
MATHEMATICS 300 — FALL 2018

Introduction to Mathematical Reasoning

H. J. Sussmann

INSTRUCTOR’S NOTES

Contents

Part IV 2

1 An introduction to elementary arithmetic 2

1.1 What is arithmetic? . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Other number systems: The integers modulo n . . . . . . . . . . . 6
1.4 Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.1 Commutative and non-commutative rings . . . . . . . . . . 14
1.4.2 Examples of commutative rings . . . . . . . . . . . . . . . . 16
1.4.3 The additive inverse; our first abstract algebra theorens . . 16
1.4.4 Multiplication by zero . . . . . . . . . . . . . . . . . . . . . 19
1.4.5 Unity; rings with unity . . . . . . . . . . . . . . . . . . . . . 20
1.4.6 Unities in noncommiutative rings . . . . . . . . . . . . . . . 21
1.4.7 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4.8 Is there a cancellation law for multiplication? . . . . . . . . 25
1.4.9 A few very simple proofs: 2 + 2 = 4, etc. . . . . . . . . . . . 26
1.4.10 Divisibility; factors . . . . . . . . . . . . . . . . . . . . . . . 29
1.4.11 More easy theorems . . . . . . . . . . . . . . . . . . . . . . 32
1.4.12 Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.4.13 A few elementary formulas . . . . . . . . . . . . . . . . . . 35

1.5 Even and odd numbers . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.5.1 The meaning of “even” and “odd” for integers . . . . . . . 37
1.5.2 The parity of a sum and a product . . . . . . . . . . . . . . 37
1.5.3 The parity of −n . . . . . . . . . . . . . . . . . . . . . . . . 40
1.5.4 The parity of a successor: parity reversal . . . . . . . . . . 40
1.5.5 Introduction to the proof that “every integer is even or odd

and not both” . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.6 New facts we need about Z: ordering and induction . . . . . . . . 46

1.6.1 The ordering of the integers . . . . . . . . . . . . . . . . . . 46



Math 300, Fall 2018 1

1.6.2 Why we need the Principle of Mathematical Induction . . . 47
1.6.3 Why induction is needed . . . . . . . . . . . . . . . . . . . . 48
1.6.4 “And so on” is dangerous . . . . . . . . . . . . . . . . . . . 49
1.6.5 Why induction is valid . . . . . . . . . . . . . . . . . . . . . 50

2 Induction 52

2.1 Introduction to the Principle of Mathematical Induction . . . . . . 52
2.2 The Principle of Mathematical Induction (PMI) . . . . . . . . . . . 54
2.3 The proof by induction that every natural number is even or odd

and not both . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3.1 Our first proof by induction: the successor theorem . . . . . 56
2.3.2 A remark on the importance of parentheses . . . . . . . . . 58
2.3.3 Proof that 1 is not even . . . . . . . . . . . . . . . . . . . . 58
2.3.4 The proof that every natural number is good . . . . . . . . 59
2.3.5 The last step . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 Examples of proofs by induction 62

3.1 Some divisibility theorems . . . . . . . . . . . . . . . . . . . . . . . 62
3.2 An inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 More inequalities, with applications to the computation of some limits 66

3.3.1 An application of Theorem 40: computing limn→∞
n

√
n . . . 69

3.4 Some formulas for sums . . . . . . . . . . . . . . . . . . . . . . . . 71
3.5 Inductive definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.1 The inductive definition of powers of a real number . . . . . 75
3.5.2 The inductive definition of the factorial . . . . . . . . . . . 76
3.5.3 The inductive definition of summation. . . . . . . . . . . . . 77
3.5.4 Inductive definition of product. . . . . . . . . . . . . . . . . 78
3.5.5 A simple example of a proof by induction using inductive

definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.5.6 Another simple example of a proof by induction using in-

ductive definitions . . . . . . . . . . . . . . . . . . . . . . . 80
3.5.7 Another simple example . . . . . . . . . . . . . . . . . . . . 81

4 Other forms of induction 86

4.1 Induction with a different starting point (sometimes called “gener-
alized induction”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Induction going forward and backward . . . . . . . . . . . . . . . . 90
4.3 Examples of proofs using induction going forward and backward . 93

4.3.1 A very simple example . . . . . . . . . . . . . . . . . . . . . 93
4.3.2 Divisibility properties of products of consecutive integers . 96



Math 300, Fall 2018 2

Part IV

1 An introduction to elementary arithmetic

1.1 What is arithmetic?

According to the Oxford English Dictionary (OED), the Oxford Learner’s
Dictionafry (OPD), and Dictionary.com (Dc), arithmetic is

• the branch of mathematics dealing with

the properties and manipulation of numbers

(OED),

• the type of mathematics that deals with the

adding, multiplying, etc. of numbers (OLD),

• the theory of numbers; the study of the divis-

ibility of whole numbers, the remainders after

division, etc. (Dc).

So, as you can see, arithmetic is concerned with the properties of the basic
operations on numbers: addition, subtraction, multiplication and division.
And, as the definition in Dictionary.com indicates, the most interesting
of these operations is division.

1.2 Numbers
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And, as we have discussed before, there are many kinds of “numbers”. These
numbers are organized into number systems. The most important exam-
ples of number systems are:

1. the integers,

2. the rational numbers,

3. the real numbers,

4. the complex numbers1

In mathematical language, for each of these number systems the set of num-
bers has a name:

• the set of all integers is called Z; so “x ∈ Z” is a way to say that x is
an integer2;

• the set of all rational numbers is called Q; so “x ∈ Q” is a way to say
that x is a rational number;

• the set of all real numbers is called IR; so “x ∈ IR” is a way to say that
x is a real number;

• the set of all complex numbers is called C; so “x ∈ C” is a way to say
that x is a complex number.

1.2.1 Operations

Unary and binary operations

An operation is a way of combining one or several objects of one or
several kinds, called the inputs, or arguments, of the operation and
producing a new object, called the result, or output, which may be
of the same kind as the arguments.
An operation with one argument is called a unary operation.
An operation with two arguments is called a binary operation.

1If you are not familiar with the complex numbers, do not worry; we are not going to
need them in this course, but in any case I will explain what they are later.

2It is customary to use letters such as m,n, p, q, rather than x, for integers, but it is
perfectly legitimate to use x.
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Example 1.

• Addition of integers is a binary operation: it takes two integers m
and n as inputs and results in an integer m + n, called the sum of m
and n.

• Multiplication of integers is a binary operation: it takes two inte-
gersm and n as inputs and results in an integermn, called the product
of m and n.

• Subtraction of integers is a binary operation: it takes two integers
m and n as inputs and results in an integerm−n, called the difference
of m and n.

• Addition, multiplication, and subtraction of rational num-
bers are binary operations whose arguments and outputs are rational
numbers.

• Addition, multiplication, and subtraction of real numbers are
binary operations whose arguments and outputs are real numbers.

• Addition, multiplication, and subtraction of complex num-
bers are binary operations whose arguments and outputs are complex
numbers.

• Minus (or “negative of” is a unary operation on the integers: it takes
an integer n as input and results in an integer −n, called “minus n”,
or “the negative of n”, or “the additive inverse of n”. (As explained in
Part I of these notes (on page 21), I strongly recommend that you read
“−n” as “minus n” rather than, say, “negative n”.)

• Thera are similar “minus” unary operations on the rational numbers,
the real numbers, and the complex numbers..

• The scalar product (a.k.a dot product) of vectors in two or three
dimensions is a binary operation that takes as inputs two vectors ~v, ~w
and produces as output a real number ~v · ~w, called the scalar product,
or dot product, of ~v and ~w.

• The vector product of vectors in three dimensions is a binary op-
eration that takes as inputs two three-dimensional vectors ~v, ~w and
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produces as output a vector ~v× ~w, called the vector product of ~v and
~w. �

So in all the four number systems that we have seen so far—Z, Q, IR and
C—there are two important binary operations, addition and multiplication.

But these operations behave differently, and for that reason Z, Q, IR and
C are very different. For example:

• In Q, IR and C, the following “division theorem” is true3:

(∀x)(∀y)(y 6= 0 =⇒ (∃z)x = yz) . (1.1)

In other words, given any x and any y, as long as y 6= 0, it is possible to
divide x by y exactly, that is, find a “quotient” z such that yz = x.

• In Z, the “division theorem” (1.1) is not true, but there is a different
theorem, the division theorem for integers4:

(∀x)(∀y)
(

y 6= 0 =⇒ (∃z)(x = yz + r ∧ 0 ≤ r < |y|)
)

) . (1.2)

In other words, given any x and any y, as long as y 6= 0, it is possible to
divide x by y with a remainder that is, find a “quotient” z and a
“small remainder” r such that x = yz+ r; the remainder r iius ‘small”
in the precise sense that 0 ≤ r < |y|..

• For example:

– In Q, if we take x = 23, y = 6, and we want to divide x by y, we
can find z such that x = yz. (The value of z is 23

6
, of course.)

– But in Z the situation is very different: if we take x = 23, y = 6,
and we want to divide x by y, we can find z, r such that x = yz+r
and 0 ≤ r < 6. (The values of z and r are: z = 3, r = 5.)

3As explained in the box on page 6, if we are working in a number system N, the
quantifiers “(∀x)”, “(∀y)”, “(∃z)” mean “(∀x ∈ N)”, “(∀y ∈ N)”, “(∃z ∈ N)”.

4In this case, the conventions of the box on page 6 tell us, since we have announced
that we are working in Z, that the quantifiers “(∀x)”, “(∀y)”, “(∃z)”, “(∃r)” mean mean
“(∀x ∈ Z)”, “(∀y ∈ Z)”, “(∃z ∈ Z)”, “(∃r ∈ Z)”.
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AN IMPORTANT CONVENTION ABOUT
QUANTIFIERS

When we are studying a particular number system N, then we just
write “(∀x)” and “(∃x)” instead of “(∀x ∈ N)” and “(∃x ∈ N)”.
In other words: when the range of a variable in a quantifier is not
specified it is understood that the range is N. So, for example, if we
are studying IR, the real number system, and we want to say “for
every real number x there exists an integer n that is larger than x”,
we can write “(∀x)(∃n ∈ Z)n > x”. It is understood that “(∀x)”
means “(∀x ∈ IR)”. But we have to write “(∃n ∈ Z)”, because if
we wrote “(∃n)” this would be interepreted as “(∃n ∈ IR)”.

1.3 Other number systems: The integers modulo n

In order to understand how Z is different from other number systems, math-
ematicians have come to the conclusion that it is very convenient and very
interesting to study lots of other number systems, in addition to Z, Q and IR.
So let me start by presenting a whole infinite class of new number systems:
the integers modulo n.

For each natural number n such that n ≥ 2, we define the set Zn of
integers modulo n.

• The members of Zn are the numbers 0, 1, 2, . . . , n − 1, so Zn has n
members5.

• The operations of addition and multiplication in Zn are performed
as follows: to add or multiply two members a, b of Zn, we add them
or multiply them as ordinary integers. and then “reduce the result
modulo n”, by subtracting a multiple of n so as to produce a result
that belongs to Zn.

Example 2. The set Z7 of integers modulo 7 has seven members: 0, 1, 2, 3,
4, 5, and 6. That is,

Z7 = {0, 1, 2, 3, 4, 5, 6} .
5This is why we take n ≥ 2. We could also study Z1, the integers modulo 1, but this

set would have only one member, namely, 0, and this would not be interesting.
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To add or multiply two members of Z7 in Z7 we add them or multiply them
as integers, but if the result is 7 or larger than 7 then we subtract 7, and
then subtract 7 again if necessary, until we end up with a result in Z7. So,
for example, the following are true in Z7:

2 + 3 = 5 ,

3 + 4 = 0 ,

2 + 6 = 1 ,

4 + 5 = 2 ,

5 + 6 = 4 ,

2× 3 = 6 ,

3× 4 = 5 ,

2× 6 = 5 ,

4× 5 = 6 ,

5× 6 = 2 .

(For example, we get the equality 5 × 6 = 2 as follows: in Z, 5 times 6 is
equal to 30, but then we have to reduce modulo 7, for which purpose we have
to subtract 7 four times, i.e., subtract 28, thus ending up with 2 as the final
result.)

Example 3. The set Z12 of integers modulo 12 has twelve members: 0, 1, 2,
3, 4, 5, 6, 7, 8, 9, 10, and 11. That is,

Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} .

To add or multiply two members of Z12 in Z12 we add them or multiply them
as integers, but if the result is 12 or larger than 12 then we subtract 12, and
then subtract 12 again if necessary, until we end up with a result belonging
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to Z12. So, for example, the following are true in Z12:

2 + 3 = 5 ,

3 + 4 = 7 ,

4 + 9 = 1 ,

9 + 7 = 4 ,

2× 3 = 6 ,

3× 4 = 0 ,

4× 9 = 0 ,

9× 7 = 3 .

(For example, we get the equality 9 × 7 = 3 as follows: in Z, 9 times 7 is
equal to 63, and then we have to reduce modulo 12, for which purpose we
have to subtract 12 five times, i.e., subtract 60, thus ending up with 3 as the
final result.)

Example 4. The set Z103 of integers modulo 103 has 103 members, namely,
all the integers n such that 0 ≤ n < n. I do not write down the full list for
obvious reasons. But it is possible to write down a formal definition using
the langauge of sets, as follows

Z103 = {n ∈ Z : 0 ≤ n < 103} . (1.3)

To add or multiply two members of Z103 in Z103 we add them or multiply
them as integers, but if the result is 103 or larger than 103 then we subtract
103, and then subtract 103 again if necessary, until we end up with a result
belonging to Z103. So, for example, the following are true in Z103:

56 + 87 = 40 ,

56× 87 = 31 .

How do we find that 56× 87 = 41 ? You compute the product 56× 87 in Z,
and get

56× 87 = 4872 in Z .

Then, using the method for dividing integers that you learned in high school,
you get

4872 = 47× 103 + 31 in Z .

so in Z103 56× 87 = 31.
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Problem 1. In a number system N, a multiplicative inverse of a number
a ∈ N is a member b of N such that ab = 1.

Find

1. a multiplicative inverse of 4 in Z7,

2. a multiplicative inverse of 23 in Z41,

3. a multiplicative inverse of 48 in Z103.

Solution:

1. To find a multiplicative inverse of 4 in Z7 we just use trial and error:
we try multiplying 4 in Z7 by all the members of Z7 until we find one
for which the product is 1. Clearly, 0× 4 = 0, 1× 4 = 4, and 2× 4 = 1.
So 2 is a multiplicative inverse of 4 in Z7.

2. To find a multiplicative inverse of 23 in Z41, trial and error would take
too long, so we try something smarter: we look for members n of Z41

such that 23 × n is close to 1, and then we try to modify n to make
23 × n even closer to 41, and we keep going until we get 23 × n = 1.
An obvious first choice of n is n = 2, This yields 23 × 2 = 5, which is
not 1, but is close. Now we look for m ∈ Z41 such that 5 ×m is close
to 41. An obvious choice is m = 8. This gives6 5× 8 = −1. So

(23× 2)× 8 = 5× 8

= −1 ,

while, on the other hand,

(23× 2)× 8 = 23× (2× 8)

= 23× 16 ,

so
23× 16 = −1 .

Then 23 × (−16) = 1. So the desired multiplicative inverse of 23 is
−16. And in Z41 −16 equals 25, because 25 + 16 = 0. So, finally, our
answer is 25 .

6Why is 40 = −1. Because −k is the number that added to k gives zero. And 40+1 = 0
in Z41, so 40 = −1 in Z41.
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Verification: In Z41:

23× 25 = 23× 5× 5

= 115× 5

= (82 + 33)× 5

= (41× 2 + 33)× 5

= 33× 5

= 165

= 164 + 1

= 41× 4 + 1

= 1 .

3. To find a multiplicative inverse of 48 in Z103 we use the same method
as for the previous question. First. we observe that 48 × 2 equals 96,
which in 103 is equal to −7. So 48 × 2 = −7. Next, 7 × 15 = 105, so
7× 15 = 2 in Z103, and then (−7)× 15 = −2. Then

(48× 2)× 15 = (−7)× 15

= −2 ,

but

(48× 2)× 15 = 48× (2× 15)

= 48× 30 ,

so 48× 30 = −2, and then 48× (−30) = 2. Since −30 = 73 in Z103, we
get

48× 73 = 2 .

Now, 104 = 2× 52, so 2× 52 = 1 in Z103. Hence

(48× 73)× 52 = 2× 52

= 1 ,

while, on the other hand, (48×73)×52 = 48× (73×52). So 48× (73×
52) = 1. So the desired multiplicative inverse of 48 in Z103 is 73× 52.
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Finally,

73× 52 = −30× 52

= −3× 10× 52

= −3× 520

= −3× 5

= −15

= 88 .

So our final answer is that 88 is a multiplicative inverse of 48 in Z103.

Verification: In Z103

48× 88 = 48× 2× 2× 2× 11

= 96× 2× 2× 11

= 192× 2× 11

= (103 + 89)× 2× 11

= 89× 2× 11

= 178× 11

= (103 + 75)× 11

= 75× 11

= 825

= 824 + 1

= (103× 8) + 1

= 1 .

Problem 2. Prove that 6 does not have a multiplicative inverse in Z12.

Solution:
Suppose7 6 had a multiplicative inverse in Z12. Pick one such inverse 8

and call it x, so
6x = 1 in Z12 .

7Obviously, we are doing a proof by contradiction.
8Since (∃x ∈ Z12)6x = 1, where “6x” stands for the product of 6 and x in Z12, Rule

∃use allows us to pick a witness and call it x.
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Multiply both sides by 2. Then, in Z12,

2× (6x) = 2× 1 = 2 ,

while on the other hand

2× (6x) = (2× 6)× x = 12x = 0.x = 0 ,

because in Z12 12 = 0.
So 2 = 0. But in Z12 2 is not 0. So we got a contradiction. Q.E.D.

Problem 3. Prove that 21 does not have a multiplicative inverse in Z60.

Solution:
Suppose 21 had a multiplicative inverse in Z60. Pick one such inverse and

call it x, so
21x = 1 in Z60 .

