < xx < 1 and 1 < y < 3. In other words, (0, 1) × (1, 3) is the
rectangle R characterized by the inequalities

0 < x < 1 and 1 < y < 3 .

8.11 Important facts about the set operations

So far, we have defined:

• One very special set (the empty set),

• One binary predicate (i.e., relation), about sets, namely, the predicate
“is a subset of”.

• Five binary operations on sets (union, intersection, difference, symmet-
ric difference, and Cartesian product),

• One unary operation on sets (the power set).
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By combining these nine things we can produce an enormous number of
possible facts, some of which might be true, while others are not true. It
would be pointless for me to give you a complete list and prove them all,
because there are so many of them, and they are all so easy to prove (if true)
or to disprove (if false).

And it would be pointless for you to memorize them all, because the list
is so long. On the other hand, if you understand what yoiu are doing, you
ought to be able, in each case, to figure out if the statement is true or false,
and how to prove it (if it is true) or disprove it (if it is false).

So what I suggest is this: read carefully the list of facts, and pick
a few of them and prove them or disprove them. Keep in mind
that any of these facts could show up as a question in the exams.

And here is the list:

1. If A is a set, then ∅ ⊆ A. (True)

2. If A is a set, then ∅ ∈ A. (False)

3. If A is a set, then A ∪ ∅ = A. (True)
NOTE: If you think that ∅ is like the number 0, and the operation “∪”
is like addition, then this statement is analogous to the statement that
x+ 0 = x for every real number x.

4. If A is a set, then A ∪ ∅ = ∅. (False)

5. If A is a set, then A ∩ ∅ = A. (False)

6. If A is a set, then A ∩ ∅ = ∅. (True)
NOTE: If you think that ∅ is like the number 0, and the operation “∩”
is like multiplication, then this statement is analogous to the statement
that x.0 = 0 for every real number x.

7. If A is a set, then A ⊆ A. (True)

8. If A, B are sets, then A = B if and only if A ⊆ B ∧ B ⊆ A. (True)
NOTE: This gives an another way to prove that two sets are equal: to
prove that A = B, you prove that A ⊆ B and that B ⊆ A.

9. If A is a set, then A ∪ A = A. (True)

10. If A is a set, then A ∩ A = A. (True)
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11. If A,B are sets, then A ⊆ A ∪ B. (True)

12. If A,B are sets, then A ⊆ A ∩ B. (False)

13. If A,B are sets, then A ∪ B ⊆ A. (False)

14. If A,B are sets, then A ∩ B ⊆ A. (True)

15. If A is a set, then A ⊆ A. (True)
NOTE: This aays that the binary relation “⊆” is reflexive.

16. If A,B are sets, A ⊆ B, and B ⊆ A, then A = B. (True)
NOTE: This aays that the binary relation “⊆” is antisymmetric.

17. If A,B,C are sets, A ⊆ B, and B ⊆ C, then A ⊆ C. (True)
NOTE: This aays that the binary relation “⊆” is transitive.

18. If A,B,C are sets, A ⊆ B, B ⊆ C, and C ⊆ A, then A = B = C.
(True)

19. If A,B are sets, then A ⊆ B if and only if A ∪B = B. (True)

20. If A,B are sets, then A ⊆ B if and only if A ∪B = A. (False)

21. If A,B are sets, then A ⊆ B if and only if A ∩B = A. (True)

22. If A,B are sets, then A ⊆ B if and only if A ∩B = B. (False)

23. If A,B are sets, then A ∪ B = B ∪ A. (True)
NOTE: This is the commutative law of the union operation.

24. If A,B are sets, then A ∩ B = B ∩ A. (True)
NOTE: This is the commutative law of the intersection opera-
tion.

25. If A,B,C are sets, then A ∪ (B ∪ C) = (A ∪B) ∪ C. (True)
NOTE: This is the associative law of the union operation.

26. If A,B,C are sets, then A ∩ (B ∩ C) = (A ∩B) ∩ C. (True)
NOTE: This is the associative law of the intersection operation.

27. If A,B,C are sets, and A ⊆ B, then A ∪ C ⊆ B ∪ C. (True)
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28. If A,B,C are sets, and A ⊆ B, then A ∩ C ⊆ B ∩ C. (True)

29. If A,B,C are sets, then (A ∪ B) ∩ C = A ∪ (B ∩ C). (False)

30. If A,B,C are sets, then A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).(True)
NOTE: This is the distributive law of union with respect to
intersection.

31. If A,B,C are sets, then A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).(True)
NOTE: This is the distributive law of intersection with respect
to union.

IMPORTANT NOTE: We have seen that union and intersection are
in some ways like addition and multiplication: they obey commoutative
and associative laws. and also A∩∅ = ∅ (which is analogous to x·0 = 0)
and A ∪ ∅ = A (which is analgous to x + 0 = x). But the analogy
should not be pushed too far:

• there is a distributive law of union with respect to intersection
(i.e., A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)),

• and there is also a distributive law of intersection with respect to
union (i.e., A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)),

• but this is totally unlike what happens for addition and multipli-
cation, because

• there is a distributive law of multiplication with respect to addition
(i.e., x · (y + z) = x · y + x · z)

• but there is no distributive law of addition with respect to multi-
plication (i.e., it is not true that x+(y ·z) = (x+y) · (x+z) since,
for example, if we take x = 1, y = 2, z = 3, then x + (y · z) = 7
and (x+ y) · (x+ z) = 12).