Multiply both sides by 20. Then, in Z60,

20× (21x) = 20× 1 = 20 ,

while on the other hand

20× (21x) = 20× (3× 7x) = (20× 3)× 7x = 60× 7x = 0.7x = 0 ,

because in Z60 60.
So 20 = 0. But in Z60 20 is not 0. So we got a contradiction. Q.E.D.

Problem 4. Prove that if n ∈ IN, n > 1, and n is not prime, then it is not
true that every nonzero member of Zn has a multiplicative inverse in Zn.

Solution: YOU DO THIS ONE.

Hint: Read carefully the solutions of problems 2 and 3 and use the same
method, Write n = pq, with p, q ∈ Z and 1 < p < n, so 1 < q < n, and then
p ∈ Zn and q ∈ Zn. Prove by contradiction that p (or q if you prefer) does
not have a multiplicative inverse in Zn. �
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1.4 Rings

All the number systems that we have discussed so far (Z, Q, IR, C, and the
integers modulo n for every n ∈ IN such that n > 1) enumerated have an op-
eration of addition and an operation of multiplication. And these operations
have certain properties that are similar for all these number systems.

Definition 1. A ring is a set R—whose members are called “numbers”—
equipped with

1. a binary operation called addition, that for every x ∈ R, y ∈ R

produces a new object x+ y called “x plus y”, or the sum of x and
y;

2. a binary operation called multiplication, that for every x ∈ R, y ∈ R

produces a new object x.y (or xy, or x× y) called “x times y”, or the
product of x and y;

3. a special member 0 of R called zero.

in such a way that the following “ring axioms” are satisfied.

THE RING AXIOMS

RA1: 0 ∈ R,
RA2: (∀x ∈ R)(∀y ∈ R)x+ y ∈ R.
RA3: (∀x ∈ R)(∀y ∈ R)x.y ∈ R.
RA4: (∀x ∈ R)(∀y ∈ R)x+ y = y + x.
RA5: (∀x ∈ R)(∀y ∈ R)(∀z ∈ R)x+ (y + z) = (x+ y) + z.
RA6: (∀x ∈ R)(∀y ∈ R)(∀z ∈ R)x(yz) = (xy)z.
RA7: (∀x ∈ R)(∀y ∈ R)(∀z ∈ R)x(y+z) = xy+xz∧(x+y)z = xz+yz.
RA8: (∀x ∈ R)x+ 0 = x.
RA9: (∀x ∈ R)(∃y ∈ R)x+ y = 0.

Let us read and try to understand the ring axioms:

• Axiom RA1 says that zero is a number, i.e., a member of our number
system N.
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• Axioms RA2 and RA3 say that numbers—i.e., members of R— can be
added and multiplied, and the result of adding or multiplying two
member of R is again in R.

• Axiom RA4 is the commutative law of addition: the sum of two
numbers is the same if you add them in the opposite order: x+y = y+x
for every x, y ∈ R.

• Axiom RA5 is the associative law of addition: if x, y, z are three
members of R then x+ (y + z) = (x+ y) + z.

• Axiom RA6 is the associative law of multiplication: if x, y, z are
three members of R then x(yz) = (xy)z.

• Axiom RA7 is the distributive law of multiplication with respect
to addition: if x, y, z are three members of R then x(y+z) = xy+xz,
and also (x+ y)z = xz + yz.

• Axiom RA8 says that zero is an additive identity. (An additive identity
is a number a such that x+ a = x for every x.)

• Axiom RA9 says that every member of R has an additive in-
verse. (An additive inverse of x is a number y such that x+ y = 0.)

1.4.1 Commutative and non-commutative rings

You may notice that we did not include in our list of axioms the commutative
law of multiplication:

THE COMMUTATIVE LAW ROF
MULTIPLICATION

RA10: (∀x ∈ R)(∀y ∈ R)xy = yx.

We did so on purpose, because there are interesting rings for which the
commutative law of multiplication does not hold.

Example 5. I will give you an example of a noncommutative ring, i.e.,
a ring for which the commutative law of multiplication is not valid.
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We use M2×2(IR) to denote the set of all 2 by 2 matrices

[
a b
c d

]

with

real entries (that is, such that a, b, c, d are real numbers).
Addition and multiplication in M2×2(IR) are the usual operations of ad-

dition and multiplication of matrices:

[
a b
c d

]

+

[
e f
g h

]

=

[
a+ e b+ f
c+ g d+ h

]

(1.4)

and [
a b
c d

]

×
[
e f
g h

]

=

[
ae+ bg af + bh
ce+ dg cf + dh

]

. (1.5)

The zero of M2×2(IR) is the matrix

[
0 0
0 0

]

.

It is easy (but very boring) to verify that the set M2×2(IR), with the op-
erations of addition and multiplication defined by formulas (1.4)
and (1.5) is a ring.

Problem 5. Prove that in M2×2(IR) the associative law of multiplication—
that is, Axiom RA6—is true.

You have to prove that if A,B,C are 2 × 2 matrices, then A(BC) =
(AB)C .

(HINT: Write A =

[
a b
c d

]

, B =

[
e f
g h

]

, C =

[
j k
ℓ m

]

, and compute

both sides.)

Problem 6. Prove that in M2×2(IR) the commutative law of multiplica-

tion is not valid. (HINT: Compute the products

[
0 1
0 0

]

×
[
0 0
1 0

]

and
[
0 0
1 0

]

×
[
0 1
1 0

]

.)

Now that we know that there exist rings for which the commutative law
of multiplication does not hold, we give a name to those rings for which the
law does hold:

Definition 2. A commutative ring is a ring for which Axiom RA10 (that
is, the commutative law of multiplication) is true. �
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1.4.2 Examples of commutative rings

The following are examples of commutative rings: Z, Q, IR, C, as well as Zn

(the integers modulo n) for every natural number n such that n > 1.
The ring M2×2(IR) that we studied before, in Example 5, is an example

of a non-commutative ring.

1.4.3 The additive inverse; our first abstract algebra theorens

Axiom RA7 says that every member x of R has an additive invers, i.e., a y
such that x+ y = 0.

Can we talk about the additive inverse of x? The asnwer would be “yes”
if we knew that the additive inverse of x is unique, and “no” if it was not
unique. (For example; we can say “Trenton is the capital of New Jersey”,
because New Jersey has only one capital, but we cannot say “Piscataway is
the town in New Jersey”, because New Jersey has lots of towns.)

It turns out that the answer is “yes, the additive inverse is unique”. And
this means that we can talk about the additive inverse of a mamber x of a
ring R, and give it a name. And, as I am sure you have guessed, we will call
it −x.

Theorem 1.. Let R be a ring, and let x be a member of x. Then there exists
a unique y ∈ R such that x+ y = 0

Proof. Axiom RA9 tells us that there exists a y ∈ R siuch that x + y = 0.
What is missing is proving that there is only one such y. So let us prove
that.

We use the standard method for proving uniqueness: if you have two of
them, prove that they are the same.

So let us suppose that y1 and y2, are members of R, such that x+ y1 = 0
and x+ y2 = 0. We want to prove that y1 = y2.

Using the ring axioms, we get

y1 = y1 + 0 (1.6)

= y1 + (x+ y2) (1.7)

= (y1 + x) + y2 (1.8)

= 0 + y2 (1.9)

= y2 + 0 (1.10)

= y2 , (1.11)
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so y1 = y2. This proves the uniqueness of y. Q.E.D.

Problem 7. Write down the justifications of each of the six steps (1.6),
(1.7), (1.8), (1.9), (1.10), (1.11) of the proof of Theorem 1.

And now that we know that the additive inverse of an x ∈ R is unique,
we can give it a name.

Definition 3. Let R be a ring, and let x be a member of R. Then the
unique y ∈ R such that x+ y = 0 is called minus x, or the negative of x, or
the addittive inverse of x, and is denoted by the expression “−x”.

It is then clear from Definition 3 that

(∀x ∈ R)x+ (−x) = 0 . (1.12)

Using additive inverses, we can prove a very useful little theoren, called
the cancellation law for addition, because it tells us that when wwe have
an equality a+ b = a+ c we can “cancel” the a term and end up with b = c.

Theorem 2. Let R be a ring, and let a, b, c be members of R. Then, if
a+ c = b+ c, it follows that b = c.

Proof.

b = b+ 0 (1.13)

= b+ (a+ (−a))) (1.14)

= (b+ a) + (−a) (1.15)

= (a+ b) + (−a) (1.16)

= (a+ c) + (−a) (1.17)

= (c+ a) + (−a) (1.18)

= c+ (a+ (−a)) (1.19)

= c+ 0 (1.20)

= c . (1.21)

So b = c. QED
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Problem 8. Write down the justifications of each of the nine steps (1.13),
(1.14), (1.15), (1.16), (1.17), (1.18), (1.19), (1.20), (1.21) of the proof of
Theorem 2.

THE THREE NOTATIONS FOR
MULTIPLICATION: x.y, xy, x× y

Usually, we write “x.y” to denote the product of x and y (and we read
this as “x times y”.
But sometimes we write “‘xy” rather than “x.y”. (This is called
juxtaposition: we write the name of one number and then the name
of the other number, with nothing in between.)
The juxtaposition notation “xy” is more convenient when the numbers
you are multiplying are being referred to by letter names, such as x, or
y, or a, or b, or m, or n.
But when we are using numeralsa, it would be disastrous if we used
juxtaposition. For example, suppose we wanted to talk about “two times
three”, and we wrote “23”. Then everybody would read this as “twenty-
three”! So we do not want that. And it would not be any better if we
wrote “2.3”? No! If we did this, then everybody would read “2.3” as
“two point three”, i.e., as the number which is equal to 23

10
, or 2+ 3

10
. So,

in order to avoid having these problems, we allow an alternative notation
for the product of x times y, namely, “x× y’.
And we use this notation for multiplication of numerals. So, for example,
“two times three” is written as “2× 3”.

aA numeral is an expression that is the name of a natural number. For example,
“1”, “2”, “35”, “307”, “2, 530, 983” are numerals. “Numeral” is not the same as
“number”. A numeral is not a number; it is a string of symbols that serves as the
name of a number. And a numeral can stand for different numbers, depending on
which number system you are working in. For example, in Z the numeral “85” stands
for the number eighty-five. But in Z80 “85” is also another name for the number 5.
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HOW TO READ THE “-” (MINUS) SIGN

I strongly recommend that you read “−x” as “minus x”,
rather that as “negative x”.
Here is why: when you say “negative x”, you are giving the
strong impression that −x is a negative number.
However, −x need not be negative. For example, if x =
−5, then −x is 5, which is positive.
When you say “minus x”, the danger that you will mistakenly
think that −x is negative is much smaller.

1.4.4 Multiplication by zero

As an application of the cancellation law, we prove that “anything multiplied
by zero is zero”.

Theorem 3. Let R be a ring. Then x.0 = 0 and 0.x = 0 for every x ∈ R.

Proof. We will prove that (∀x ∈ R)x.0 = 0. and leave the proof of the other
equality, i.e., (∀x ∈ R)0.x = 0, to the reader.

1. Let x ∈ R be arbitrary.

2. (∀u)u = u. [Equality axiom]

3. x.0 = x.0 [Rule ∀use]

4. (∀u ∈ R)u+ 0 = u). [Axiom RA8]

5. 0 + 0 = 0 [Rule ∀use]

6. x.(0 + 0) = x.0 [Rule SEE]

7. x.(0 + 0) = x.0 + x.0 [From Axiom RA7]

8. x.0 + x.0 = x.0 [Rule SEE]

9. x.0 + 0 = x.0 [Rule ∀use, from Step 4]

10. x.0 + x.0 = x.0 + 0 [Rule SEE]

11. x.0 = 0 [From Theorem 2, and Step 10]

Q.E.D.
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1.4.5 Unity; rings with unity

The basic axioms for rings never mention 1, and it is easy to give examples
of rigns that do not have a “one” (see Example 7 on page 21 below). But
first let us be precise:

Definition 4. In a ring R, a multiplicative identity, or unity, is a member
u of R such that ux = x and xu = x for every x ∈ R. �

And it is easy to prove that a unity, when it exists, is unique.

Theorem 4. Let R be a ring. Then, if a unity in R exists, then there is
only one unity in R.

Proof. Suppose u, v are unities. Then uv = u, because v is a unity, so
(∀x ∈ R)xv = x. And uv = v, because u is a unity, so (∀x ∈ R)ux = x. So
u = v. Q.E.D.

Definition 5.

• A ring with unity is a ring R equipped with a special member called 1
(“one”) for which the following axioms hold:

THE MULTIPLICATIVE IDENTITY
AXIOMS

RA11: 1 ∈ R,
RA12: (∀x ∈ R)(x.1 = x ∧ 1.x = x),
RA13: 1 6= 0.

• A commutative ring with unity is a commutative ring R which is also
a ring with unity.

So on a commutative ring with unity all 13 axioms RA1 through RA13 hold.

Example 6.

• The rings Z, Q, IR, C, and the Zn for every n, are commutative rings
with unity.
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• The ring M2×2(IR) introduced earlier in Example 5 is a ring with unity
but is not commutative. The multiplicative identity of M2×2(IR) is the
2× 2 identity matrix I2, given by

I2 =

[
1 0
0 1

]

.

• Let E denote the set of all even integers. That is,

E = {n ∈ Z : 2|n} .

Then E is a commutative ring without unity.

The following is an example of a commutative ring without unity:

Example 7. Let E be the set of all even integers. Then E , with the same
operations of addition and multplication as in Z, is a commutative ring. And
in E there are no units. �

1.4.6 Unities in noncommiutative rings

As we defined it, a unity (or “multiplicative identity”) of a ring R is a
member u of R for which both equalities x.u = x and u.x = x hold for every
x ∈ R. Naturally, if the ring R is commutative, “x.u = x” and “u.x = x”
are equivalent, so we could equally well have defined “unity” as a member u
of R for which x.u = x for every x ∈ R.

If R is not commutative, then the equalities “x.u = x” and “u.x = x”
are not equivalent, so in principle we could consider and give a special name
to members u of R for which one of the equalities—but not both—holds for
all x ∈ R.

So we can give the following defitniions:

Definition 6. In a ring R,

• A left multiplicative identity, or left unity, is a member u of R such
that ux = x for every x ∈ R.

• A right multiplicative identity, or right unity, is a member u of R such
that xu = x for every x ∈ R.
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• A two-sided multiplicative identity, or two-sided unity, is a member u
of R which is both a left identity and a right identity.

That is: a two-sided multiplicative identity is a member u of R such
that xu = x and ux = x for every x ∈ R. �

In Definition 4 we defined an “identity” to be what we are now calling “two-
ided identity”, and we proved that such an identity, if it exists, is unique. So
some natural questions to ask now would be:

1. In a noncomutative ring R, is it necessarily true that a left identity, if
it exists, is unique?

2. In a noncomutative ring R, is it necessarily true that a right identity,
if it exists, is unique?

3. In a noncomutative ring R, is it necessarily true that a right identity
is also a left identity?

4. In a noncomutative ring R, is it necessarily true that a left identity is
also a rigth identity?

It turns out the the answer to all these questions is “no”. To see this, it
suffices to look at one example.

Example 8. Let us start with the noncommutative ring M2×2(IR) of all 2×2

matrices

[
a b
c d

]

with real entries a, b, c, d. (This ring was described in

Example 5.)
We then let R be the subset of M2×2(IR) consisting of all the matrices

[
a b
c d

]

for which c = d = 0. That is, let

R =

{[
a b
0 0

]

: a, b ∈ IR

}

. (1.22)

Mutiplication in R is matrix multiplication. That is:
[
a b
0 0

]

×
[
c d
0 0

]

=

[
ac ad
0 0

]

. (1.23)

Then it can be verified that
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(1) R is a noncommutative ring.

(2) R has several (actually, infinitely many) left multiplicative identities.

(3) R has no right multiplicative identities.

These three things are easy to prove, and I am asking you to do it. �

Problem 9. Prove the three statements (1), (2), (3) of Example 8. (HINTS:

1. To prove that R is a ring, observe that

(a) The members of R are members of the ring M2×2(IR), so the var-
ious commutative, associatve and distributive laws automatically
hold in R, because they hold in M2×2(IR). (For example, the
associative law “(∀x ∈ R)(∀y ∈ R)(∀z ∈ R)x(yz) = (xy)z” is
true because if x, y, z are in R then x, y, z are in M2×2(IR), so
x(yz) = (xy)z because the associative law of multiplication holds
in M2×2(IR).)

(b) So in order to prove that R is a ring, all we need to show is that
if x, y ∈ R then x+ y, xy, and −x are in R

2. To prove that R is noncommutative it suffices to find two members x, y
of R such that xy 6= yx.

3. To prove that R has many left identities, write out explicitly the condi-

tion that a member u =

[
a b
0 0

]

must satisfy for u to be a left identity.

(Since
[
a b
0 0

]

×
[
r s
0 0

]

=

[
ar as
0 0

]

,

u is a left multiplicative identuty if and only if ar = r and as = s for
all r, s. This means that a must equal 1, and b can be any real number
whatsoever.)

4. To prove that R has no right identities, do a calculation similar to that
of the previous step, write out explicitly the condition that a member

u =

[
a b
0 0

]

must satisfy for u to be a right identity, and show that

it is not possible to find a, b for which the condition is true.
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In the previous example, we found a noncommutative ring that has many
left identities and no right identity. A natural question is:

(*) In a noncomutative ring R, is it possible that there is more that one
left identity and also more than one right identity?

Remarkably, the answer is “no”, because of the following very simple theo-
rem:

Theorem 5. If a ring R has a left identity u and a right identity v, then

1. u = v,

2. R has no left identity other than u,

3. R has no right identity other than v.

Proof.
Since u is a left identity, ux = x for all x ∈ R, so in particular uv = v.
Since v is a right identity, xv = x for all x ∈ R, so in particular uv = u.
So uv = v and uv = u. Hence u = v. This proves statement (1).
To prove (2), assume there was another left identity u′.
Then ny part (1), u′ = v as well, so u′ = u, and this proves statement (2).
To prove (3), assume there was another right identity v′.
Then ny part (1), v′ = u as well, so v′ = uv, and this proves statement (3).

Q.E.D.