32. If A,B are sets, then (A−B) ∪ B = A. (False)

33. If A,B are sets, then (A−B) ∪ B ⊆ A. (False)

34. If A,B are sets, then A ⊆ (A−B) ∪ B. (True)

35. If A,B,C are sets, then A ∪ (B − C) = (A ∪ B)− (A ∪ C). (False)
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36. If A,B,C are sets, then A ∩ (B − C) = (A ∩ B)− (A ∩ C). (False)

When we fix a “universe” U , then the complement of a subset
A of U is defined to be the set U − A. The complement of A
is denoted by “Ac”.

37. If A,U are sets, and A ⊆ U , then (Ac)c = A. (True)

38. If A,U are sets, and A ⊆ U , then A ∪ Ac = U . (True)

39. If A,U are sets, and A ⊆ U , then A ∩ Ac == ∅. (True)

40. If A,B, U are sets, A ⊆ U , and B ⊆ U , then

(A ∪ B)c = Ac ∩Bc . (8.150)

(This is true.)

41. If A,B, U are sets, A ⊆ U , and B ⊆ U , then

(A ∩ B)c = Ac ∪Bc . (8.151)

(This is true.)

NOTE: Equations (8.150) and (8.151) are the famous De Morgan
laws. They say that

• the complement of the union of two sets is the intersec-
tion of the complements of the sets,

and

• the complement of the intersection of two sets is the
union of the complements of the sets.

I strongly recommend that you read the article on “De Morgab laws” in
Wikipedia.

42. If A, B, U are sets, A ⊆ U , and B ⊆ U , then A−B = A ∩Bc. (True)

43. If A,B are sets, then A−B = B − A. (False)

44. If A,B,C are sets, then A− (B − C) = (A−B)− C. (False)
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45. If A,B are sets, then A∆B = (A ∪ B)− (A ∩B). (True)

46. If A,B are sets, then A∆B = B∆A. (True)

47. If A,B,C are sets, then A∆(B∆C) = (A∆B)∆C. (True)

48. If A,B are sets, then A×B = B × A. (False)

49. If A,B,C,D are sets, then

(A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D) .

(This is true.)

50. If A,B,C,D are sets, then

(A×B) ∪ (C ×D) = (A ∪ C)× (B ∪D) .

(This is false.)

51. If A is a set, then A ∈ P(A). (True)

52. If A is a set, then A ⊆ P(A). (False)

53. If A is a set, then ∅ ∈ P(A). (True)

54. If A is a set, then ∅ ⊆ P(A). (True)

55. If A,B are sets, then A ⊆ B if and only if P(A) ⊆ P(B). (True)

56. If A,B are sets, then A = B if and only if P(A) = P(B). (True)

57. If A,B are sets, then P(A×B) = P(A)× P(B). (False)

58. If A is a set, then ∅ × A = ∅ and A× ∅ = ∅. (True)

59. If A,B are sets, and A× B = B × A, then A = B. (False)

60. If A,B are nonempty sets, and A×B = B × A, then A = B. (True)

8.12 Some examples of proofs about sets

Let me give you the proofs of some of the results in the long list of the
previous section.
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8.12.1 Proof of one of the distributive laws

Theorem 25. If A, B, C are sets, then

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) . (8.152)

Proof. To prove that the sets A∪ (B ∩C) and (A∪B)∩ (A∪C) are equal,
we prove that they have the same members, that is, we prove that

(∀x)
(

x ∈ A ∪ (B ∩ C) ⇐⇒ x ∈ (A ∪ B) ∩ (A ∪ C)
)

. (8.153)

Sentence (8.153) is a universal sentence, of the form (∀x)P (x). So, in order
to prove it, we let x be an arbitrary object and prove P (x).

Let x be arbitrary.

We want to prove

x ∈ A ∪ (B ∩ C) ⇐⇒ x ∈ (A ∪ B) ∩ (A ∪ C) . (8.154)

(1) The sentence “x ∈ A∪ (B ∩C)” is equivalent to “x ∈ A∨ x ∈ B ∩C”.
(Reason: if X, Y are sets, then the criterion for membership in X ∪ Y
is “x ∈ X ∨ x ∈ Y ”.)

(2) And “x ∈ B∩C” is equivalent to “x ∈ B∧x ∈ C”. (Reason: ifX, Y are
sets, then the criterion for membership in X ∩ Y is “x ∈ X ∧ x ∈ Y ”.)

(3) Hence “x ∈ A ∪ (B ∩ C)” is equivalent to “x ∈ A ∨ (x ∈ B ∧ x ∈ C)”.

(4) Also, “x ∈ (A∪B)∩ (A∪C)” is equivalent to “x ∈ A∪B∧x ∈ A∪C”.

And

– “x ∈ A ∪ B” is equivalent to “x ∈ A ∨ x ∈ B”.

– “x ∈ A ∪ C” is equivalent to “x ∈ A ∨ x ∈ C”.

(5) So “x ∈ (A ∪ B) ∩ (A ∪ C)” is equivalent to “(x ∈ A ∨ x ∈ B) ∧ (x ∈
A ∨ x ∈ C)”.

It follows from (3) and (6) that “x ∈ A ∪ (B ∩ C) ⇐⇒ x ∈ (A ∪ B) ∩
(A ∪ C)”, the sentence that we have to prove, is equivalent to

x ∈ A ∨ (x ∈ B ∧ x ∈ C) ⇐⇒
(

(x ∈ A ∨ x ∈ B) ∧ (x ∈ A ∨ x ∈ C)
)

.

(8.155)
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The sentence (8.155) is of the form

P ∨ (Q ∧R) ⇐⇒
(

P ∨Q) ∧ (P ∨R)
)

, (8.156)

where P stands for “x ∈ A”, Q stands for “x ∈ B”, and R stands for
“x ∈ C”.

We now prove that (8.156) is true.

Sentence (8.156) is a biconditional, of the form L ⇐⇒ M. And a
biconditional L ⇐⇒ M is true if and only if L and M have the same
truth value, i.e., are both true or both false. So we are going to prove
that M is true if L is true and M is false if L is false.

Suppose that P ∨ (Q ∧R) is true.
Then either P is true or Q ∧R is true.

Suppose P is true.

Then both P ∨Q and P ∨R are true.

So (P ∨Q) ∧ (P ∨R) is true.
Now suppose that Q ∧R is true.

Then both Q and R are true.

So P ∨Q and P ∨R are true.

And then (P ∨Q) ∧ (P ∨R) is true.
So (P∨Q)∧(P∨R) is true in both cases, and then (P∨Q)∧(P∨R)
is true.

This proves that (P ∨Q) ∧ (P ∨R) is true if P ∨ (Q ∧R) is true.

Now suppose that P ∨ (Q ∧R) is false.
Then both P and Q ∧R are false.

Since Q ∧R is false, either Q is false or R is false.

Suppose Q is false.

Since P is false, P ∨ Q is false, because both P and Q are
false.

Hence the conjunction (P ∨Q) ∧ (P ∨R) is false.
Now suppose R is false.
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Since P is false, P ∨ R is false, because both P and R are
false.

Hence the conjunction (P ∨Q) ∧ (P ∨R) is false.
So (P∨Q)∧(P∨R) is false in both cases, and then (P∨Q)∧(P∨R)
is false.

This proves that (P ∨Q) ∧ (P ∨R) is false if P ∨ (Q ∧R) is false.

So we have proved that (8.155) is true, and this completes our proof,
Q.E.D.

Problem 33. Prove the other distributive law: If A, B, C are sets, then

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) . (8.157)

8.12.2 Proofs of the De Morgan laws

As we explained before, the De Morgan laws are the following two statements.

Theorem 26. Let U be a set, and let A, B be subsets of U . Then

(A ∪B)c = Ac ∩ Bc ,

and

Theorem 27. Let U be a set, and let A, B be subsets of U . Then

(A ∪ B)c = Ac ∩ Bc ,

(A ∩ B)c = Ac ∩ Bc .

I will give you a proof from first principles70 of the first theorem, and then
I will give you a short proof of the other using the first one, and ask you to
give a proof from first principles of the second theorem.

70A bfproof from first principles is a proof in which you do not use any intermediate
results proved before. For example, after we proved that 2 + 2 = 4 from first principles
we proved that 2× 2 = 4 using the result that 2 + 2 = 4. That was not a proof from first
principles. In a proof from first principles, you would just have used the basic facts and
the definitions, and no theorem proved before.
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Proof. We want to prove that

DeMorgan(∀x ∈ U)
(

x ∈ (A ∪ B)c ⇐⇒ x ∈ Ac ∩ Bc
)

. (8.158)

The sentence we want to prove is a universal sentence, of the form (∀x)P (x).
So in order to prove it we let x be an arbitrary object and prove P (x).

Let x be an arbitrary member of U .

We want to prove that

x ∈ (A ∪ B)c ⇐⇒ x ∈ Ac ∩ Bc . (8.159)

But, for x ∈ U , “x ∈ (A ∪ B)c is equivalent to “x /∈ A ∪ B”, i.e., to
“∼ x ∈ A ∪ B”.

And “x ∈ A ∪ B” is equiva;ent to “x ∈ A ∨ x ∈ B”.

So “x /∈ A ∪ B” is equivalent to “∼ (x ∈ A ∨ x ∈ B)”.

Therefore “x ∈ (A ∪ B)c” is equivalent to “∼ (x ∈ A ∨ x ∈ B)”.

On the other hand, “x ∈ Ac ∩ Bc” is equiva;ent to “x ∈ Ac ∧ x ∈ Bc”.

And the sentences “x ∈ Ac”, “x ∈ Bc” are equivalent to “∼ x ∈ A”
and “∼ x ∈ B”.

So “x ∈ Ac ∩ Bc” is equivalent to “(∼ x ∈ A) ∧ (∼ x ∈ B)”.