1.4.7 Fields

Definition 7. A field is a commutative ring with unity R for which the
following Multiplicative Inverse Axiom holds:

THE MULTIPLICATIVE INVERSE AXIOMS

RA14: For every x ∈ R such that x 6= 0 there exists a y ∈ R such that
xy = 1. (In formal langauge: (∀x ∈ R)(x 6= 0 =⇒ (∃y ∈ R)xy = 1).)

So in a field all fourteen axioms RA1 to RA14 hold.
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Example 9.

• Q, IR and C are fields.

• Z is not a field.

• We will prove later that

– If n ∈ IN and n is prime, then Zn is a field.

– If n ∈ IN, n > 1, and n is not prime, then Zn is not a field.

1.4.8 Is there a cancellation law for multiplication?

Exactly as we proved that, in a ring R, if we have an equality a+ b = a+ c
then we can “cancel” the a and conclude that b = c, one would expect to
be able to prove a similar result for multiplication: if ab = ac then b = c.
This, however, is clearly impossible. For example, in the integers (or in any
ring), 0.b = 0 and 0.c = 0 for every b, c, so if there was a cancellation law for
multiplication, it would follow that b = c, for all b and all c.

It turns out that if we only try to cancel a when a is different from zero,
then this is possible: in some rings but not in all of them.

One example of a class of rings for which the cancellation law for multi-
plication is valid is that of fields.

Theorem 6. Let R be a field. Then the following cancellation law for mul-
tiplication holds:

(∀a ∈ R)(∀b ∈ R)(∀c ∈ R)
(

(a 6= 0 ∧ ab = ac) =⇒ b = c
)

. (1.24)

Proof. Since a 6= 0, it follows from Axiom RA15 that there exists u ∈ R

such that ua = 1. Then

b = 1.b (1.25)

= (u.a).b (1.26)

= u.(a.b) (1.27)

= u.(a.c) (1.28)

= (u.a).c (1.29)

= 1.c (1.30)

= c . (1.31)
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So b = c. Q.E.D.

Problem 10. Write down the justifications of each of the seven steps (1.25),
(1.26), (1.27), (1.28), (1.29), (1.30), (1.31), of the proof of Theorem 6.

1.4.9 A few very simple proofs: 2 + 2 = 4, etc.

From now on, until further notice, we work on a commutative
ring with unity, called R. So, for example:

• When we write “(∀x)” or “(∃x)”, this means “(∀x ∈ R)”
or “(∃x ∈ R)” (See the box on page 6.)

• The word “number” means “member of R”.

Why are we working on a general commutative ring with unity?
The main reason is that, once we prove something in such a
general situation, then the result is automatically valid in all the
commutative rings with unity that we know, that is, Z, Q, IR,
C, and the Zn. (And if we learn about a new commutative ring
with unity A, then the result will be known to be valid in A as
well.)

If you want to, you can think that we are working, say, just
on Z. But then if you want to use the same theorem for another
ring, such as IR, you would have to do one of two things:

• Prove the theorem again on IR,

• Quote the theorem proved for Z, and point out that “the
proof only uses the axioms for a commutative ring with
unity, so the result is valid on IR as well”.

In my view, it is much better to prove the theorems directly, once
and for all, in the most general possible setting.

Definition 8. 2 = 1 + 1. �
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Definition 9. 3 = 2 + 1. �

Definition 10. 4 = 3 + 1. �

And, now that we know what 1, 2, 3, and 4 are, we are ready to prove a
theorem.

Theorem 7. 2 + 2 = 4.

Proof. First, we observe that

2 + 2 = 2 + 2 , (1.32)

by the Equality Axiom.
On the other hand,

2 = 1 + 1

by Definition 8.
Hence Rule SEE enables us to conclude that

2 + 2 = 2 + (1 + 1) . (1.33)

On the other hand,
2 + (1 + 1) = (2 + 1) + 1 , (1.34)

by the associative law of addition.
Hence

2 + 2 = (2 + 1) + 1 . (1.35)

But
2 + 1 = 3 , (1.36)

by Definition 9.
Hence

2 + 2 = 3 + 1 . (1.37)

Finally, Definition 9 tells us that

3 + 1 = 4 . (1.38)

Hence
2+2=4 . (1.39)

Q.E.D.



Math 300, Fall 2018 28

What does “Q.E.D.” mean?

“Q.E.D.” stands for the Latin phrase quod erat demonstran-
dum, meaning “which is what was to be proved”. It is used
to indicate the end of a proof.

Theorem 8. 2× 2 = 4.

Proof. The Equality Axiom implies that

2× 2 = 2× 2 . (1.40)

And Definition (8) tells us that 2 = 1 + 1. So, using Rule SEE, we get

2× 2 = 2× (1 + 1) . (1.41)

By the distributive law of addition,

2× (1 + 1) = 2× 1 + 2× 1 . (1.42)

Hence
2× 2 = 2× 1 + 2× 1 . (1.43)

By Basic Fact BFN4A, 2× 1 = 2. Hence

2× 2 = 2 + 2 . (1.44)

Finally, Theorem 7 tells us that 2 + 2 = 4. it follows that

2× 2 = 4 . (1.45)

Q.E.D.

So far, we have introduced and given names to four integers, namely, 1,
2, 3, and 4. We can then go on and introduce a few more.

Definition 11. 5 = 4 + 1. �

Definition 12. 6 = 5 + 1. �

Definition 13. 7 = 6 + 1. �
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Definition 14. 8 = 7 + 1. �

Definition 15. 9 = 8 + 1. �

And we can prove things about these numbers, such as, for example:

Theorem 9. 3 + 3 = 6.

Proof. YOU DO THIS ONE.

Theorem 10. 3× 2 = 6.

Proof. YOU DO THIS ONE.

Theorem 11. 4 + 3 = 7.

Proof. YOU DO THIS ONE.

Problem 11. Prove Theorems 9, 10, and 11. In each proof, you are allowed
to use the basic facts known so far, the definitions given so far, and the
theorems proved so far. So, for example: in your proof of Theorem 9 you
are allowed to use the basic facts, definitions 8, 9, 10, 11, 12, 13, 14, 15, and
Theorems 7 and 8; in your proof of Theorem 10 you are allowed to use the
basic facts, definitions 8, 9, 10, 11, 12, 13, 14, 14, and Theorems 7, 8, and
9; and in your proof of Theorem 11 you are allowed to use the basic facts,
definitions 8, 9, 10, 11, 12, 13, 14, 14, Theorems 7, 8, 9; and 10.

Theorems 7, 8, 9, and 10. �

1.4.10 Divisibility; factors

In this section we are particularly interested in the integers and their di-
visibility properties. But we will state the general definitions for a general
commoutative ring R with unity.

If a ∈ R and b ∈ R, you would like to “divide a by b”, and obtain a
“quotient” q, i.e., a q ∈ R that multiplied by b gives you back a.

For example, ifR was a field, then this would always be possible (if b 6= 0),
because b has a multiplicative inverse c, and then a = 1.a = (b.c).a = b.(c.a),
so we can take q = c.a, and we get a = b.q.
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But on a general commutative ring with unity, such as Z, it is not always
possible to divide a by b.. For example, in Z, if a = 4 and b = 3, then an
integer q such that 3q = 4 does not exist9 Since dividing a by b is sometimes
possible and sometimes not, we will introduce some new words to describe
those situations when division is possible.

“DIVIDES”, “IS DIVISIBLE BY”,
“FACTOR”, “MULTIPLE”

Definition 16. Let R be a commutative ring with unity, and let
a ∈ R, b ∈ R.

1. We say that b is a factor of a if there exists a k ∈ R such that

a = bk .

2. We say that a is a multiple of b if b is a factor of a.

3. We say that b divides a if b is a factor of a.

4. We say that a is divisible by b if b divides a.

5. We write
b|a

to indicate that b divides a. �

Remark 1. As the previous definition indicates, the following are five differ-
ent ways of saying exactly the same thing:

• m divides n,
• m is a factor of n,
• n is a multiple of m,
• n s divisible by m,
• m|n. �

9You may say that “the result of dividing 4 by 3 is the fraction 4

3
”. That is indeed

true, but 4

3
is not in Z.r.

.
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Reading statements with the “divides” symbol “|”

The symbol “|” is read as “divides”, or “is a factor of”.
For example, the statement “3|6” is read as “3 divides 6”, or “3 is
a factor of 6”. And the statement “3|5” is read as “3 divides 5”, or
“3 is a factor of 5”. (Naturally, “3|6” is true, but “3|5” is false.)
The vertical bar of “divides” has nothing to do with the
bar used to write fractions. For example, “3|6” is the
statementa “3 divides 6’, which is true. And “3

6
” is a

noun phrase: it is one of the names of the number also
known as “1

2
”, or “0.5”.

aA statement is something we can say that is true or false. A noun phrase is
something we can say that stands for a thing or person. For example, “Mount
Everest”, “New York City”, “My friend Alice”, “The movie I saw on Sunday”,
are noun phrases. “Mount Everest is very tall”, “I live in New York City”,
“My friend Alice studied mathematics at Rutgers”, and “The movie I saw on
Sunday was very boring”, are statementsd.

Let us prove some theorems about divisibility. We work in a commutative
ring R with unity.

Theorem 12. If a, b, c are members of R such that a divides b and a divides
c, then a divides b+ c.

Proof. Since a|b, Definition 16 tells us that we may pick j ∈ R such that

b = aj . (1.46)

Since a|c, Definition 16 tells us that we may pick k ∈ R such that

c = ak . (1.47)

Then
b+ c = aj + ak . (1.48)

The distributive law (Axiom RA7) tells us that

aj + ak = a(j + k) . (1.49)

Therefore
b+ c = a(j + k) . (1.50)
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Since j ∈ R and k ∈ R, it follows that j + k ∈ R.
Hence Equation (1.50) implies that the exists an ℓ ∈ R such that b+ c =

aℓ. (It suffices to take ℓ = j + k.)

So a divides b+ c . Q.E.D.

Theorem 13. If a, b, c are members of R such that a divides b and b divides
c, then a divides c.

Proof. YOU DO THIS ONE.

Problem 12. Prove Theorem 13

Corollary 1. If a, b, c are members of R such that a divides b, then a divides
bc.

Proof.
It follows from the definition of “divides” (Definition 16) that b divides

bc.
So a divides b and b divides bc.
Therefore Theorem 13 tells us that a divides bc .

Q.E.D.

1.4.11 More easy theorems

Here are some very easy but important theorems. Proving these things is
the boring part of doing mathematics, and when you are an experienced
mathematician you would not waste any time doing these proofs, but that’s
because it’s easy to figure out how to do them. A beginner should know how
to do these proofs, and then, once you know how to do them, you will not
need to do them any more.

Theorem 14. If u ∈ R, then

−(−u) = u .

Proof.

u+ (−u) = 0, because of Definition 3 and Equation (1.12).
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(−u) + u = u+ (−u), by the commutative law of addition.

(−u) + u = 0, by Rule SEE.

(−u) + (−(−u)) = 0, because of Definition 3 and Equation (1.12).

(−u) + u = (−u) + (−(−u)), by Rule SEE.

u = −(−u), by the cancellation law for addition (Theorem 2).

Q.E.D.

Theorem 15. If u ∈ R, and nv ∈ R, then

−uv = (−u).v and uv = u(−v) .

Proof.

Let u ∈ R v ∈ R be arbitrary.

We will prove that uv = (−u)v. And we leave the other equality,
−uv = u(−v), to the reader.

Then

−uv = (−uv) + 0 (1.51)

= −(uv) + 0.v (1.52)

= −(uv) + (u+ (−u)).v (1.53)

= −(uv) +
(

uv + (−u)v
)

(1.54)

=
(

(−uv) + uv
)

+ (−u)v (1.55)

=
(

uv + (−uv)
)

+ (−u)v (1.56)

= 0 + (−u)v (1.57)

= (−u)v + 0 (1.58)

= (−u)v . (1.59)

So −uv = (−u)v . Q.E.D.
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Problem 13. Provide the justification of each of the nine steps (1.51),
(1.52), (1.53), (1.54), (1.55), (1.56), (1.57), (1.58), (1.59), of the proof of
Theorem 15.

Theorem 16. If u ∈ R then −u = (−1).n.

Proof. Let u ∈ R be arbitrary. Then

(−1).u = −(1.u) (1.60)

= −u . (1.61)

So (−1).u = −u. Q.E.D.

Theorem 17. If u ∈ R and v ∈ R, then

(−u).(−v) = mn .

Proof. Let u ∈ R, v ∈ R be arbitrary. Then

(−u).(−v) = u.(−(−v))) (1.62)

= u. . (1.63)

So (−u).(−v) = mn . Q.E.D.

Problem 14. Provide the justification of

1. each of the two steps (1.60), (1.61) of the proof of Theorem 16,

2. each of the two steps (1.62), (1.63) of the proof of Theorem 17. �

Now I would like to talk about the operation of subtraction of integers.
But before I do that let us say a few words about operations in general.

1.4.12 Subtraction

We would like to be able to talk about the difference of two numbers m
and n, i.e., the number m− n. The ri ng axioms do not say anything about
differences. But they tell us that for every number x there is a number y
such that x + y = 0, and we have proved that this number is unique and
given it the name −x. Using this, it is easy to define subtraction.
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Definition 17. If u ∈ R and v ∈ R, then u − v (read as “u minus v”) is
the number u+ (−v). �

And then we can prove a simple formula that you already know:

Theorem 18. If u ∈ R and v ∈ R, then

(u− v) + v = u .

Proof. Let u ∈ R, b ∈ R be arbitrary. Then

(u− v) + v = u+ (−v)) + v (1.64)

= u+ ((−v) + v) (1.65)

= u+ (v + (−v)) (1.66)

= u+ 0 (1.67)

= u . (1.68)

So (u− v) + v = u , as desired. Q.E.D.

Problem 15. Provide the justification of each of the five steps (1.64),
(1.65), (1.66), (1.67), (1.68) of the proof of Theorem 18. �

1.4.13 A few elementary formulas

You are certainly familiar with the formulas (a + b)2 = a2 + 2ab + b2, and
(a− b)(a+ b) = a2 − b2. What do those formulas become for general rings?

First we need to define “square”.

Definition 18. Let R be a ring, and let a ∈ R. The square of a is the
member a2 of R given by

a2 = a.a . (1.69)

Theorem 19. Let R be a ring, and let a, b ∈ R. Then

(a+ b)2 = a2 + ab+ ba+ b2 . (1.70)

If R is a commutative ring with unity, then Formula (1.70) becomes

(a+ b)2 = a2 + 2ab+ b2 . (1.71)
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Remark 2. What is the precise meaning of the sum in the right-hand side
of Formula (1.70)? Addition is a binary operation: it makes sense to talk
about the sum x+y of two numbers. But, what is the meaning of x+y+ z?
The answer is: “x+ y + z” means (x+ y) + z, or x+ (y + z), whichever one
you prefer. It does not matter which of the two you use, because (x+ y) + z
and x+ (y + z) are equal, thanks to the associative law of addition.

Similarly, “x+ y+ z +w” means (x+ y) + (z +w), or
(
x+ (y+ z)

)
+w,

or
(
(x+ y) + z

)
+w, or x+

(
(y+ z) +w

)
, or or x+

(
y+ (z +w)

)
whichever

one you prefer. And it does not matter which of the two you use, because
(x+ y)+ (z+w),

(
x+(y+ z)

)
+w,

(
(x+ y)+ z

)
+w, x+

(
(y+ z)+w

)
, and

x+
(
y + (z + w)

)
are all equal, thanks to the associative law of addition.

Proof of Theorem 19.
We have

(a+ b)2 = (a+ b)(a+ b)

= a(a+ b) + b(a+ b)

= (aa+ ab) + (ba+ bb)

= a2 + ab+ ba+ b2 .

This proves Formula 1.70.
If R is commutative, then ab = ba, so we can rewrite Formula 1.70 as

(a+ b)2 = a2 + ab+ ab+ b2 .

If in addition R has a unity, then ab+ ab = 1.ab+1.ab = (1+1)ab = 2ab, so
we get Formula 1.71. Q.E.D.

Problem 16. Do what we did in Theorem 19 for the formula for (a+b)(a−b).
That is, write the statement of the theorem analogous to Theorem 19, and
prove it. �

Problem 17. Do what we did in Theorem 19 for the formula for (a + b)3.
That is, write the definition of “cube”, and then write the statement of the
theorem analogous to Theorem 19, and prove it. �

1.5 Even and odd numbers

From now on, until further notice, I will be talking

about “integers”, but everything I say will be equally
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valid if, instead of Z, we work on an arbitrary com-

mutative ring R with unity.
There will be a very precise point when this stops:

I will bring in a couple of facts, especially induction,,
that are only valid for Z, and from that moment on
we will be proving results that are only valid for Z.

1.5.1 The meaning of “even” and “odd” for integers

One of the most common properties of integers that mathematicians study
is their parity, that is, whether they are even or odd.

We will begin by giving a precise definition of what it means for an integer
to be “even”, and what it means to be “odd”.

Definition 19. An integer n is even if n is divisible by 2.
Equivalently, n is even if (∃k ∈ Z)n = 2k. �

Definition 20. An integer n is odd if n− 1 is even.
Equivalently, n is odd if (∃k ∈ Z)n = 2k + 1. �

Example 10.

1. The number 0 is even, because 0 = 2× 0, so 0 is divisible by 2.

2. The number 1 is odd, because 1− 1 = 0, so 1− 1 is even.

3. The number 2 is even, because 2 = 2× 1, so 2 is divisible by 2.

4. The number 3 is odd, because 3− 1 = 2, and 2 is even. �

5. The number 0 is even, because 0 = 2× 0, so 2|0.

6. The number −1 is odd, because (−1) − 1 = −2, and −2 = 2 × (−1),
so −2 is even and then −1 is odd. �

1.5.2 The parity of a sum and a product

We can now prove the rules that I am sure you know: “even plus even is
even”, “odd plus even is odd”, “odd plus odd is even”, “even times anything
is even”, “odd times odd is odd”.
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Theorem 20. The sum of two even integers is even. That is: if a and b are
integers and both a and b are even, then a+ b is even.

Proof.