Hence (8.159) is equivalent to
(

∼ (x ∈ A ∨ x ∈ B)
)

⇐⇒
(

(∼ x ∈ A) ∧ (∼ x ∈ B)
)

. (8.160)

If we use P to stand for “x ∈ A”, and Q to stand for “x ∈ B”, then
(8.160) is the sentence

(

∼ (P ∨Q)
)

⇐⇒
(

(∼ P ) ∧ (∼ Q)
)

. (8.161)

The biconditional sentence (8.161) is of the form L ⇐⇒ M. And a
biconditional L ⇐⇒ M is true if and only if L and M have the same
truth value, i.e., are both true or both false. So we are going to prove
that M is true if L is true and M is false if L is false.
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Proof that if ∼ (P ∨Q) is true then (∼ P ) ∧ (∼ Q) is true.

Suppose that ∼ (P ∨Q) is true .
Then P ∨Q is false.

So both P and Q are false.

Hence ∼ P and ∼ Q are true.

So the conjunction (∼ P ) ∧ (∼ Q) is true .

Proof that if ∼ (P ∨Q) is false then (∼ P ) ∧ (∼ Q) is false.

Suppose that ∼ (P ∨Q) is false .
Then P ∨Q is true.

So either P is true or Q is true.

Suppose that P is true.

Then ∼ P is false.

So the conjunction (∼ P ) ∧ (∼ Q) is false.

Now suppose that Q is true.

Then ∼ Q is false.

So the conjunction (∼ P ) ∧ (∼ Q) is false.

We have shown that (∼ P )∧ (∼ Q) is false in both cases, when P
is true and when Q is true.

Hence (∼ P ) ∧ (∼ Q) is false .

So we have proved (8.159) for an arbitrary member x of U , and we can
go to

(∀x ∈ U)
(

x ∈ (A ∪B)c ⇐⇒ x ∈ Ac ∩ Bc
)

. (8.162)

And (8.162) says that the sets (A∪B)c and (A∩B)c have rhe same members,
so the sets are equal, that ism

(A ∪B)c = Ac ∩ Bc . (8.163)

This is exactly what we wanted to prove. Q.E.D.
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Now let us give a simple proof of Theorem 27 using Theorem 26.
Proof. We want to prove that (A ∩B)c = Ac ∪ Bc.

Theorem 26 says that, if X, Y are any subsets of U , then

(X ∪ Y )c = Xc ∩ Y c . (8.164)

Apply this with X = Ac and B = Y c. We get

(Ac ∪ Bc)c = (Ac)c ∩ (Bc)c . (8.165)

But (Ac)c = A, and (Bc)c = B. So

(Ac ∪ Bc)c = A ∩B . (8.166)

Now take the complement of both sides. We get

(

(Ac ∪Bc)c
)c

= (A ∩ B)c . (8.167)

But (Xc)c = X for every subset X of U . Therefore

(

(Ac ∪ Bc)c
)c

= Ac ∪ Bc (8.168)

Combining (8.167) and (8.168), we get

Ac ∪Bcc = (A ∩ B)c , (8.169)

which is the formula we were trying to prove. Q.E.D.

Problem 34. Write a proof from first principles of Theorem 27. I strongly
recommend that you use the same style as in the proof of Theorem
26. The proof of Theorem 26 is really very simple, and almost
mechanical. It looks long because it was written on purpose to
show you a proof written in a very precise, very detailed way,
displaying the use of the rules of logic. Usually one does not
write p;roofs like that, but I would like you to do it at least once,
to show that you can do it. �
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8.12.3 A proof involving the symmetric difference

Let us prove Fact 45 from our list. Recall that the symmetric difference
of two sets A, B is the set A∆B given by

A∆B = (A−B) ∪ (B − A) .

In the proof, we are going to use the following facts, that are valid for arbi-
trary subsets X, Y, Z of a set U :

• X − Y = X ∩ Y c,

• X ∪Xc = U and X ∩Xc = ∅,

• X ∩ U = X and X ∩ ∅ = ∅.

• X ∪ U = U and X ∪ ∅ = X.

• The commutative laws

X ∪ Y = Y ∪X ,

X ∩ Y = Y ∩X ,

• The associative laws

X ∪ (Y ∪ Z) = (X ∪ Y ) ∪ Z ,
X ∩ (Y ∩ Z) = (X ∩ Y ) ∩ Z ,

• The distributive laws

X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z) ,
X ∩ (Y ∪ Z) = (X ∩ Y ) ∪ (X ∩ Z) ,

• The De Morgan laws

Xc ∪ Y c = (X ∩ Y )c ,

Xc ∩ Y c = (X ∪ Y )c .

Theorem 28. If A,B are sets, then A∆B = (A ∪ B)− (A ∩ B).
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Proof. Choose as universe any set U such that A ⊆ U and B ⊆ U . (For
example, we could choose U to be A ∪ B.)

Then

A∆B = (A−B) ∪ (B − A) (8.170)

= (A ∩ Bc) ∪ (B ∩ Ac) (8.171)

=
(

(A ∩ Bc) ∪ B
)

∩
(

(A ∩Bc) ∪ Ac
)

(8.172)

=
(

B ∪ (A ∩ Bc)
)

∩
(

Ac ∪ (A ∩ Bc)
)

(8.173)

=
(

(B ∪ A) ∩ (B ∪ Bc)
)

∩
(

(Ac ∪ A) ∩ (Ac ∪Bc)
)

(8.174)

=
(

(B ∪ A) ∩ U
)

∩
(

U ∩ (Ac ∪Bc)
)

(8.175)

= (B ∪ A) ∩ (Ac ∪ Bc) (8.176)

= (A ∪ B) ∩ (Ac ∪ Bc) (8.177)

= (A ∪ B) ∩ (A ∩B)c . (8.178)

So A∆B = (A ∪ B)− (A ∩B). Q.E.D.

Problem 35. Write the justfications of each of the nine steps (8.170),
(8.171), (8.172), (8.173), (8.174), (8.175), (8.176), (8.177), (8.178) of the
proof of Theorem 28. �

Problem 36. Prove or disprove each of the following distributive laws

1. The distributive law of intersection with respect to symmetric difference.
If A, B, C are sets, then

A ∩ (B∆C) = (A ∩ B)∆(A ∩ C) . (8.179)

2. The distributive law of union with respect to symmetric difference. If
A, B, C are sets, then

A ∪ (B∆C) = (A ∪ B)∆(A ∪ C) . (8.180)
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9 Definitions: how you should write them

and how you should not write them

9.1 An example of a correctly written definition

Suppose you don’t know what a prime number is. And suppose you are
asked whether the numbers 1, 2, 6, 7, 10, 12, are “prime”. Then you will
probably not be able to answer the question, because you don’t know what
a “prime number” is. So you would answer with a question: what is a
prime number”, or what does it mean for a number to be prime?

To answer such a question, you need to know the definition of “prime
number”.

And here is the definition:

DEFINITION OF “PRIME NUMBER”

Let n be a natural number. We say that n is
prime if n 6= 1 and the only natural numbers
that are factors of n are 1 and n.

And here is another, equally correct, definition of “perfect number”:

DEFINITION OF “PRIME NUMBER”,

VERSION II

A natural number n is prime if n 6= 1 and
every natural number that is a factor of n is
either equal to 1 or to n.

And here is a third, also completely correct, definition of “perfect number”:
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DEFINITION OF “PRIME NUMBER”,

VERSION III

A natural number n is prime if n 6= 1 and

(∀q ∈ IN)
(

q|n =⇒ (q = 1 ∨ q = n)
)

.

And, finally, here is a fourth completely correct definition of “perfect num-
ber”:

DEFINITION OF “PRIME NUMBER”,

VERSION IV:

An integer n is a prime number if n > 1 and

(∀q ∈ IN)
(

q|n =⇒ (q = 1 ∨ q = n)
)

.

9.2 How not to write a definition

Let us look now at some bad ways of writing the definition “prime number”.
The examples I am going to give you are representative of things students

often write in exams. You should read these examples carefully, and
then read the explanation of why these definitions are bad, so that
you will learn not to write that way.

Some of the definitions below are truly horrendous (and would get zero
points on a scale from 0 to 10), while others are not 100% wrong but are not
entirely correct either, and may get 5 points on a 0-10 scale, or maybe in some
cases even 6 or 7. But you should understand why those definitions
are bad, so you can learn how to write definitions correctly and
get 10 points otu of 10.

Bad Definition 1. Prime number is when you cannot divide by any number
other than by the number itself. �

Bad Definition 2. A prime number is a number that cannot be divided by
any number other than 1 and itself. �
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Bad Definition 3. A prime number is a natural number that cannot be
divided by any number other than 1 and itself. �

Bad Definition 4. A prime number is a natural number such that the only
factors of the number are 1 and the number itself. �

Bad Definition 5. A prime number is a natural number such that the only
factors of n are 1 and n. �

Bad Definition 6. A prime number is a natural number such that the only
natural numbers that are factors of n are 1 and n. �

Bad Definition 7. A prime number is a natural number such that n > 1
and the only natural numbers that are factors of n are 1 and n. �

Bad Definition 8. A prime number is a natural number n such that n > 1
and the only natural numbers that are factors of n are 1 and n. �

9.2.1 Analysis of bad definitions

Let us analyze our eight “bad definitions” and explain why they are bad.
The main question that we will ask, and the question that you should

always ask, is: using this definition, can I tell correctly if an object
is what the definition says it is supposed to be? (In this case, can I
tell correctly if an object is a prime number or not?)

Notice that this question really amounts to two questions:

(I) Can I tell?, that is, does the definition tell me precisely what to do
in order to find out if the answer is “yes” or “no”?

(II) Can I tell correctly?, that is, when I do what the definition tells me
to do, do I get the right answers?

Question (I) is the precision and clarity question: does the definition
tell me cearly and precisely what I am supposed to do in order to find out
the answer?

Question (II) is the correctenss question: If I do what the definition
tells me to do, do I get the right answer?

These two questions are different. For example, if I were to define “prime
number” as follows:
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Bad Definition 9. A prime number is a natural number that is divisible by
2. �

Then this definition is completely clear and precise. It tells me that in
order to find out if a number is prime, I have to see if it is divisible by 2.
The problem with this definition is that it does not satisfy the correctness
condition: if I apply the definition, say, to the number 6, I find that 6 is
divisible by 2, so according to this definition 6 is prime, which is not true.