Let a and b be arbitrary even integers.

Then a and b are divisible by 2.

But we know (from Theorem 12 on page 31) that if x, y, z are integers
such that x|y and y|z then x|y + z. Therefore a+ b is divisible by 2.

So a+ b is even . Q.E.D.

Theorem 21. The sum of an even integer and an odd integer is an odd
integer. That is: if a and b are integers, a is even, and b is odd, then a + b
is odd.

Proof.
Let a, b be arbitrary integers.
Suppose a is even and b is odd.
Then Definition 20 tells us that b− 1 is even.
So it follows from Theorem 20 that a+ (b− 1) is even.
But a+ (b− 1) = (a+ b)− 1.
So (a+ b)− 1 is even.

Therefore Definition 20 tells us that a+ b is odd . Q.E.D.

Problem 18. Prove that the product of two even integers is divisible by
4. �

Next, we prove that “odd plus odd is even”, that is, that the sum of two odd
integers is an even integer.

Theorem 22. The sum of two odd integers is an even integer. That is: if a
and b are integers, and a and b are both odd, then a+ b is even. (Or, in fully
formal language: (∀a ∈ Z)(∀b ∈ Z)(if 2|a− 1 and 2|b− 1 then 2|a+ b).)
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Proof.
Let a, b be arbitrary integers.
Assume that a and b are odd.
We want to prove that a+ b is even.
Since a is odd, a− 1 is even.
Since b is odd, b− 1 is even.
Since the sum of two even integers is even, (a− 1) + (b− 1) is even.
But (a− 1) + (b− 1) = (a+ b)− 2.
So (a+ b)− 2 is even.
On the other hand, 2 is even.

So the sum
(

(a+ b)− 2
)

+ 2 is even.

But
(

(a+ b)− 2
)

+ 2 = a+ b.

So a+ b is even.
Q.E.D.

Next, we prove that “even times anything is even”. The precise statement
of this is as follows:

Theorem 23. The product of two integers, one of which is even, is an even
natural number. That is: if a, b are integers, and a is even or10 b is even,
then ab is even.

Proof. Without loss of generality11, we may assume that a is even.
Since a is even, we can write a = 2k for some integer k.
Then ab = (2k)b = 2(kb).

Since kb is an integer, it follows from Definition 19 that ab is even .
Q.E.D.

Now that we know what happens to the product of two integers when one of
them is even, there remains the case when both are odd.

Theorem 24. The product of two odd integers is odd. That is: if a and b
are odd integers, then ab is odd.

10See the box on page 43 for a detailed explanation of the meaning of “or”. In particular,
it is important to understand that “or”, im mathematics, is always inclusive. So, for
example, “a is even or b is even” is true when a is even, when b is even, and when both a
and b are even.

11See the box on “Without loss of generality”, on page 42.



Math 300, Fall 2018 40

Proof. YOU DO THIS ONE.

Problem 19. Prove Theorem 24. �

1.5.3 The parity of −n

We have already described how evenness and oddness behave when we add
and multiply integers. Addition and multiplication are two of the three
operations on integers that occur in the basic facts. Another important
operation on integers is the unary operation “minus”, so we have to see how
this operation is related to evenness and oddness.

The answer is very simple:

Theorem 25. If n is an integer, then

• If n is even then −n is even.

• If n is odd then −n is odd.

Proof. YOU DO THIS ONE.

Problem 20. Prove Theorem 25. �

1.5.4 The parity of a successor: parity reversal

The successor of an integer n is the integer n + 1. And it is important to
know how the parity of n+ 1 is related to that of n.

The answer to this is quite easy. It is given by the following parity reversal
theorem, that says that the parity of n+1 is exactly the opposite of the parity
of n:

Theorem 26. Let n be an integer. Then

(1) If n is even then n+ 1 is odd.

(2) If n is odd then n+ 1 is even.

(3) If n+ 1 is even then n is odd.

(4) If n+ 1 is odd then n is even.

Proof.
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Proof of statement (1):

Suppose n is even.

To prove that n+ 1 is odd, we have to show that (n+ 1)− 1 is even.

But (n+ 1)− 1 = n, and n is even.

Hence n+ 1 is odd by Theorem 21.

Proof of statement (2):

Suppose n is odd.

According to Definition 20, n− 1 is even.

Also, we know that 2 is even.

So, by Theorem 20, (n− 1) + 2 is even.

But (n− 1) + 2 = n+ 1.

So n+ 1 is even .

Proof of statement (3):

Suppose n+ 1 is even.

It is clear that −2 is even. (Reason: −2 = 2× (−1), so 2| − 2.)

Theorem 20 then tell us that (n+ 1) + (−2) is even.

But (n+ 1) + (−2) = n− 1.

So n− 1 is even.

Then, according to Definition 20, n is odd .

Proof of statement (4):

Suppose n+ 1 is odd.

Then Definition 20 tells us that (n+ 1)− 1 is even.

But (n+ 1)− 1 = n.

So n is even .

We have thus completed the proofs of all four statements. Q.E.D.
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Without loss of generality

Suppose we want to prove that something happens in each of two
(or three, or four) possible cases. Suppose all the cases are “the
same”, in the following precise sense: each of the cases becomes
Case 1 if you just change the names of the objects involved. Then
it suffices to do the proof for Case 1, because the statement for the
other cases follows easily by just applying the result of Case 1.
When we are in this situation, we can say “assume, without loss
of generality, that are in case 1”. What this means is that, once
we prove our result for Case 1, the result for the other
cases follows automatically, and there is no need to write
a separate proof for each case. Why is this so? The reason
is that, once we have the result for Case 1, then the result for the
other cases follows from this by just changing the names of the
objects involved.
EXAMPLE: Suppose we want to prove that “if a is even or b is
even then ab is even”. Then we have to consider two cases: when a
is even and when b is even. Suppose we prove what we want in the
first case, when a is even. That is, we prove that “if a is even then
ab is even”. Then the result for the second case “if b is even then ab
is even”) follows immediately, because we can apply the first result
with “b”in the role of “a” and “a” in the role of “b”. (If you do not
feel comfortable with this, think of it as follows: if we have proved
that “if a is even then ab is even”, then we could equally well state
our result by saying that “if x is even then xy is even”. But then
the fact that “if b is even then ab is even follows by applying our
first result with b in the role of x and a in the role of y.

1.5.5 Introduction to the proof that “every integer is even or odd
and not both”

We would now like to prove that an integer cannot be both even and odd,
and it has to be either even or odd.
That is, we want to prove that:

(A) If n ∈ Z then n is even or n is odd.
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(B) If n ∈ Z is even then n is not odd.

(C) If n ∈ Z is odd then n is not even.

The meaning of “or” in mathematics

In English, when we use the word “or”, it can have two different
meanings:

1. Inclusive “or”, that is, “one or the other or both”.

or

2. Exclusive “or”, that is, “one or the other but not both”.

For example, if a store announces that

If you are a student or a senior citizen then you
are entitled to a 15% discount on your purchases.

then, obviously, anyone who is both a student and a senior citizen
will be entitled to a discount. So this is an example of inclusive
or.
On the other hand, if a restaurant waiter asks you “would you like
tea or coffee?”, then it is clear that you can have one or the other
but not both, so this an example of exclusive or.

In mathematics, “or” is always inclusive.

So, if I say, for example,

if a and b are integers and a is even or b is even,
then the product ab is even,

then this also applies to the case when both a and b are even.

It turns out that we cannot prove (A), (B) and (C) using the
basic facts about the integers that we have so far. And when I say
“we cannot prove (A) and (B)” I do not mean that “it is very hard to prove
(A) and (B)”, or “nobody has figured out yet how to prove (A) and (B) but
maybe some day somebody will”. I mean something much stronger: I can
prove to you that statements (A), (B) and (C) cannot be proved
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from the basic facts about the integers that we know so far, that
is, from the axioms for a commutative ring with unity (that is,
Axioms RA1 to RA9 on page 13, axiom RA10 on page 14, and
axioms RA11 to RA13 on page 20).

You may find this hard to believe. How can I prove that something
cannot be proved?

Actually, there is one obvious way for this to happen: if a statement is
false, then it cannot be proved. So for example, it is not possible to prove
that 4 is prime, because the statement “4 is prime” is false.

But that is not what we are talking about here. What we are talking
about here is statements that are true but cannot be proved. How
can that be?

Actually, if you think about this for a few minutes you will see that it
is quite easy to see how this could happen. We can only talk about proofs
from a set of axioms. These axioms give us a list of things we know,
and the game we play in Mathematics is that of proving, starting from those
axioms, lots of other things.

Then we can ask: what if our axioms do not contain enough information
about the object of interest to us12? That would mean that there are things
that are true but our axioms aren’t enough to imply those things.

Take an extreme hypothetical situation: suppose the set of axioms was
the empty set. That is, suppose we had no axioms at all. Then we would
not be able to prove anything, and yet there would still be millions of true
statements.

All we are saying here is this: the axioms for a commutative ring
with unity are not enough to imply all the statements that are
true for Z. And the reason for this is very simple:

• Z is a commutative ring with unity, but so are Q, IR, C, and the systems
Zn, for every n ∈ IN such that n > 1.

• Threfore any fact about Z that can be proved from the axioms for a
commutative ring with unity must also be true in Q, IR, C, and the
systems Zn, for every n ∈ IN such that n > 1.

• Statements (B) and (C) are false in R if R = Q or R = IR, or R = C.
(Proof: Q, IR, and C are fields (see section 1.4.7, on page 24). Also,

12That is, in this case, about Z.
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in Q, IR, and C, 2 is different from zero. So for every x ∈ R there
exist y ∈ R and z ∈ R such that x = 2y and x − 1 = 2z. So x is
even—because x = 2y—and x is odd—because x = 2z + 1. So every
s ∈ R is both even and odd.)

• So, even though (B) and (C) are true in Z, (B) and (C) cannot be
proved from the axioms of a commutative ring with unity, because if
they could be proved from the axioms of a commutative ring with unity
they would have to be true in every commutative ring with unity, but
we know they are not true in Q, IR, and C.

• A similar argument applies to (A): one can construct13 a commutative
ring with unity R such that (A) is not true on R. And this implies
that (A) cannot be proved from (A).

Problem 21. Construct a commutative ring with unity R such that (A) is
not true on R.

HINT: Take R to be the set of complex numbers a + bi such that a and
b are integers14. Verify that i (or 2 + i, or 2 + 3i) is neither even nor odd. �

In order to develop a better understanding of our problem, let us tem-
porarily agree to call an integer n “good” if it has the property we are inter-
ested in. That is, “n is good” means “n is even or odd and not both even
and odd”.

Then our objective is to prove that every integer is good.
And the idea of how to do it is to follow a four-step program

1. First, we will prove that 1 is odd and not even, so 1 is good.

2. Next, we will prove that goodness is passed on from each natural num-
ber to its successor; that is: if a natural number n is good then n + 1
is good.

3. From the two facts above, it will follow that every natural number is
good, but we will need a new and very important new basic fact to
prove that, namely, the Principle of Mathematical Induction.

13Se Problem 21.
14This is a very important ring. It is called the ring of Gaussian integers, and its

members are the Gaussian integers.
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4. Finally, once we know that every natural number is good, it will be
easy to conclude, using Theorem 25, that every integer is good.

So the Principle of Mathematical Induction will be needed for step 2 if
the four-step program. But it will turn out that, in order to carry out the
first step, i.e., to prove that 1 is good, we will need the following fact:

The successor theorem. If n is a natural number and n 6= 1 then n− 1 is
a natural number15. (That is, (∀n ∈ IN)(n 6= 1 =⇒ n− 1 ∈ IN).)

And, in order to prove the successor theorem, we will also need to use the
Principle of Mathematical Induction.

So in fact the Principle of Mathematical Induction will be used twice:

• first, to prove the successor theorem, which will be needed to prove
that 1 is not even,

• second, to prove that every natural number is good.

In addition, in order to prove that 1 is not even we will need another
set of facts about the integers, namely, the facts about positive and negative
integers.

We will start by discussing the facts about positive and negative integers.

1.6 New facts we need about Z: ordering and induc-
tion

1.6.1 The ordering of the integers

In n is an integer, then one and only one of the following three possibilities
occurs:

1. n is positive (that is, n > 0),

2. −n is positive (that is, −n > 0, or, equivalently, n < 0),

3. n = 0.

The set of all positive integers is our old friend IN, the set IN of all natural
numbers.

Let us enumerate the basic facts about this set.
15We think of n + 1 as the “successor” of n. So the successor theorem says that every

natural number, except 1, is the succsssor of a natural number.
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NEW BASIC FACTS ABOUT THE INTEGERS

BFZ1: IN ⊆ Z. (That is, every natural number is an integer.)
BFZ2: 1 ∈ IN∧ 0 /∈ IN. (That is: 1 is a natural number, and 0 is not a natural

number.)
BFZ3: The sum and the product of two natural numbers is a natural number.

number.) That is

(∀m ∈ Z)(∀n ∈ Z)(m+ n ∈ IN ∧m.n ∈ IN) . (1.72)

BFZ4: Every integer is either a natural number, or minus a natural number,
or zero. That is:

(∀n ∈ Z)(n ∈ IN ∨ n = 0 ∨ −n ∈ IN) (1.73)

1.6.2 Why we need the Principle of Mathematical Induction

We now discuss the second step of the four-step program, before we do the
first one, in order to explain how the Principle of Mathematical Induction
comes in.

The goal of the second step is to prove that all natural numbers are good.
It follows from Theorem 26 that the property we called “goodness” is

passed on from each integer n to its successor, that is:

Theorem 27. If an integer n is good (that is, n is even or odd and not both)
then n+ 1 is good as well.

Proof.

Let n be an arbitrary integer.

Assume n is good.

Then n is even or odd and not both even and odd.

Assume n is even.

Then n is not odd.

Since n is even Theorem 26 tells us that n+ 1 is odd.
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Since n is not odd, Theorem 26 tells us that n+1 is not even.
(Reason16: if n + 1 was even, then the theorem would imply
that n is odd; but n is not odd.)

So n+ 1 is odd and n+ 1 is not even.

Hence n+ 1 is good .

Now assume that n is odd.

Then n is not even.

Since n is odd Theorem 26 tells us that n+ 1 is even.

Since n is not even, Theorem 26 tells us that n+1 is not odd.
(Reason17: if n + 1 was odd, then the theorem would imply
that n is even; but n is not even.)

So n+ 1 is even and n+ 1 is not odd.

Hence n+ 1 is good .

So we have proved that n+1 is good in both cases, when n is even
and when n is odd.

But one of these two cases necessarily occurs, because n is even
or odd.

So n+ 1 is good. Q.E.D.

1.6.3 Why induction is needed

So, if we prove that 1 is good, we will know two things:

(1) 1 is good.

(2) If an integer n is good, then n+ 1 is good.

So, if we look at the natural numbers, then goodness is a property that

(i) is true of the first18 natural number,

(ii) is passed on from each natural number to its successor19.

16Here is another proof by contradiction !
17And here we have another proof by contradiction !
18“The first natural number” is 1, of course
19The “successor” of n is n+ 1.
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From this it should follow that all natural numbers are good. Now can we
prove that?

We could argue as follows:

• 1 is good.

• Since 1 is good, 2 must be good, because 2 = 1 + 1.

• Since 2 is good, 3 must be good, because 3 = 2 + 1.

• Since 3 is good, 4 must be good, because 4 = 3 + 1.

• Since 4 is good, 5 must be good, because 5 = 4 + 1.

··· ········· ········· ········· ······
• And so on.

So it would follow that all the natural numbers are good. And, once we know
that, it will be easy to show that all the integers are good. (We will do that
later.)

In order to actually prove rigorously that every natural number is good,
we need to make precise the vague words “and so on”.

1.6.4 “And so on” is dangerous

Arguing as in the previous section, by saying “this is true for n = 1, for
n = 2, for n − 3, for n = 4, and so on, so it’s true for all natural numbers
n” is a completely invalid way of arguing that a universal proposition about
natural numbers is true. Anyone who argues that way is likely to make a
lot of mistakes, because there is absolutely no reason for a proposition about
natural numbers n to be true for all n, just because it is true for n = 1,
n = 2, n = 3, n = 4, n = 5, and many more values of n.

An obvious example is the statement “n < 10, 000, 001”. This is clearly
true for n = 1, n = 2, n = 3, “and so on”. You can actually check that it is
true for the first ten million values of n. So you may want to conclude that,
with ten million examples, that is enough to imply that “n < 10, 000, 001”
is true for every n ∈ IN. But it is very clear that for n = 10, 000, 001 the
statement is false, so it is not true for all n ∈ IN.

A remarkable example of a similar phenomenon occurs with the expression
n2 + n+ 41. It can be verified that n2 + n+ 4 is a prime number for n = 1,
n = 2, and so on, up to n = 39.

For example:

• For n = 1, n2 + n+ 41 = 43, which is prime.
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• For n = 2, n2 + n+ 41 = 47, which is prime.

• For n = 3, n2 + n+ 41 = 53, which is prime.

• For n = 4, n2 + n+ 41 = 61, which is prime.

• For n = 5, n2 + n+ 41 = 71, which is prime.

• For n = 6, n2 + n+ 41 = 83, which is prime.

• For n = 7, n2 + n+ 41 = 97, which is prime.

• For n = 8, n2 + n+ 41 = 97, which is prime.

• For n = 9, n2 + n+ 41 = 131, which is prime.

• For n = 10, n2 + n+ 41 = 151, which is prime.

• For n = 11, n2 + n+ 41 = 173, which is prime.

• For n = 12, n2 + n+ 41 = 197, which is prime.

• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

So you may be tempted to conclude that n2 + n + 41 is prime for every
natural number n. But this is wrong. In fact, it is easy to see that for n = 40
n2 + n+ 41 is not prime.

1.6.5 Why induction is valid

To justify concluding that every natural number n is good we need more than
the observation that 1, 2, 3, 4, 5, “and so on”, are good. What we need is
to know that every natural number n passes on the property of being good
to its successor. If we know that then we can be sure that all the natural
numbers are good, because if we count 1, 2, 3, 4, 5, . . ., then at each step the
corresponding number will be good, and the counting process will eventually
reach every natural number20, so all the natural numbers must be good.

The mathematical statement that makes this precise is the Principle of
Mathematical Induction (PMI).

20Why? Because that’s what the natural numbers are: they are the numbers that can
be reached by counting
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The Principle of Mathematical
Induction is probably one of the
two most important proof tech-
niques that you will learn in this
course. (The other one is proof by
contradiction.) You cannot prove almost
anything serious in arithmetic without us-
ing Induction.
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2 Induction

2.1 Introduction to the Principle of Mathematical In-
duction

Remember from the previous section that we are calling an integer n “good”
if n is even or odd and not both even and odd.

We want to know if it is true that every natural number is good.
(Actually, we want to know that every integer good. But once we know that
every natural number is good, it takes only a small extra step to prove that
every integer good.)

We would like to prove that the answer is “yes, every natural number is
good”.

How can we do that?
Suppose we prove that 1 is good. Then we will know that

1. 1 is good.

2. Goodness is passed on from each natural number n to its
successor n + 1. (That is: if n ∈ IN and n is good, then n + 1 is
good.)

Armed with this information, how can we prove that every natural num-
ber is good?

We could use the “and so on” argument, as in the previous section. But
it much better not to rely on vague phrases like “and so on”, and to have
instead a precise, rigorous way of doing the proof.

The key point is that all the natural numbers are eventually ar-
rived at by counting, so that, if we know that something is true for n = 1,
and when we count (that is, go from 1 to 2, then from 2 to 3, then from 3 to
4, “and so on”, each time passing from a natural number n to its successor
n+ 1), then at each step the goodness property will be passed on from n to
n+1, and eventually every natural number n will be reached by our counting
process, so n will be good.

This means that

Every property that is true of the number 1 and
is passed on from each natural number to its suc-
cessor must be true of all natural numbers.
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And this is exactly what the Principle of Mathematical Induction
(PMI) says.

Example 11. Suppose you decide to paint natural numbers green according
to the following rule: first, you paint the number 1 green. And then every
time you paint a number n green, you go to its successor n+ 1 and paint it
green. Then the PMI guarantees that every natural number is painted green.
�

Example 12. Suppose there is an infinitely long queue of people standing
in line: person No. 1, then person No. 2, then person No. 3, then person
No. 4, and so on21. Suppose you have a flyer with an announcement that
you want all the people in the queue to read. (For example, a message saying
something like “if you come to my restaurant after the show you will get a
great meal with a 20% discount”). Suppose you want everybody to read the
flyer, but you have only one copy. Then all you have to do is

(1) Give the flyer to person No. 1,

and

(2) Make sure that each person passes on the flyer to the person next in
line after reading it22.

The PMI says the obvious thing: if you do (1) and (2) then everybody will
eventually get your flyer. �

21Sure, I am talking about an infinitely long queue, with infinitely many people. And
you may object that this is impossible in reality. I have two answers to that. ANSWER
NO. 1: This may be impossible in reality, but you can certainly imagine it! It may
be impossible in reality for a person to jump 50 feet high, but you can certainly imagine
Wonder Woman doing it, so why not imagine an infinite queue? ANSWER 2: Suppose you
only have a finite queue, say 40 people. Then you can consider the following property P (n)
of a natural number: “person n got the message or there is no person n”. This makes sense
of every natural number n. If you guarantee that P (n) is true of every natural number
n, this will imply that persons 1, 2, 3, and so on up to person 40, will get the message.
Property P (n) will be true of every n but for different reasons: for n = 1, 2, 3, 4, · · · , up
to n = 40, it will be true because person n gets the message. And for larger n it will be
true because there is no person No. n.

22For example, you could include in the flyer, in big letters, the statement PLEASE
PASS THIS ON TO THE PERSON NEXT IN LINE TO YOU.
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2.2 The Principle of Mathematical Induction (PMI)

As explained in the previous section, the Principle of Mathematical
Induction (PMI) captures as a precise mathematical statement the intu-
itively clear fact that when we count we get all the natural numbers.

Remark 3. There are other numbers (that is, people have invented other
numbers), such as zero, the negative numbers −1, −2, etc., fractions such
as 2

3
, 22

7
,−5

2
, 2.75, −5.16, and even “irrational numbers”, that cannot be ex-

pressed as fractions. But we do not get these numbers by the counting
process.

So, if you prove by induction that a statement P (n) is true for all natural
numbers, then it does not follow that it will be true for n = 0, because 0 is
not a natural number, so if you count 1, 2, 3, 4, . . . you will never get to 0.

And it does not follow either that P (n) will be true for n = 1
2
, because 1

2

is not a natural number, so if you count 1, 2, 3, 4, . . . you will never get to 1
2
.

�

Imagine that you have some statement P (n) about natural numbers that
could be true or not for each natural number n. (For example, the statement
P (n) could be “n(n + 1) is even”, or “n is even or odd”, or “n is not both
even and odd”.) Suppose the following two facts are true:

I. The statement P (n) is true for n = 1. (That is, P (1) is true.)

II. Any time the statement P (n) is true for one particular n, it follows
that it is true for n+1. (That is: if P (n) is true then P (n+1) is true.)

The PMI says that, under these circumstances, P (n) must be true for every
natural number n.

Let us add the PMI to our list of basic facts about the integers:
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THE PRINCIPLE OF MATHEMATICAL
INDUCTION

(BASIC FACT BFZ6 ABOUT THE
INTEGERS)

BFZ6: Suppose P (n) is any statement about a variable natural
number n. Suppose, furthermore, that

I. P (1) is true.

II. Any time P (n) is true for one particular n, it follows that
P (n+ 1) is true.)

Then P (n) is true for every natural number n.

Let us say the same thing in formal language:

THE PRINCIPLE OF MATHEMATICAL
INDUCTION

(BASIC FACT BFZ6 ABOUT THE
INTEGERS),

FORMAL LANGUAGE VERSION

BFZ6: Suppose P (n) is any statement about a variable natural
number n. Then
(

P (1) ∧ (∀n ∈ IN)(P (n) =⇒ P (n+ 1))
)

=⇒ (∀n ∈ IN)P (n) .

(2.74)

2.3 The proof by induction that every natural number
is even or odd and not both

We are now ready, finally, to prove the theorem that we had announced
before, that every integer is even or odd and not both.
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We do it by carrying out the four steps of the four-step program oulined
on page 45.

The first step is to prove that 1 is good. And, as explained on page 46,
we neef first of all to prove the successor theorem.

2.3.1 Our first proof by induction: the successor theorem

The successor theorem is very simple, and the proof is just a couple of lines.
But this is appropriate, since this is going to be our first induction proof.
We are going to be doing more complicated proofs very soon.

Theorem 28. If n is a natural number and n 6= 1 then n − 1 is a natural
number. (That is, (∀n ∈ IN)(n 6= 1 =⇒ n− 1 ∈ IN).)

Proof.

Let P (n) be the predicate “n 6= 1 =⇒ n− 1 ∈ IN)”.

Basis step. Proof of P (1).

P (1) says “1 6= 1 =⇒ 1− 1 ∈ IN)”.

And this implication is true because the premise “1 6= 1” is false,

So P (1) .

Inductive step. We prove that (∀n ∈ IN)
(

P (n) =⇒ P (n+ 1)
)

.

Let n ∈ IN be arbitrary. We want to prove P (n) =⇒ P (n+ 1).

Assume P (n). We want to prove P (n+ 1).

P (n+ 1) says “n+ 1 6= 1 =⇒ n ∈ IN)”.

And the implication “n + 1 6= 1 =⇒ n ∈ IN)” is true because the
conclusion “n ∈ IN is true, since we are assuming that n ∈ IN.

So P (n+ 1) .

So P (n) =⇒ P (n+ 1). [Rule =⇒prove]

Hence (∀n ∈ IN)
(

P (n) =⇒ P (n+ 1)
)

[Rule ∀prove]

We have completed the basis step and the inductive step. Hence it follows from
the PMI that (∀n ∈ IN)P (n).

That is, (∀n ∈ IN) ∗ n 6= 1 =⇒ n ∈ IN). Q.E.D.



Math 300, Fall 2018 57

THE FORMAT OF A PROOF BY INDUCTION

A proof by induction of a statement (∀n ∈ IN)XXXX should look like
this:

Let P (n) be the predicate XXXX.

Basis step. Proof of P (1).

. . . . . . . . . . . . . . . . . . . . . . .

P (1) .

Inductive step. We prove that (∀n ∈ IN)
(

P (n) =⇒ P (n+ 1)
)

.

Let n ∈ IN be arbitrary. We want to prove P (n) =⇒ P (n+1).

Assume P (n). We want to prove P (n+ 1).

. . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .

P (n+ 1).

So P (n) =⇒ P (n+ 1). [Rule =⇒prove]

Hence (∀n ∈ IN)
(

P (n) =⇒ P (n+ 1)
)

[Rule ∀prove]

We have completed the basis step and the inductive step. Hence it follows
from the PMI that (∀n ∈ IN)P (n).

That is, (∀n ∈ IN)XXXX. Q.E.D.



Math 300, Fall 2018 58

2.3.2 A remark on the importance of parentheses

PARENTHESES MATTER!!!

The sentence

(∀n ∈ IN)(P (n) =⇒ P (n+ 1)) . (a)

is not at all the same as the sentence

(∀n ∈ IN)P (n) =⇒ P (n+ 1) . (b)

Sentence (a) says that the implication “P (n) =⇒ P (n + 1)”
(that is, “P is passed on from n to n + 1”) is true for every
natural number n. So (a) says “every natural number passes
on Property P to its successor”.
Sentence (b) is totally different. It says: “if it is true that all
natural numbers have P then n + 1 has P”. This is in fact
meaningless, because n is an open variable.

2.3.3 Proof that 1 is not even

Theorem 29. 1 is not even.

Proof. Suppose 1 was even. Then we may write 1 = 2k, k ∈ Z. Then either
k ∈ IN or −k ∈ IN or k = 0, by Basic fact BFZ4.

The possibility that k = 0 is excluded because if k = 0 then 1 = 2k =
2 × .0 = 0, so 1 = 0. But one of the commutative ring acioms says that
1 6= 0, so we got a contradiction

The possibility that−k ∈ IN is excluded because if−k ∈ IN then−2k ∈ IN
(because −2k = −k+(−k) and the sum of two natural numbers is a natural
number), and then 1− 2k ∈ IN (because 1 ∈ IN, and the sum of two natural
numbers is a natural number); but 1 = 2k, so 1 − 2k = 0; so 0 ∈ IN, but
Basic Facts BFZ2 says that 0 /∈ IN; so we got a contradiction

Hence k ∈ IN. And either k = 1 or k 6= 1. If k = 1 then 1 = 2, because
1 = 2k. But then 0 = 1− 1 = 2− 1 = 1, so 1 = 0. But one of the axioms for
a commutative rign with identity says that 1 6= 0, so we got a contradiction,
and this excludes the possibility that k = 1.
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So k ∈ IN and k 6= 1. Since k ∈ IN and k 6= 1, the successor theorem
tells us that k − 1 ∈ IN. But then 0 = 1 − 1 = 2k − 1 = k + (k − 1), and
k + (k − 1) ∈ IN, because k ∈ IN, k − 1 ∈ IN, and the sum of two natural
numbers is a natural number. So 0 ∈ IN, but Basic Facts BFZ2 says that
0 /∈ IN, so we got a contradiction. Q.E.D.

2.3.4 The proof that every natural number is good

We now carry out step 2 of the four-step program outlined on page 45, by
proving:

Theorem 30. Every natural number is good. That is, every natural number
is even or odd and no natural number is both.

Proof. We are going to prove this result by induction.
Let P (n) be the statement “n is good”.

We want to prove that

(∀n ∈ IN)P (n) . (2.75)

We will do this by induction.
Basis step.

We want to prove that P (1) is true. That is, we want to prove that 1
is good.
Theorem 29 tells us 1 is not even. And we know that 1 is odd.
So 1 is good. That is, P (1) is true.

Inductive step.
We want to prove that (∀n ∈ IN)(P (n) =⇒ P (n+ 1)) .

Let n be an arbitrary natural number.

Theorem 27 tells us that if n is good then n+ 1 is good.

So P (n) =⇒ P (n+ 1).

We have proved that P (n) =⇒ P (n + 1) for an arbitrary natural
number n.

So (∀n ∈ IN)
(

if P (n) then P (n+ 1)
)

.

This completes the inductive step.

By the PMI, our desired conclusion (2.75) follows. Q.E.D.
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2.3.5 The last step

We have now completed the third step of the four-step program laid out in
section 1.5.5, on page 45, by proving that every natural number is good.

We now want to prove that every integer is good.
For thus purpose, we need a simple lemma:

Lemma 1. Let n be an integer such that n is even or odd and not both. Then
−n is even or odd and not both.

Proof. YOU DO THIS ONE.

Problem 22. Prove Lemma 1. �

And now, finally, we can prove the result for all integers.

Theorem 31. Every integer is even or odd and

no integer is both even and odd.

Proof. We want to prove the universal sentence “every integer is good”.

Let n be an arbitrary integer.

Then by one of the basic facts about Z, either n ∈ IN or n = 0 or
−n ∈ IN.

So we have to consider three cases: n ∈ IN, n = 0, and −n ∈ IN.

If n ∈ IN, then Lemma 30 tells us that n is good.

If n = 0, then n is even (because 0 = 2 × 0, so 2|0) and n is not odd
(because if 0 was odd then Theorem 26 would imply that 1 is even, but
we know that 1 is not even).

So n is even and not odd.)

Therefore n is good.

Finally, we look at the case when −n ∈ IN.

If −n ∈ IN, then by Lemma 30, −n is good, and then, by Lemma 1,
−(−n) is good.

But −(−n) = n.

So n is good.
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So we have proved that n is good in all three cases, n ∈ IN, n = 0, and
−n ∈ IN.

Since one of these cases must necessarily occur, we can conclude that

n is good.

Since we have proved that n is even or odd and not both for an arbitrary
integer n, it follows from the rule for proving universal statements that

every integer is even or odd and not both. Q.E.D.
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3 Examples of proofs by induction

3.1 Some divisibility theorems

Theorem 32. If n is natural number, then 8n − 5n is divisible by 3.

Proof. We want to prove that

(∀n ∈ IN)3|8n − 5n . (3.76)

Let P (n) be the predicate “3|8n − 5n

.

We want to prove that (∀n ∈ IN)P (n).

We are going to prove this by induction.

Basis step:

We want to prove P (1).

P (1) aays “3|81 − 51”.

And 81 = 8, 51 = 5, so 81 − 51 = 3.

Therefore 3|81 − 51, so P (1) is true

Inductive step:

We want to prove (∀n ∈ IN)(P (n) =⇒ P (n+ 1)).

Let n ∈ IN be arbitrary.

Assume P (n).

Then 3|8n − 5n.

So we can write

8n − 5n = 3k , k ∈ Z .. (3.77)

Then
8× (8n − 5n) = 3× 8k . (3.78)

So
8n+1 − 8× 5n = 3× 8k , (3.79)
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and then
8n+1 = 8× 5n + 3× 8k , (3.80)

But 8 = 5 + 3, so

8× 5n = 5× 5n + 3× 5n = 5n+1 + 3× 5n , (3.81)

so
8n+1 = 5n+1 + 3× 5n + 3× 8k , (3.82)

and then
8n+1 = 5n+1 + 3(5n + 8k) , (3.83)

so that
8n+1 − 5n+1 = 3(5n + 8k) , (3.84)

Let j = 5n + 8k. Then j ∈ Z and

8n+1 − 5n+1 = 3j . (3.85)

Hence 3|8n+1 − 5n+1. That is, P (n+ 1) .

Therefore P (n) =⇒ P (n+ 1) (by Rule =⇒prove).

So (∀n ∈ IN)(P (n) =⇒ P (n+ 1)) (by Rule ∀prove).

This completes the inductive step.

Since we have proved P (1) ∧ (∀n ∈ IN)(P (n) =⇒ P (n+ 1)) , it follows from

the PMI that (∀n ∈ IN)P (n), that is,. (∀n ∈ IN)3|8n − 5n . Q.E.D.

Here are a few examples of theorems similar to Theorem 32

Theorem 33. If n is natural number, then 11n − 4n is divisible by 7.

Theorem 34. If n is natural number, then 22n − 10n is divisible by 12.

Theorem 35. If n is natural number, then 31n − 18n is divisible by 13.

Problem 23. Prove Theorem 33. �

Problem 24. Prove Theorem 34. �
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Problem 25. Prove Theorem 35. �

Problem 26. If, after reading the proof of Theorem 32 and solving
Problems 23, 24, 25, you get the feeling that these are all the
same thing, try to prove the following general theorem:

Theorem 36. If a, b are integers, then for every natural number
n, an − bn is divisible by a = b.

(This is done later, see Theorem 43 on page 81. But you shoud try to
prove it by yourself befoe you look at the proof.) �

3.2 An inequality

Here is another example of a proof by induction.

Theorem 37. If n is a natural number, then 2n < n! + 3 .

Proof. We want to prove that

(∀n ∈ IN)2n < n! + 3 . (3.86)

Let P (n) be the predicate “ 2n < n! + 3 ”.

We want to prove that (∀n ∈ IN)P (n).

We are going to prove this by induction.

Basis step:

We want to prove P (1).

P (1) aays “ 21 < 1! + 3 ”.

And 21 = 2 and 1! + 3 = 4.

Therefore 21 < 1! + 3, so P (1) is true

Inductive step:

We want to prove (∀n ∈ IN)(P (n) =⇒ P (n+ 1)).

Let n ∈ IN be arbitrary.
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Assume P (n). We want to prove P (n+ 1).

Since P (n) holds, we have

2n < n! + 3 . (3.87)

Therefore, multiplying both sides of (3.87) by 2, we get

2n+1 < 2n! + 6 . (3.88)

On the other hand, n+ 1 = n− 1 + 2, so

(n+ 1)! = (n+ 1)n! = (n− 1)n! + 2n! . (3.89)

We are going to consider separately the cases n ≥ 3 and n < 3.

Assume that n ≥ 3.