To assess a definition, you should always ask these two questions: is the
definition clear and precise, so that when I want to apply it I know exactly
what to do? And is it correct, in the sense that it gives me the right answers?

And, in order to answer the correctness question, you should test your
definition by applying it to several examples and seeng whether it gives the
right answer.

The simplest and most convincing way to establish that a def-
inition is wrong is to give an example of something for which
the definition gives thw rong answer. This is what we did when we
disucssed the

You should always ask these two questions, especially about defini-
tions you have written yourself. And if what you wrote does not meet
the two requirements of (1) precision and clarity and (2) correctness, then
your definition is not acceptable and you must work on it until you get it
right.

Now let us look at the eight bad definitions in our list.

1. Bad Definition 1 says: Prime number is when you cannot divide by any
number other than by the number itself.

This is truly atrocious. Let us see why.

– First of all, when you say “prime number is”, you are suggesting
that “prime number” is a condition of the world, such as “chaos”,
or “peace”. You can say something like “peace is when people
are not fighting”, or “chaos is when there is utter confusion”.
Even these sentences are very bad English, but you can more
or less figure out what they mean. (For example, when you see
that people are fighting, you would say that “there is no peace
here”, and when people stop fighting, you would say “now there is
peace”.) Much better ways to say these things would be: “Peace
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is the absence of war or other hostilities”, or “Peace is a state of
affairs in which people are not fighting”.

– But in the case of “prime number”, the “prime number is when”
construction does not make sense. Being a prime number is not
some kind of state of affairs. It is a property of a specific kind of
object, namely, numbers. So one has to use much more precise
language, and start the definition with “A prime number is”, or
“A number is prime if”.

If a definition starts with “such and such is when...” you
can be sure it is wrong:

• “Prime number is when...” is wrong.

• “Divisible is when...” is wrong.

• “Even number is when...” is wrong.

• “Power set is when...” is wrong.

• “Subset is when...” is wrong.

• “Intersection is when...” is wrong.
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A correct definition of “prime number” should start in
one of the following ways:

• “A prime number is a natural number n such that”

• “Let n be a natural number. Then n is a prime number if”

• “Let n be a natural number. We say that n is prime if”

• “A natural number n is prime if”

In other words: at the beginning of the definition you have
to introduce the object or objects that you will be talking
about. In this example, you do this by indicating that you will be
talking about a natural number, not about a real number or a cow
or a fish or a river. And you may give that natural number a name,
such as n.

2. Bad Definitions 1 and 2 talk about “numbers”. We have already quoted
Bad Definition 1, and Bad definition 2 says: A pime number is a number
that cannot be divided by any number other than 1 and itself.

This definition does not pass the “can I tell?” test. It tells
me that to be a prime number an object has to be a “number”.

But “number” is a vague concept, because there are lots of dif-
ferent kinds of “numbers”, so when you say “number” you could mean
“natural number” (that is, the kind of number that you are used to
calling “whole number”), “integer”, “rational number”, “real number”,
“complex number”, or lots of other kinds of numbers that exist.

Never say “number” unless it is clear what kind
of “number” you are talking about.

If I want to follow Bad Definition 2, the, when I am given a thing and
want to find out if that thing is a prime number, the first I thing I have
to do is find out if it is a “number”. But I cannot do that because I
don’t know what a “number” is. So the definition fails the “can I tell?”
test.
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In a correct, intelligible definition, when you talk about a ‘number”,
you have to make it clear what you mean by “‘number”.

This can be made clear in at least three ways:

– You can just say what kind of number your number is supposed
to be. (For example, you could say “let n be a natural number”,
or “let n be an integer”, or “let n be a rational number”, or “let
n be a real number”.)

– You can make it clear at the beginning of your text that the word
“number” is always going to mean “integer”, or “real number”, or
whatever. If you do so, then you don’t need to repeat that you
mean “integer”, or “real number”, or whatever, every time you
say “number”.

– You may want to talk about different kinds of numbers simul-
taneously. And, in order to do that, you may declare, at the
beginning of your text, that, for example, “in this chapter, the
letters m,n, p, q will always stand for natural numbers, and the
letters x, y, z, u, v, w will stand for real numbers”.

3. Bad definitions 1, 2, and 3, talk about “dividing by numbers”, and tell
me that a number is prime if it cannot be divided by certain numbers.
But this is very confusing.

– Actually, any number can be divided by any number (ex-
cept zero). For example, I can divide 7 by 5, getting as a result
the number 7

5
.

– So the issue is not whether “we can divide”, because wwe can
almost always do that, but what kind of result we get when
we divide.

– When Bad Definition 3 tells me that I should see if a number “can
be divided by numbers other that 1 and the number itself”, then
I could try to apply the definition, for example, to the number
3, and I would immediately see that 3 can be divided by lots of
numbers other than 1 and 3: I can divide 3 by 2 (and the result
is 3

2
), I can divide 3 by 7 (and the result is 3

7
), I can divide 3 by

29 (and the result is 3
29
), and so on.



Math 300, Fall 2018 231

4. Bad Definitions 4 and 5 are a little bit better. Rather than talk about
“dividing”, they talk about “factors”, which is more precise. because
we have a precise definition of “factor”.