Then n − 1 ≥ 2 and n! ≥ 6, so (n − 1)n! ≥ 12 and a
fortiori (n− 1)n! > 3.

· Since (n + 1)! = (n − 1)n! + 2n!, and (n − 1)n! > 3, we
have (n+ 1)! > 2n! + 3, that is

2n! + 3 < (n+ 1)! . (3.90)

Since 2n+1 < 2n! + 6, we have

2n+1 < 2n! + 6

= 2n! + 3 + 3

< (n+ 1)! + 3 ,

so 2n+1 < (n+ 1)! + 3.

That is, P (n+ 1) holds.

We now consider the case when n < 3.

Assume that n < 3.

Then n = 1 or n = 2,

If n = 1 then P (n+ 1) says 22 < 2! + 3, that is 4 < 5. So
P (n+ 1) is true.

If n = 2 then P (n+ 1) says 23 < 3! + 3, that is 8 < 9. So
P (n+ 1) is true.
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So in both cases P (n+ 1) holds.

We have proved that P (n+1) holds in both case, when n ≥ 3

and when n < 3. So P (n+ 1).

Therefore P (n) =⇒ P (n+ 1) (by Rule =⇒prove).

So (∀n ∈ IN)(P (n) =⇒ P (n+ 1)) (by Rule ∀prove).

This completes the inductive step.

Since we have proved P (1) ∧ (∀n ∈ IN)(P (n) =⇒ P (n+ 1)) , it follows from

the PMI that (∀n ∈ IN)P (n), that is,. (∀n ∈ IN)2n < n! + 3 . Q.E.D.

Problem 27.

1. Prove that if n is a natural number then 3n < n! + 124.

2. Is it true that if n is a natural number then 3n < n! + 123?

3.3 More inequalities, with applications to the compu-
tation of some limits

Let us use induction to prove an inequality:

Theorem 38. If x is a positive real number, and n is a natural number, then

(1 + x)n ≥ 1 + nx . (3.91)

Proof. We want to prove that

(∀x ∈ IR)(∀n ∈ IN)
(

x > 0 =⇒ (1 + x)n ≥ 1 + nx
)

. (3.92)

Let x be an arbitrary real number.

We want to prove that

(∀n ∈ IN)
(

x > 0 =⇒ (1 + x)n ≥ 1 + nx
)

. (3.93)

We prove this by induction.
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Let P (n) be the predicate “x > 0 =⇒ (1 + x)n ≥ 1 + nx”.

Base step. We have to prove P (1).

But P (1) says “x > 0 =⇒ 1 + x ≥ 1 + x”, and this implication is
obviously true, because its conclusion is true.

So P (1) is true, and we are done with the base case.

Inductive step. We have to prove

(∀n ∈ IN)(P (n) =⇒ P (n+ 1)) . (3.94)

Let n be an arbitrary natural number. We want to prove that
P (n) =⇒ P (n+ 1).

Assume P (n).

Then
x > 0 =⇒ (1 + x)n ≥ 1 + nx . (3.95)

We want to prove

x > 0 =⇒ (1 + x)n+1 ≥ 1 + (n+ 1)x . (3.96)

Assume x > 0.

Then it follows from (3.95) (by Rule =⇒use) that

(1 + x)n ≥ 1 + nx . (3.97)

Multiplying both sides of (3.97) by 1+x (which is possible
because 1 + x > 0), we get

(1 + x)n+1 ≥ (1 + x)(1 + nx) . (3.98)

But

(1 + x)(1 + nx) = 1 + x+ nx+ nx2

= 1 + (n+ 1)x+ nx2

≥ 1 + (n+ 1)x .

(The fact that 1 + (n+ 1)x+ nx2 ≥ 1 + (n+ 1)x follows
because nx2 ≥ 0 and then, adding 1 + (n + 1)x to both
sides, we get 1 + (n+ 1)x+ nx2 ≥ 1 + (n+ 1)x.)
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So
(1 + x)n+1 ≥ 1 + (n+ 1)x . (3.99)

Since we proved (3.99) under the assumption that x > 0, it
follows that

x > 0 =⇒ (1 + x)n+1 ≥ 1 + (n+ 1)x . (3.100)

That is, P (n+ 1) holds.

Since we have proved P (n+1) assuming P (n), Rule =⇒prove allows
us to conclude that P (n) =⇒ P (n+ 1).

So we have proved P (n) =⇒ P ((n+1) for arbitrary n ∈ IN, Rule ∀prove

allows us to conclude that (3.94) holds.

This compleetes the inductive step.

. Since we have also provedP (1), we can use the PMI to conclude that
(3.93) holds, i.e., that

(∀n ∈ IN)
(

x > 0 =⇒ (1 + x)n ≥ 1 + nx
)

. (3.101)

Since we have proved for an arbitrary real number x, we can conclude that

(∀x ∈ IR)(∀n ∈ IN)
(

x > 0 =⇒ (1 + x)n ≥ 1 + nx
)

, (3.102)

which is exactly what we wanted to prove. Q.E.D.

Problem 28. In the proof of Theorem 38, we translated the statement to
be proved into formal language as Formula (3.92) and then followed the rules
of logic, plus the PMI, to prove it.

Suppose instead that we had translated the statement of Theorem 38 in
a different way, as

(∀n ∈ IN)(∀x ∈ IR)
(

x > 0 =⇒ (1 + x)n ≥ 1 + nx
)

. (3.103)

1. Prove that this translation is equivalent to Formula (3.92),
as a matter of pure logic. That is, prove that no matter what the 2-
variable predicate A(x, n) is, and what the sets S, T are, the formulas

(∀x ∈ S)(∀n ∈ T )A(x, n)
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and
(∀n ∈ T )(∀x ∈ S)A(x, n)

are equivalent. (Two formulas U, V are equivalent if U ⇐⇒ V is true.)

2. Write a different proof of Theorem 38, using the translation (3.103)
instead of (3.92).

Problem 29. By looking carefully at the proof of Theorem 38, prove the
following stronger result:

Theorem 39. If x ∈ IR and x ≥ −1, and n is a natural number, then

(1 + x)n ≥ 1 + nx . (3.104)

With a little bit more work, it is possible to prove a result stronger than
Theorem 38::

Theorem 40. If x is a nonnegative real number, and n is a natural number,
then

(1 + x)n ≥ 1 + nx+
n(n− 1)

2
x2 . (3.105)

Proof.

YOU DO THIS ONE.

HINT. Just repeat the proof of Theorem 38 up to the point when you
multiply by 1 + x, and at that point keep the x2 term. �

Problem 30. Prove Theorem 40. �

3.3.1 An application of Theorem 40: computing limn→∞
n

√
n

In this section we use the notion of “limit of a sequence”. All you
need to know about limits of seuences is the following sandwich-
ing theorem”: If {an}∞n=1, {bn}∞n=1, and {cn}∞n=1, are sequences
of real numbers such that an ≤ bn ≤ cn for every n ∈ IN, and L

is a real number such that

lim
n→∞

an = L and lim
n→∞

cn = L ,
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then limn→∞ bn.
Let us prove that

lim
n→∞

n

√
n = 1 . (3.106)

Define
αn = n

√
n− 1 .

To prove (3.106), we have to prove that

lim
n→∞

αn = 0 . (3.107)

It is clear that αn ≥ 0. (Reason: n

√
n ≥ 1, because if n

√
n was < 1, it would

follow that
(

n

√
n
)n

< 1, but
(

n

√
n
)n

= n, and n ≥ 1.)

Also, 1 + αn = n

√
n, so

(1 + αn)
n = n . (3.108)

Using the inequality of Theorem 40, we get

(1 + αn)
n ≥ 1 + nαn +

n(n− 1)

2
α2
n . (3.109)

So

n = (1 + αn)
n

≥ 1 + nαn +
n(n− 1)

2
α2
n

≥ n(n− 1)

2
α2
n .

Hence

n ≥ n(n− 1)

2
α2
n ,

so

1 ≥ n− 1

2
α2
n ,

and then

α2
n ≤ 2

n− 1
,

so

αn ≤
√

2

n− 1
.
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Hence the numbers αn satisfy

0 ≤ αn ≤
√

2

n− 1
.

So the αn are ‘sandwiched” between two sequences that converge to 0. Hence
limn→∞ αn = 0 by the sandwiching theorem.

Hence (3.106 is proved.

3.4 Some formulas for sums

In this section we use the notation “
∑n

k=1 ak” for “a1 + a2 + · · · + an”. (A
precise definition of “

∑n

k=1 ak”, without using · · · , is given in section 3.5.3
on page 77.)

Theorem 41. If n is an arbitrary natural number, then

n∑

k=1

k =
n(n+ 1)

2
. (3.110)

(That is, 1 + 2 + · · ·+ n = n(n+1)
2

.)

Proof. Let P (n) be the statement “
∑n

k=1 =
n(n+1)

2
”.

We prove (∀n ∈ IN)P (n) by induction.

Base step. P (1) says “1 = 1(1+1)
2

”, which is obviously true. So P (1) is true.

Inductive step.

We prove (∀n ∈ IN)(P (n) =⇒ P (n+ 1)).

Let n be an arbitrary natural number.

Assume that P (n) is true.

Then
∑n

k=1 k = n(n+1)
2

.
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Therefore

n+1∑

k=1

k = (
n∑

k=1

k) + (n+ 1)

=
n(n+ 1)

2
+ (n+ 1)

= (n+ 1)
[n

2
+ 1
]

= (n+ 1)× n+ 2

2

=
(n+ 1)(n+ 2)

2
.

So
n+1∑

k=1

k =
(n+ 1)(n+ 2)

2
.

That is, P (n+ 1) holds.

We have proved P (n+ 1) assuming P (n). Hence P (n) =⇒ P (n+ 1) .

We have preved P (n) =⇒ P (n + 1) for an arbitrary natural number n.
Therefore (∀n ∈ IN)(P (n) =⇒ P (n + 1)), which completes the inductive
step.
Hence, by the PMI, (∀n ∈ IN)P (n), that is,

(∀n ∈ IN)
n∑

k=1

k =
n(n+ 1)

2
.

Q.E.D.

Using the same method, many other formulas for sums can be proved.
Here is an exmaple of a rather remarkable one:

Theorem 42. If n is a natural number, then

n∑

k=1

k3 =
[n(n+ 1)

2

]2

, (3.111)

that is:

13 + 23 + 33 + 43 + · · ·+ n3 =
[n(n+ 1)

2

]2

.
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Proof. YOU DO THIS ONE.

Problem 31.

1. Compute the sum
∑n

k=1 k
3 for n = 1, 2, 3, 4, 5 and 6.

2. Verify that in each case the sum you got is a perfect square (i.e., the
square of an integer).

3. Prove Theorem 42. �

Problem 32.

1. Compute the sum
∑n

k=1 k
2 for n = 1, 2, 3, 4, 5 and 6.

2. Verify that in each case the sum you got agrees with the formula

n∑

k=1

k2 =
n+ 3n2 + 2n3

6
. (3.112)

3. Prove that Formula (3.112) holds for every natural number n. �

3.5 Inductive definitions

In an earlier set of lectures, we defined “x2”, for a real number x, to mean
“x.x”. And we can define “x3” to mean “(x.x).x”, or, if you prefer, “x2.x”.
But how can we define “xn” for an arbitrary natural number n? One possi-
bility would be to write something like this

xn = x× x× · · · × x
︸ ︷︷ ︸

n times

Similarly, we would like to define the “factorial” n! of a natural number n by
the formula

n! = 1× 2× 3× · · · × n .

And we would like to define summations such as

1 + 2 + 3 + · · ·+ n
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or
12 + 22 + 32 + · · ·+ n2 ,

or products such that

2× 4× 6× 8× · · · × 200 .

With this notation, if we want to talk about the product of the first 20 prime
numbers, i.e., the number

2×3×5×7×11×13×17×19×23×29×31×37×41×43×47×53×59×61×67×71 ,

we could write
2× 3× · · · × 71 . (3.113)

But this is very unclear. I do not know what “· · · ” means, precisely (and if
you think you do, please tell me!). For example, in the expression (3.113),
how on Earth are we supposed to know which numbers should go in place of
the · · · ? Take a simple example of a similar situation: suppose I write

3× 5× 7× · · · × 71 . (3.114)

Is this supposed to be “the product of all odd numbers from 3 to 71”, or “the
product of all prime numbers from 3 to 71”, or “the product of all the odd
numbers from 3 to 71 that do not end in a 9”, or what?

Next, let us look at another example: suppose I write

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . . .

What is the next number, after 377? Well, if you have guessed the pattern,
then you will probably guess that each number, after the first two, is the sum
of the two preceding ones, so what comes after 377 is 233+377, that is, 610.
But, why coudn’t the pattern be this:

• Start with 1, and then another 1.

• Then each number is obtained by adding the two preceding ones.

• Yo go on like this until you get to 377, and then you switch to a different
rule: each number is obtained by adding 100 to the previous one.
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This is a perfectly legitimate rule for generating a sequence of numbers, and
if you use this rule then the numbers that come after 377 are 477, 577, and
so on. If you say “that’s not a true pattern”, then I will ask you to tell me
what you mean by “a true pattern”, and I will also ask “why cannot we use
other patterns that aren’t “true” as well as true ones?

One last example. If I write

27, 82, 41, 124, 61, 184, 92, 46, · · ·

what comes next? I’ll let you think about this one.
The fact is: in general, “· · · ” is meaningless. So in mathematics

we just do not use it.
And, in any case, once we develop fully our way of writing all of mathe-

matics formally (that is, with formulas and no words), the symbol “· · · ” will
not be there in the list of symbols we can use. So we do not want to use
“· · · ” at all.

What we are going to do instead is use inductive definitions.

3.5.1 The inductive definition of powers of a real number

The way to define “xn” correctly is by means of an inductive definition: we
first define x1 to be x, and then define xn+1 to be xn.x, for every n. That is,
we write:

Definition 21. (Inductive definition of positive integer powers of
a real number) For all a ∈ IR, we set

a1 = a ,

an+1 = an.a for n ∈ IN .

We also set a0 = 1. �

Using this definition, we can write down what an is for any n.
Suppose, for example, that we want to know what a5 is. By the second

line of our inductive definition of an,

a5 = a4.a.

This answers our question about a5, in terms of a4. And what is a4? Again,
using the second line of the inductive definition, we find

a4 = a3.a.
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So
a5 = ((a3).a).a.

And what is a3? Once again, we can use the second line of the inductive
definition, and find

a3 = a2.a

So
a5 = (((a2).a).a).a.

One more step yields
a2 = a1.a ,

so
a5 = (((a1.a).a).a).a.

And, finally, the first line of the inductive definition, tells us that a1 = a, so
we end up with

a5 = (((a.a).a).a).a.

Furthermore, since multiplication of real numbers has the associative prop-
erty, we can omit the parentheses and just write:

a5 = a.a.a.a.a.

3.5.2 The inductive definition of the factorial

The “factorial” of a natural number n is supposed to be the product 1 ×
2 × 3 × · · · × n. That is, the factorial of n is the product of all the natural
numbers from 1 to n. Here is the inductive definition:

Definition 22. The factorial of a natural number n is the number n! given
by

1! = 1 , (3.115)

(n+ 1)! = n!× (n+ 1) for n ∈ IN . (3.116)

In addition, we define
0! = 1 ,

so n! is defined for every nonnegative integer n. �
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Example 13. Let us compute 7! using the inductive definition. Using (3.116)
we get 7! = 7×6!. Then using (3.116) again we get 6! = 6×5!, so 7! = 7×6×5!.
Continuing in the same way we get 5! = 5×4!, so 7! = 7×6×5×4!, and then
4! = 4×3!, so 7! = 7×6×5×4×3!. Then 3! = 3×2!, so 7! = 7×6×5×4×3×2!.
And 2! = 2× 1!, so 7! = 7× 6× 5× 4× 3× 2× 1!. Finally, (3.115) tells us
that 1! = 1, so we end up with

7! = 7× 6× 5× 4× 3× 2× 1 ,

which is of course what 7! is supposed to be. �

3.5.3 The inductive definition of summation.

Definition 23. Suppose we have a natural number n, and a list

a = (a1, a2, . . . , an)

of n real numbers. We define the sum (or summation) of the list a (also called
the sum of the aj for j from 1 to n) to be the number

∑n

j=1 aj determined
as follows:

1∑

j=1

aj = a1 ,

n+1∑

j=1

aj =
( n∑

j=1

aj

)

+ an+1 for n ∈ IN .

And we also define
∑0

j=1 aj = 0.
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Example 14. Let us compute
∑5

j=1 j
2. We have

5∑

j=1

j2 =
( 4∑

j=1

j2
)

+ 52

=

(
( 3∑

j=1

j2
)

+ 42

)

+ 52

=
( 3∑

j=1

j2
)

+ 42 + 52

=
( 2∑

j=1

j2
)

+ 3+42 + 52

=
( 1∑

j=1

j2
)

+ 22 + 3+42 + 52

= 12 + 22 + 3+42 + 52

= 1 + 4 + 9 + 16 + 25

= 55 .

3.5.4 Inductive definition of product.

Definition 24. For a natural number n, and a list a = (a1, a2, . . . , an) of
n real numbers, we define the product of the aj for j from 1 to n to be the
number

∏n

j=1 aj determined as follows:

1∏

j=1

aj = a1 ,

n+1∏

j=1

aj =
( n∏

j=1

aj

)

× an+1 for n ∈ IN .

And we also define
∏0

j=1 aj = 1.

Example 15. If you compare the inductive definition of a product with the
inductive definition of the factorial, you can easily see that

n! =
n∏

j=1

j for every n ∈ IN .
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3.5.5 A simple example of a proof by induction using inductive
definitions

Here is a simple example of a proof of an inequality by induction. Notice
how the proof uses the notion of “n-th power” of a real number exactly in
the form of the inductive definition.

Proposition 1. For all n ∈ IN, n < 2n.

Proof.
Let P (n) be the statement “n < 2n ”.
We are going to prove

(∀n ∈ IN)P (n) (3.117)

by induction

Basis step. P (1) is the statement “1 < 21”. But 21 = 2 by the inductive

definition, so P (1) says “1 < 2” which is clearly true. So P (1) is true.