But that is not good enough. According to the definition of “factor”,
a factor of an integer a is an integer b such that there exists an integer
k for which a = bk. So, when Bad Definition 5 says that

A prime number is a natural number such that the only
factors of n are 1 and n.

then this definition fails the correctness test: according to this
definition 2 is not prime, becauuse 2 as other factors in addition
to 1 and 2. Indeed, −1 and −2 are factors of 2 as well, since 2 =
(−1)× (−2) and 2 = (−2)× (−12).

5. Bad Definition 6 is much better. It says that

A prime number is a natural number such that the only
natural numbers that are factors of n are 1 and n.

This is quite close, but this definition still fails the correctness
test, because it gives us wrong answers. Indeed, according to
this definition 1 is prime. But this is wrong: 1 is not prime71.

6. With Bad Definition 7 we enter, for the first time, the “partial credit”
zone. This definition is essentially correct, but it is not well written. It
says that

A prime number is a natural number such that n > 1
and the only natural numbers that are factors of n are 1
and n.

The problem with this is that the defintion talks about “n” but does
not tell us who this “n” is. In a mathematical text, when you
refer to an object using a letter name, this name has to be
introduced first.

71Why is 1 not prime? For the same reason why Pluto is not a planet. Mathematicians
have decided not to call 1 “prime”, exactly as astronomers have decided not to call Pluto
a planet. But this decision was made for good reasons, that will be discussed later in this
course.



Math 300, Fall 2018 232

7. Bad Definition 8 does this: the symbol “n” is properly introduced when
we are told that

A prime number is a natural number n such that n > 1
and the only natural numbers that are factors of n are 1
and n.

8. So Bad Ddefinition 8 is nearly perfect. What is missing? Only one
thing: in a definition, the word or phrase being defined must
be highlighted is some way, to indicate that we are defining
that word or phrase. And when we write by hand the way we
highlight is by underlining. So, for example, in a definition of “‘prime
number” the words “prime numebr” have to be underlined. And if
we do that we get a correct definition. A prime number is a natural
number n such that n > 1 and the only natural numbers that are factors
of n are 1 and n.

9.2.2 Always highlight the definiendum

When you write a definition, you are defining a particular word or phrase.
That word or phrase is called the definiendum. (This just means “the thing
being defined.”) The definiendum should always be highlighted.

In books, the authors do this by using Italics, or Boldface. But when we
write by hand, it is hard to do Italics or Boldface, so we use underlining.

Look, for example, at any definitions you want in our textboook. Just
open the book at random, at any page, and look at the definitions on that
page. And, for each definition, ask yourself “what is this definition the
definition of?” And, invariably, you will see that the term or phrase being
defined is in boldface. (This is not just a peculiarity of our textbook. It’s
done in every Mathematics book.) In my lecture notes, I use underlining
rather than boldface. And when you write your homework or your exams, or
when I write on the blackboard, it’s hard to do italics or boldface, so I use
underlining instead, and you should do the same.

9.3 The general formats for definitions

In a definition, the word, symbol or phrase whose meanign we are trying to
define is called the definiendum.
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9.3.1 Step 1: Find out if the definiendum is a term or a sentence,
and what its arguments are

In order to know how to write a definition of something, we first have to
figure out two things:

1. Whether the definiendum is a term or a sentence.

2. What the arguments of the definiendum are.

Recall that

• A term is a word or symbol or phrase that stands for a thing. Terms
are essentially the same things that in your English or linguistics classes
you may have called “noun phrases”.

• A sentence is a word or symbol or phrase that makes an assertion
that can be true or false. Sentences are essentially the same things as
“predicates”, or “statements”.

• Terms and sentences have values.

• The value of a term is the thing the term stands for. For example the
term “New York City” is New York City.

• The value of a sentence is its truth value. For example, the sentence
“New York City is the capital of New York State” has the truth value
“false”, because it is not true, but the sentence “Albany is the capital
of New York State” has the truth value “true”, because it is true.

• If a term or sentence contains variables, then the term or sentence only
has a value, or truth value, is the variables that occur in it have been
assigned values. For example,

– the term “x + y” contains two variables, x and y. If we assign
values to these variables, by saying something like “let x = 5,
y = 3”, then the term “x+ y” has the value 8.

– the sentence ‘x + y = z” contains three variables, x, y, and z. If
we assign values to these variables, by saying something like “let
x = 5, y = 3, z = 4”, then the sentence “x+ y = z” has the truth
value “false”, because 5 + 3 is not equal to 4.
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9.4 Step 2: Introduce the arguments

You must start your definition by introducing the arguments.
For example:

• If you want to define “prime number”. then you will see, first of all,
that the definiendum is a sentence, “something is a prime number”.
And it has one argument, because we say things such as “n is a prime
number”. What you want to explain to the readers is how to tell what
the truth value of the definiendum is for any given value or values of the
arguments. That is, you want to tell the readers under what conditions
they should call a number n “prime”, that is, when they should say
“n is prime”. So you definition must start by saying something like
“Let n be an integer”, or “let n be a natural number”, or “let n be
a real number”. (Eventually, n will turn out to be a natural number
anyhow. So you could start your definition by requiring n to be a
natural number. But you can also require n to be an integer, and let
the second part of the definition force n to be a natural number, for
example by putting the requirement that n > 1. And you could even
start by requiring n to be a real number, and then say later: “we say
that n is a a prime number if it is a natural number such that . . .”.)