Inductive step. We want to prove that

(∀n ∈ IN)(P (n) =⇒ P (n+ 1)) . (3.118)

Let n be an arbitrary natural number.

We want to prove that P (n) =⇒ P (n+ 1).

Assume P (n).

Then n < 2n.

So 2n < 2n × 2 = 2n+1.

But 1 ≤ n, because n is a natural number. (Precisely: if n = 1
then 1 = n, so 1 ≤ n. And if n 6= 1 then ny Basic Fact BFZ9,
n− 1 ∈ IN, so 1 < n, and then 1 ≤ n.)

So n+ 1 ≤ n+ n, i.e., n+ 1 ≤ 2n.

Therefore n+ 1 < 2n+1.

So P (n+ 1) is true.

Since we have proved P (n + 1) assuming P (n), we can conclude that
P (n) =⇒ P (n+ 1).
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Since we have proved P (n) =⇒ P (n + 1) for arbitrary n, it follows that
(3.118) holds.
So we have completed the basis step and the inductive step, and then the
PMI tells us that (3.117 holds, that is, that (∀n ∈ IN)n < 2n. Q.E.D.

3.5.6 Another simple example of a proof by induction using in-
ductive definitions

Here is a slightly more involved example of a proof of an inequality by in-
duction. Notice how the proof uses the notion of “n-th power” of a real
number and the notion of “factorial” exactly in the form of their inductive
definitions.

We would like to prove the inequality “2n < n!”. This, however, isn’t true
for every natural number n. (For example, it is not true if n = 1 or n = 2 or
n = 3.) But it is true for n ≥ 4.

Proposition 2. For all n ∈ IN, if n ≥ 4 then 2n < n!.

Proof.
Let P (n) be the statement “ 2n < n! ”.
We are going to prove

(∀n ∈ IN)(n ≥ 4 =⇒ P (n)) . (3.119)

by induction. And we will start the induction at 4 rather than 1.

Basis step. P (4) is the statement “24 < 4!”. But 24 = 16, and 4! = 24. So

P (1) says “16 < 24’, which is clearly true. So P (4) is true.

Inductive step. We want to prove that

(∀n ∈ IN)
(

n ≥ 4 =⇒ (P (n) =⇒ P (n+ 1))
)

. (3.120)

Let n be an arbitrary natural number such that n ≥ 4..

We want to prove that P (n) =⇒ P (n+ 1).

Assume P (n).
Then 2n < n!.
So 2× 2n < 2n!.
But 2× 2n = 2n+1.
Hence 2n+1 < 2n!.
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Also, 2 < n+ 1.
So 2n! < (n+ 1)n!.
But (n+1)n! = (n+1)! by the inductive definitionof “factorial”.
Therefore 2n! < (n+ 1)!.
So, finally, 2n+1 < (n+ 1)!.
So P (n+ 1) is true.

Since we have proved P (n + 1) assuming P (n), we can conclude that
P (n) =⇒ P (n+ 1).

Since we have proved P (n) =⇒ P (n + 1) for arbitrary n, it follows that
(3.120) holds.
So we have completed the basis step and the inductive step, and then the

PMI tells us that (3.119) holds, that is, that (∀n ∈ IN)
(

n ≥ 4 =⇒ (2n < n!)
)

.

Q.E.D.

3.5.7 Another simple example

Let us prove

Theorem 43. If a, b are arbitrary integers, then for every nonnegative in-
teger23 n the integer an − bn is divisible by a− b.

Example 16. Here are some examples of what the theorem says:

1. Take a = 8, b = 3. Then the theorem says that 8n − 3n is divisible by
5 for every n. (And you can check this. For example, 83 = 512, and
33 = 27, so 83 − 33 = 512− 27 = 495, which is indeed divisible by 5.

2. Take a = 10, b = 1. Then the theorem says that 10n − 1 is divisible by
9, and you can check this. (For example, 101 − 1 = 9, 102 − 1 = 99,
103 − 1 = 999, 104 − 1 = 9, 999, and so on.)

3. Take a = 10, b = −1. Then the theorem says that 10n − (−1)n is
divisible by 11. And you can check this: 10− (−1) = 11, 102− (−1)2 =
99, 103 − (−1)3 = 1, 001, 104 − (−1)49, 999, and all these are divisible
by 11. �

Proof.

23Recall that the nonnegative integers are the natural numbers as well as zero.
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Let a, b be arbitrary integers.

We will prove that
(∀n ∈ IN)a− b|an − bn , (3.121)

and also that “a− b|an − bn” is true for n = 0.

First we prove (3.121) by induction.

Let P (n) be the statement24 “a− b divides an − bn”.

Basis Step. P (1) says “a− b divides a− b”, which is obviously
true.

This completes the basis step.

Inductive Step. We want to rpove

Inductive step. We want to prove that

(∀n ∈ IN)(P (n) =⇒ P (n+ 1)) . (3.122)

Let n be an arbitrary natural number.

We want to prove that P (n) =⇒ P (n+ 1).

Assume P (n).

Then a− b divides an − bn.

So we may pick an integer k such that

an − bn = (a− b)k . (3.123)

Then

an+1 − bn+1 = an+1 − abn + abn − bn+1

= aan − abn + abn − bbn

= a(an − bn) + (a− b)bn

= a(a− b)k + (a− b)bn

= (a− b)
(
ak + bn

)
.

Hence an+1 − bn+1 = (a− b)
(
ak + bn

)
.

24We do not have to worry about the quesion “who are a and b?”, because we have fixed
a and b earlier. They are fixed integers. Arbitrary, but fixed.
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Clearly, ak + bn is an integer25.

Therefore a− b divides an+1 − bn+1.

So P (n+ 1) is true.

Since we have proved P (n + 1) assuming P (n), we can con-
clude that P (n) =⇒ P (n+ 1).

Since we have proved P (n) =⇒ P (n+1) for arbitrary n, it follows
that (3.122) holds.

So we have completed the basis step and the inductive step, and
then the PMI tells us that (3.121 holds, that is, that if n is an
arbitrary natural number, then a− b divides an − bn.

This almost completes our proof. But there is a minor missing detail:
we also have to prove that a− b divides an − bn when n = 0.

But if n = 0 then an − bn is equal to zero, because the inductive
definition of the powers tells us that a0 = 1 and b0 = 1.

And 0 is divisible by any integer.

So a− b divides an − bn also when n = 0.

We have now proved that a− b|an− bn for every nonnegative integer n.

And this has been proved for arbitrary integers a, b. So our proof is complete.
Q.E.D.

Problem 33.

1. Provide a detailed proof of the step that we skipped in the proof
of Theorem 43, namely, that ak + bn is an integer. (This will require
proving that if b ∈ Z then bn ∈ Z for every nonnegative integer n, and
the only way to do that is by induction, using the inductive definition
of the powers.)

25Strictly speaking even a stupid, trivial, obvious statement like this needs proof. On
the other hand, it is so obvous that nobody would actually insult the reader’s intelligence
by putting in the proof. On the other hand, at this point we are just getting started with
proofs, so you shousl knwo how to prove this. So I am going to ask you to write down the
proof, as a homework problem. Sorry!.
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2. Provide an alternative proof of Theorem 43, in which you do not
treat separately the cases n ∈ IN and n = 0, but do the whole thing in
one swoop, using the PMI starting at 0 rather than at 1.

3. Explain how you would answer the following objection that somebody
studying these notes might raise: In the theorem, you do not assume
that a 6= b, and you talk about “divisibility by a− b”. But if a = b then
a − b is zero, and we cannot divide by zero, so how come you allow a
to be equal to b? How can you say that “0 is divisible by 0”, given that
0
0
is not defined? �

Problem 34. One of the consequences of Theorem 43 is that 10n − 1 is
divisible by 9 for each nonnegative integer n. So, for example, if you look at
the number 438, and let s = 4 + 3 + 8, so s = 15, it follows that 438 − s is
divisible by 9, because:

438− s

= 4× 100 + 3× 10 + 4× 1− (4 + 3 + 8)

= 4× 102 − 4 + 3× 10− 3 + 4× 1− 1

= 4× (102 − 1) + 3× (10− 1) + 4× (1− 1) ,

which is clearly divisible by 9.

1. Explain how this fact leads to the following two divisibility criteria:

Criterion for divisibilitly by 9: A natural number n is di-
visible by 9 if and only if the sum of its decimal figures is di-
visible by 9. (For example: 572, 265 is divisible by 9 because
5 + 7 + 2 + 2 + 6 + 5 = 27, which is divisible by 9. And 772, 265
is not divisible by 9 because 7 + 7 + 2 + 2 + 6 + 5 = 29, which is
not divisible by 9.)

Criterion for divisibilitly by 3: A natural number n is di-
visible by 3 if and only if the sum of its decimal figures is di-
visible by 3. (For example: 572, 265 is divisible by 3 because
5 + 7 + 2 + 2 + 6 + 5 = 27, which is divisible by 3. And 772, 265
is not divisible by 3 because 7 + 7 + 2 + 2 + 6 + 5 = 29, which is
not divisible by 3.)
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2. Explain, in a similar way, how the fact that 10n − (−1)n is divisible by
11 leads to the following divisibility criterion:

Criterion for divisibilitly by 11: A natural number n is di-
visible by 11 if and only if the alternating sum26 of its decimal
figures is divisible by 11. (For example: 572, 473 is divisible by 11
because 5 − 7 + 2 − 4 + 7 − 3 = 0, which is divisible by 11. And
772, 463 is not divisible by 11 because 7− 7 + 2− 4 + 6− 3 = 1,
which is not divisible by 11.) �

26That is, the sum with alternating signs: first figure minus second figureplus third
figure minus fourth figure, etc, etc.
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4 Other forms of induction

4.1 Induction with a different starting point (some-
times called “generalized induction”)

The PMI says that, if a property is true of 1, and is passed on to the right,
so each number n passes it on to its successor n + 1, then the property will
hold of all the numbers that we reach by counting starting at 1.

It is clear that the same thing should be true if we start counting at some
other starting point s∗, that is, some other integer such as, for example, 3,
or 7, or 0, or −5, or −372. The general result is the following rather trivial
theorem:

THE PRINCIPLE OF MATHEMATICAL
INDUCTION

WITH A GENERAL STARTING POINT

Theorem 44. Let P (n) be a statement about a variable integer n.
Suppose we fix an integer s∗. Let Z≥s∗ denote the set of all integers
n such that n ≥ s∗. Suppose, furthermore, that

I. P (s∗) is true.

II. Any time P (n) is true for one particular n ∈ Z≥s∗, it follows
that P (n+ 1) is true.

Then P (n) is true for every integer n belonging to Zs∗.

And we can say the same thing in more formal language:
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THE PRINCIPLE OF MATHEMATICAL
INDUCTION

WITH A GENERAL STARTING POINT
(FORMAL LANGUAGE VERSION)

Theorem 44. Let P (n) be a statement about a variable integer n.
Suppose we fix an integer s∗. Let Z≥s∗ denote the set of all integers
n such that n ≥ s∗. Suppose, furthermore, that

P (s∗) (4.124)

and
(∀n ∈ Z≥s∗)

(
P (n) =⇒ P (n+ 1)

)
. (4.125)

Then
(∀n ∈ Z≥s∗)P (n) . (4.126)

And we can say the same thing in even more formal language:

THE PRINCIPLE OF MATHEMATICAL
INDUCTION

WITH A GENERAL STARTING POINT
(VERY FORMAL LANGUAGE VERSION)

Theorem 44. Let P (n) be a statement about a variable integer
n. Let s∗ ∈ Z, and let

Z≥s∗ = {n ∈ Z : n ≥ s∗} . (4.127)

Then
(

P (s∗) ∧ (∀n ∈ Zs∗)
(
P (n) =⇒ P (n+ 1)

))

=⇒ (∀n ∈ Zs∗)P (n) .

(4.128)

Proof of Theorem 44.
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Assume that P (n) is a 1-variable predicate and s∗ is an arbitrary integer.
We want to prove that if (4.124) and (4.125) hold, then (4.126) holds.

So we assume that (4.124) and (4.125) hold, and we try to prove that
(4.126) holds.

We do the proof by “changing coordinates”. That is, we relabel the
integers so that s∗ becomes 1, s∗ + 1 becomes 2, and so on.

.  .  .  .  .  .  ..  .  .  .  .  .  .

s
* n  =  m + s   − 1

*

m =  n − s  +1
*

1 2 3 4 5 6 7 8 9 10 11 12 130−1−2

−3−4−5−6 −2 −1 −1 2 3 4 5 6 7 8 90

m

n

Changing coordinates on Z so that n = s∗ becomes m = 1

(In the picture, s∗ is −3.)

Precisely, we introduce a new variable m related to n by

m = n+ 1− s∗ . (4.129)

(That is: n = s∗ corresponds to m = 1, n = s∗ + 1 corresponds to m = 2,
and, in general, n = s∗ + k corresponds to m = k.)

We can express n in terms of m as follows:

n = m+ s∗ − 1 . (4.130)

We let Q(m) be P (n) expressed in terms of m. That is, we let Q(m) stand
for P (m+ s∗ − 1). Then Q(1) is P (s∗), Q(2) is P (s∗ + 1), Q(3) is P (s∗ + 2),
and so on.
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We want to prove that P (s∗), P (s∗ + 1), P (s∗ + 2), . . ., are all true.
But this amounts to proving that Q(1), Q(2), Q(3), . . . are true, i.e. that
(∀m ∈ IN)Q(m).

We prove this by induction. Q(1) is true because Q(1) is the same as
P (s∗), which we are assuming is true.

And Q(m) =⇒ Q(m + 1) is true for every m ∈ IN, because “Q(m) =⇒
Q(m + 1)” is equivalent to “P (m + s∗ − 1) =⇒ P (m + s∗)”, which is also
true because m + s∗ − 1 is to the right of s∗, so P (m + s∗ − 1) implies that
the successor m+ s∗ also has property P .

So Q(m) satisfies all the conditions of the ordinary PMI, and we can
conclude that Q(m) is true for everym ∈ IN. And this says that P (m+s∗−1)
is true for all m ∈ IN. Hence P (n) is true for all n such that n = m+ s∗ − 1
for some m ∈ IN. But “n = m + s∗ − 1 for some m ∈ IN” is equivalent to
“n ≥ s∗”

Hence P (n) is true for all n ∈ Zs∗ , and our proof is complete. Q.E.D.

Remark 4. Theorem 44 is a generalization of the PMI in the following pre-
cise sense: according to our definition, the set Z≥1 is precisely IN. So Theorem
44, if we take s∗ to be 1, is exactly the PMI. �

Example 17. Let us prove the following:

Theorem 45. If n is an integer such that n ≥ 4, then 2n < n!.

Proof. We want to prove that

(∀n ∈ Z)(n ≥ 4 =⇒ 2n < n!) . (4.131)

Let P (n) be the predicate “ 2n < n! ”.

We want to prove that (∀n ∈ Z)(n ≥ 4 =⇒ P (n)).

We are going to prove this by induction, using the PMI with a general starting
point.

And we are going to take the starting point s∗ to be 4.

Basis step:

We want to prove P (4).

P (4) aays “24 < 4!”.
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And 24 = 16, 4! = 24, so 24 < 4!.

Therefore P (4) is true

Inductive step:

We want to prove (∀n ∈ Z)
(

n ≥ 4 =⇒ (P (b) =⇒ P (n+ 1))
)

.

Let n ∈ Z be arbitrary.

We want to prove n ≥ 4 =⇒ (P (b) =⇒ P (n+ 1)).

Assume n ≥ 4. We want to prove P (n) =⇒ P (n+ 1).

Assume P (n). We want to prove P (n+ 1).

The inductive hypothesis P (n) tells us that 2n < n!.

Then
2n+1 < 2n! . (4.132)

But 2 ≤ n+ 1, so 2n! ≤ (n+ 1)n! = (n+ 1)!.

Then 2n+1 < (n+ 1)!.

So P (n+ 1) holds .

Therefore P (n) =⇒ P (n+ 1) (by Rule =⇒prove).

So n ≥ 4 =⇒ (P (n) =⇒ P (n+ 1)) (by Rule =⇒prove).

Hence (∀n ∈ Z)
(

n ≥ 4 =⇒ (P (n) =⇒ P (n+ 1))
)

(by Rule ∀use0.

This completes the inductive step.

Since we have proved P (4) ∧ (∀n ∈ Z)
(

n ≥ 4 =⇒ (P (n) =⇒ P (n+ 1))
)

, it

follows from the PMI with general starting point that (∀n ∈ Z)(n ≥ 4 =⇒
P (n)), that is,. (∀n ∈ Z)(n ≥ 4 =⇒ 2n < n!) . Q.E.D.

4.2 Induction going forward and backward

The PMI says that, if a property is true of 1, and is passed on to the right,
so each number n passes it on to its successor n + 1, then the property will
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hold of all the numbers that we reach by counting starting at 1. And the
“generalized” form says that the same is true if yo start at any integer s∗.

It is clear that if in addition each integer n also passes on the property
to its predecessor n − 1 (that is, if P (n) =⇒ P (n1) for every n ∈ Z), then
P (n) will be true for every integer n.

INDUCTION GOING FORWARD AND
BACKWARD

Theorem 46. Let P (n) be a statement about a variable integer n
and let s∗ be an integer. Suppose that

I. P (s∗) is true.

II. Any time P (n) is true for one particular integer n, it follows
that P (n+ 1) is true.

III. Any time P (n) is true for one particular integer n, it follows
that P (n− 1) is true.

Then P (n) is true for every integer n.

And we can say the same thing in more formal language:
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INDUCTION GOING FORWARD AND
BACKWARD

(FORMAL LANGUAGE VERSION)

Theorem 46. Let P (n) be a statement about a variable integer n
and let s∗ be an integer. Suppose that

P (s∗) (4.133)

and

(∀n ∈ Z)
(

P (n) =⇒
(
P (n+ 1) ∧ P (n− 1)

))

. (4.134)

Then
(∀n ∈ Z)P (n) . (4.135)

And we can say the same thing in even more formal language:

INDUCTION GOING FORWARD AND
BACKWARD

(VERY FORMAL LANGUAGE VERSION)

Theorem 46. Let P (n) be a statement about a variable integer
n. Let s∗ ∈ Z. Then

(

P (s∗) ∧ (∀n ∈ Z)
(

P (n) =⇒
(
P (n+ 1) ∧ P (n− 1)

))
)

=⇒ (∀n ∈ Z)P (n) . (4.136)

It will be useful to reformulate the forward and backward induction condition
in a slightly different way.