• “Divisible” is a two-argument sentence, because we say things such
as “m is divisible by n”, and these things are true or false. So in
the definition of “divisible” you want to tell the readers under what
conditions they should say of two numbers m,n that “m is divisible by
n”. And you must start by introducing the two numbers m and n, by
saying something like “Let m,n be integers”.

• “Union” is a two-argument term, because we talk about “the union of
two sets A, B”, and that union is a thing, namely, a set. So in the
definition of “union” you want to tell the readers who the set A ∪ B
is, if we are given two sets A, B. So you must start by introducing the
two sets A and B, by saying something like “Let A,B be sets”.

• “Subset” is a two-argument sentence, because we say things such as “A
is a subset of B”, and this sentence is true or false. So in the definition
of “subset” you want to tell the readers under what conditions they
should say that “A ⊆ B” is true, if we are given two sets A, B. And you
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must start by introducing the two sets A and B, by saying something
like “Let A,B be sets”.

• “Power set” is a one-argument term, because we talk about “the power
set of a set A”, and that power set is a thing, namely, a set. So in the
definition of “power set” you want to tell the readers who the set P(A)
is, if we are given a set A. So you must start by introducing the set A,
by saying something like “Let A be a set”.

• “Derivative” is more complicated, because there are two different con-
cepts of derivative:

– We talk about “the derivative of a function f at a point a.” This
is a two-argument term: the derivative of f at a is a real number.
So your definition of “derivative of a function at a point” must
start by saying something like “Let f be a function and let a be
a real number”.

– We talk about “the derivative of a function f .” This is a one-
argument term: the derivative of a function f is another function,
usually called f ′. So your definition of “derivative of a function”
must start by saying something like “Let f be a function”.

• “married” is also complicated, like “derivative”. because there are two
different concepts of “married”:

– We talk about “two people begin married to each other.” This is
a two-argument sentence: if x and y are people, then “x and y are
married to each other” can be true or false. So your definition of “x
and y are married to each other” must start by saying something
like “Let x, y be two persons”.

– We talk about one person being married, and say things like “x
is married.” This is a one-argument sentence. So your definition
of “married” must start by saying something like “Let x be a
person”.
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9.5 Step 3: Tell the readers how to find the value of
the definiendum

Now that you have introduced the arguments, you have to tell your readers
how they can determine the value of the definiendum for those arguments.
That value will be a thing if the definiendum is a term, and a truth value if
the definiendum is a sentence.

For example:

• In the definition of “prime number”, after you have said, for example,
“Let n be a natural number”, you have to tell the readers how to figure
out the value of the definiendum, for n. In this case, the definiendum is
the sentence “n is prime”, so you you have to tell the readers what has
to happen that will make that sentence true. You can say, for example:

“We say that n is a prime number if n 6= 1 and (∀m ∈ IN)
(

m|n =⇒
(m = 1 ∨m = n)

)

”.

• In the definition of “divisible”. after you have said “Let m,n be inte-
gers”, you have to tell the readers how to figure out the value of the
definiendum, for m and n. In this case, the definiendum is the sentence
“m is divisible by n”, so you have to tell the readers what has to hap-
pen that will make them say that the sentence is true. You can say, for
example: “We say that m is divisible by n if (∃k ∈ Z)m = nk.”.

• In the definition of “union”. after you have said “Let A,B be sets”, you
have to tell the readers how to figure out the value of the definiendum,
for A and B. In this case, the definiendum is the term “A∪B”, which
is the name of a set. So you you have to tell the readers who that set
is, by saying, for example: “the union of A and B is the set A∪B given
by A ∪B = {x : x ∈ A ∨ x ∈ B}.”

• In the definition of “power set”. after you have said “Let A be a
set”, you have to tell the readers how to figure out the value of the
definiendum, for the set A. In this case, the definiendum is the term
“P(A)”, which is the name of a set. So you you have to tell the readers
who that set is, by saying, for example: “the power set of A is the set
P(A) given by P(A) = {X : X ⊆ A}.”
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Problem 37. Analyze critically (and, in particular, assign a grade on a
scale from72 0 to 10) each of the following definitions:

1. Definition of “union”: The union of two sets is what you get when you
combine the sets.

2. Definition of “union”: The union of two sets is all combined members
of the sets.

3. Definition of “union”: Let A, B be sets. Then A∪B = {x : x ∈ A∨x ∈
B}.

4. Definition of “divisible”: A number n is divisible if it can be divided
evenly into many parts.

5. Definition of “divisible”: Let m,n be integers. We say that m is
divisible by n if m

n
is an integer

6. Definition of “prime number”: A prime number is a number that is not
divisible by anything.

7. Definition of “prime number”: A prime number is a natural number n
such that n has exactly two positive integer factors.

72You are allowed to give negative grades like −300 for particularly atrocious definitions.
And, since the authors of these definitions are just figments of my imagination, you don’t
have to worry about the danger that you might hurt their feelings, and should feel free to
be very harsh