Suppose we prove that

(∀n ∈ Z)
(
P (n) ⇐⇒ P (n+ 1)

)
. (4.137)
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Then given any integer n, if we assume that P (n) is true, we can apply
(4.137) to this particular integer, and conclude that P (n) ⇐⇒ P (n+ 1). so
P (n) =⇒ P (n+ 1).

And we can apply (4.137) to the integer n− 1, and conclude that P (n−
1) ⇐⇒ P (n). so P (n) =⇒ P (n− 1).

In other words, if (4.137) holds, then the condition (4.134) is satisfied.
So, if we know that P (s∗) for some starting integer s∗, we can conclude that
P (n) holds for every integer n.

This gives us the following slightly different version of the principle on
induction going forward and backward:

INDUCTION GOING FORWARD AND
BACKWARD

A SLIGHTLY DIFFERENT VERSION

Theorem 47.. Let P (n) be a statement about a variable integer n
and let s∗ be an integer. Suppose that

P (s∗) (4.138)

and
(∀n ∈ Z)

(
P (n) ⇐⇒ P (n+ 1)

)
. (4.139)

Then
(∀n ∈ Z)P (n) . (4.140)

4.3 Examples of proofs using induction going forward
and backward

4.3.1 A very simple example

Here is a simple example of a proof using indcuction going forwad and back-
ward.

First let us review a fact that we already know:

(D3) if n ∈ Z, then n3 − n is divisible by 3.



Math 300, Fall 2018 94

(This is easy to prove: we have

n3 − n = n(n2 − 1) = n(n− 1)(n+ 1) = (n− 1)n(n+ 1) ,

so n3 − n is the product of three consecutive integers. One of these integers
must be divisible by 3, so the product is divisible by 3. Actually, it is also
true that n3 − n must be even, that is, divisible by 2, and then, since 2 and
3 are coprime, it follows that a stronger result is true: n3 − n is divisible by
6.)

In view of (D3), we may conjecture that a similar statement may be true
for 4 instead of 3:

(D4) if n ∈ Z, then n4 − n is divisblie by 4.

This, however, is not true. (Proof: (D4) is a universal sentence; it says that
for all integers n 4 divides n3−n. To prove that (D4) is not true, it suffices to
give a counterexample. Let us just take n = 2. Then 24 = 16, so 24−2 = 14,
which is not divisible by 4.)

How about (D5)? This one turns out to be true, and we can prove it
using induction going backward and forward.

Theorem 48. If n is an integer, then n5 − n is divisible by 5.

Proof. We are going to use the binomial formula for the fifth power of a
sum:

(a+ b)5 = a5 + 5a4b+ 10a3b2 + 10a2b3 + 5ab4 + b5 , (4.141)

which is valid for all integers a, b. (And also for real numbers or, more
generally, members of any commutative ring with unity.)

Using this formula we can write, for n ∈ Z,

(n+ 1)5 = n5 + 5n4 + 10n3 + 10n2 + 5n+ 1

(n+ 1)5 − n5 − 1 = 5n4 + 10n3 + 10n2 + 5n

= 5(n4 + 2n3 + 2n2 + n) ,

so (n+ 1)5 − n5 − 1 is divisible by 5.
But

(n+ 1)5 − (n+ 1) = ((n+ 1)5 − n5 − 1) + n5 − n .
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This implies that, for all n ∈ Z,

5|(n+ 1)5 − (n+ 1) ⇐⇒ 5|n5 − n . (4.142)

In other words, the predicate “5 divides n5 − n” is passed on forward (from
n to n + 1) and backward (from n + 1 to n). This means that we are in a
perfect situation to do induction going forward and backward.

Let P (n) be the predicate “5 divides n5−n”. We will prove the statement
“(∀n ∈ Z)P (n)” by induction going forward and backward. We choose the
starting point s0 to be 0.

Basis step. P (0) says “5 divides 0”, which is true because every integer

divides 0. So P (0) is true .

Inductive step. We have to prove that (∀n ∈ Z)
(
P (n) ⇐⇒ P (n + 1)

)

. But

Formula (4.142) says precisely that P (n) ⇐⇒ P (n+ 1) for all n ∈ Z,
This completes the inductive step. Q.E.D.

Problem 35. Prove or disprove each of the following statements:

1. If n is an integer, then n6 − n is divisible by 6.

2. If n is an integer, then n7 − n is divisible by 7.

3. If n is an integer, then n8 − n is divisible by 8.

4. If n is an integer, then n9 − n is divisible by 9.

5. If n is an integer, then n10 − n is divisible by 10.

6. If n is an integer, then n11 − n is divisible by 11.

You may find the following binomial formulas useful:

(a+ b)7 = a7 + 7a6b+ 21a5b2 + 35a5b3 + 35a3b4 + 21a2b5 + 5ab6 + b7

(a+ b)[11] = a11 + 11a10b+ 55a9b2 + 165a8b3 + 330a7b4 + 462a67b5

+462a5b6 + 330s4b7 + 165a3b8 + 55a2b9 + 11ab10 + b11 .

Remark 5. If you have done problem 35 you will have discovered the cases
p = 3, 6, 7 and 11 of Fermat’s little theorem: If p is a prime numbet and
n is an arbitrary integer then np − n is divisible by p. (And the case p = 2 is
trivial, because if n ∈ Z then n2 − n is always even.) �
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4.3.2 Divisibility properties of products of consecutive integers

We now discuss several theorems on divisibility of a product of consecutive
integers:

1. It is easy to prove that a product n(n+ 1) of two consecutive integers
must be divisible by 2.

2. We will then look at the product n(n + 1)(n + 2) of three consecutive
integers, and prove that such a product is divisible by 6.

3. Then we will look at the product n(n + 1)(n + 2)(n + 3) of four con-
secutive integers, and prove that such a product is divisible by 24.

4. Since 2 = 2×1 = 2!, 6 = 3×2×1 = 3!, and 24 = 4×3×2×1 = 4!, this
will clearly be a good indication that there is a general pattern, namely,
that for every natural number k the product of k consecutive integers
is divisible by k!. (Recall the inductive definition of the factorial n! of
a natural number: 1! = 1 and (n + 1)! = n! × (n + 1) for n ∈ IN.) In
other words, the general result should be that

(∀k ∈ IN)(∀n ∈ Z)k!
∣
∣
∣n(n+ 1)(n+ 2) · · · (n+ k − 1) (4.143)

or, using a notation without the mysterious and incomprehensible sym-
bol “· · · ”:

(∀k ∈ IN)(∀n ∈ Z)k!
∣
∣
∣

k∏

j=1

(n+ j − 1) (4.144)

5. And we will indeed prove (4.144) eventually, but the proof will be little
but harder than other proofs we have done so far, because it will use
a double induction: we will prove (4.144) by induction with respect
to k, and for each k we will need induction with respect to n.

First let us start with the trivial result for k = 2:

Theorem 49. If n is an integer, then n(n + 1) is even, i.e., divisible by 2.
That is,

(∀n ∈ IN)2|n(n+ 1) . (4.145)

Proof. As I said earlier, this result is trivial.
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Let n be an arbitrary integer.

We know that n is either even or odd.

If n is even then n(n+ 1) is even .

And if n is odd then n+ 1 is even so n(n+ 1) is even .

So we have proved that n(n+ 1) is even in both cases, when n is even
and when n is odd. And we know that one of these two cases must

occur. So n(n+ 1) is even .

So we have proved that n(n+ 1) is even for an arbitrary integer n.

Hence (∀n ∈ Z)n(n+ 1) is even . Q.E.D.

We now want to prove that the product n(n+1)(n+2) of three consecutive
integers is divisible by 6. And the strategy is going to be to prove the result
by induction going forward and backward.

Here is the result:

Theorem 50. If n is an integer, then n(n+1)(n+2) is divisible by 6. That
is,

(∀n ∈ Z)6|n(n+ 1)(n+ 2) . (4.146)

Proof. Let P (n) be the statement “ 6|n(n+ 1)(n+ 2) ”
We prove that (∀n ∈ Z)P (n) by induction going forward and backward.

Basis step. If n = 0, then n(n + 1)(n + 2) = 0, so P (0) is the statement

“6|0”, which is obviously true. So P (0) is true.

Inductive step. We want to prove that

(∀n ∈ Z)
(
P (n) ⇐⇒ P (n+ 1)

)
. (4.147)

Let n be an arbitrary integer.

We want to prove that P (n) ⇐⇒ P (n+ 1).

We already know that n(n+ 1) is even. So we can write

n(n+ 1) = 2k , k ∈ Z .
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Then

(n+ 1)(n+ 2)(n+ 3) = (n+ 3)(n+ 1)(n+ 2)

= n(n+ 1)(n+ 2) + 3(n+ 1)(n+ 2)

= n(n+ 1)(n+ 2) + 3× 2k

= n(n+ 1)(n+ 2) + 6k .

If 6 divides n(n + 1)(n + 2), then (n + 1)(n + 2)(n + 3) is the sum of
two integers that are divisible by 6. So 6 divides (n+1)(n+2)(n+3).

If 6 divides (n+1)(n+2)(n+3), then n(n+1)(n+2) is the difference
of two integers that are divisible by 6. So 6 divides n(n+ 1)(n+ 2).

We have shown that 6|(n+1)(n+2)(n+3) ⇐⇒ 6|n(n+1)(n+2), i.e.,
that P (n) ⇐⇒ P (n+ 1).

Since we have shown that P (n) ⇐⇒ P (n + 1) for an arbitrary integer n, it
follows that (∀n ∈ Z)

(
P (n) ⇐⇒ P (n+1)

)
, and this completes the inductive

step.
It the follows from Theorem 47 that P (n) is true for all integers n. That

is, (4.146) holds. Q.E.D.

In the proof of Theorem 50 we used the fact that if n ∈ Z then n(n+ 1)
is divisible by 2. Similarly, to prove that (∀n ∈ Z)24|n(n+ 1)(n+ 2)(n+ 3),
the proof should use the result that (∀n ∈ Z)6|n(n+ 1)(n+ 2).

Similar results can be proved for the products of four and five consecutive
integers.

Theorem 51. If n is an integer, then n(n+ 1)(n+ 2)(n+ 3) is divisible by
24. That is,

(∀n ∈ Z)24|n(n+ 1)(n+ 2)(n+ 3) . (4.148)

Proof. YOU DO THIS ONE. In the proof of Theorem 50 we used the
fact that if n ∈ Z then n(n + 1) is divisible by 2. Similarly, to prove that
(∀n ∈ Z)24|n(n + 1)(n + 2)(n + 3), the proof should use the result that
(∀n ∈ Z)6|n(n+ 1)(n+ 2).

Problem 36. Prove Theorem 51. �
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Theorem 52. If n is a natural number, then n(n+ 1)(n+ 2)(n+ 3)(n+ 4)
is divisible by 120. That is,

(∀n ∈ Z)120|n(n+ 1)(n+ 2)(n+ 3)(n+ 4) . (4.149)

Proof. YOU DO THIS ONE. In the proof of Theorem 51 we used the
fact that if n ∈ Z then n(n + 1)(n + 2) is divisible by 6. Similarly, to prove
that (∀n ∈ Z)120|n(n + 1)(n + 2)(n + 3)(n + 4), the proof should use the
result that (∀n ∈ Z)24|n(n+ 1)(n+ 2).

Problem 37. Prove Theorem 52.

What we have done so far is clearly the beginning of a proof by induction.
We have proved the following:

(*) for k = 1, 2, 3, 4, 5 the product of k consecurive integers is
divisible by k!.

This nmakes it natural to make the following

Conjacture. For every natural number k the product of k
consecurive integers is divisible by k!.

But, of course, knowing that something is true for a few values of k in no
way proves that it is true for all k, If we want to be sure that a statement
about k is true for all k, we have to prove it.

So let us prove it.

Theorem 53. If k is a natural number then every product of k consecutive
integers is divisible by k!.

Proof. As usual, our first task is to rewrite the statement we want to prove
in precise formal language. And for that purpose we need to write a formula
for the product of k consecutive integers.

If we start with an integer n, then the k consecutive integers starting at
n ate n, n+1, n+2, . . ., up to n+k−1. ANd the product of these k integers
is
∏k

j=1(n+ j − 1). (For example, for k = 3, the product is n(n+ 1)(n+ 2).
The first factor is n, that is n+ j − 1 with j − 1, and the last factor is n+2,
that is, n+ j − 1 with j = 3.)
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Thet what we want to prove is the following statement:

(∀k ∈ IN)(∀n ∈ Z) k!
∣
∣
∣

k∏

j=1

(n+ j − 1) . (4.150)

In order to prove this, we will use induction.
We let P (k) be the predicate “for every integer n, the product of k consec-

utive integers starting with n is divisible by k!”. That, P (k) is the predicate

∀n ∈ Z) k!
∣
∣
∣

k∏

j=1

(n+ j − 1) . (4.151)

In the proof, we are going to be working a lot with products such as
∏k

j=1(n + j − 1). So it is better to give them a simpler name, to make it
easier to work with them.

Let us use a(n, k) to denote the product of k consecutive integers starting
with n. So, for example,

a(2, 3) = 2× 3× 4 ,

a(−5, 7) = (−5)× (−4)× (−3)× (−2)× (−1)× 0× 1 ,

a(4, 9) = 4× 5× 6× 7× 8× 9× 10× 11× 12 .

Then, of course, the following formula holds for all k ∈ IN, n ∈ Z:

a(n, k) =
k∏

j=1

(n+ j − 1) (4.152)

or, if you prefer “. . .” notation,

a(n, k) = n× (n+ 1)× (n+ 2) · · · × (n+ k − 2)× (n+ k − 1) . (4.153)

Using this notation, the predicate P (k) says:

∀n ∈ Z) k!
∣
∣
∣a(n, k) . (4.154)

Basis step of the induction. We want to prove that P (1) is true. And P (1) is

true, for trivial reasons: P (1) says “(∀n ∈ Z)1!
∣
∣
∣a(n, 1)”, i.e., “(∀n ∈ Z)1

∣
∣
∣n”,

and this is true because every integer is divisible by 1. So we have proved

P (1) .
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Inductive step. We want to prove that

(∀k ∈ IN)
(
P (k) =⇒ P (k + 1)

)
. (4.155)

Let k ∈ IN be arbitrary. We want to prove that

P (k) =⇒ P (k + 1) . (4.156)

Assume P (k). That is, we assume that the product of k consecu-
tive integers is divisible by k!.

We want to prove P (k + 1). That is, we want to prove

(∀n ∈ Z) (k + 1)!
∣
∣
∣a(n, k + 1) . (4.157)

We are going to prove this by induction going forward and back-
ward. This means that

∗ We are going to do a second induction proof, with respect to
n, within the main proof by induction with respect to to k.

∗ We are going to call this “the n-induction”, to distinguish it
from the main induction, the “k-induction”.

So at this point

∗ we are within the k-induction,

∗ we are about to do the n-induction,

∗ ee are assuming that P (k) is true,

∗ and we are trying to prove that P (k + 1) is true, that is, we
are trying to prove that (4.157) is true,

∗ and, since (4.157) is a universal sentence about “all integers
n”, we are goin to do the proof by induction going forward
and backward.

We let Q(n) be the predicate

(k + 1)!
∣
∣
∣a(n, k + 1) . (4.158)

We choose the starting point s∗ of our induction to be 0.
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Basis step of the n-induction. We want to prove that Q(0) is true.

But Q(0) says “(k+1)!
∣
∣
∣a(0, k+1)”. And a(0, k+1) = 0, because

a(0, k + 1) is a product of numbers the first one of which is 0. So

Q(0) says “(k + 1)!
∣
∣
∣0”, and this is true, because 0 is divisible by

every integer. So we have proved Q(0)” .

Inductive step of the n-induction. We want to prove that

(∀n ∈ Z)
(
Q(n) ⇐⇒ Q(n+ 1)

)
. (4.159)

Let n ∈ Z be arbitrary. We want to prove

Q(n) ⇐⇒ Q(n+ 1) . (4.160)

Q(n) says that (k + 1)! divides a(n, k + 1).

And Q(n+ 1) says that (k + 1)! divides a(n+ 1, k + 1).

We are going to prove that

a(n+1, k+1)−a(n, k+1) is divisible by (k+1)! . (4.161)

Before we do that,let me explain why this is a significant fact.

Suppose we have proved (4.161).

Assume Q(n) holds. Then a(n, k + 1) is divisible by (k + 1)!.
Since a(n+1, k+1)−a(n, k+1) is also divisible by (k+1)!, we
can conclude that the sum a(n, k+1)+(a(n+1, k+1)−a(n, k+
1)) is divisible by (k + 1)!. But this sum is a(n + 1, k + 1),
So a(n + 1, k + 1)) is divisible by (k + 1)!. That says that
Q(n+ 1) holds.

Conversely, assume Q(n + 1) holds. Then a(n + 1, k + 1) is
divisible by (k + 1)!. Since a(n + 1, k + 1) − a(n, k + 1) is
also divisible by (k + 1)!, we can conclude that the difference
a(n+ 1, k+ 1)−

(
a(n+ 1, k+ 1)− a(n, k+ 1)

)
is divisible by

(k + 1)!. But this difference is a(n, k + 1), So a(n, k + 1)) is
divisible by (k + 1)!. That says that Q(n) holds.

Summarizing, we have shown that, if (4.161) is true, then
Q(n) =⇒ Q(n + 1) and Q(n + 1) =⇒ Q(n), so Q(n) ⇐⇒
Q(n + 1), which is exactly what we are trying to prove to
complete the n-induction.
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In other words: all we need to do is prove (4.161) and that
will complete our proof.

We now prove (4.161).

The number a(n, k + 1) is the product of k + 1 consecutive
integers starting with n and ending with n + k. And this is
clearly the product of n times k consecutive integers starting
with n+ 1. That is,

a(n, k + 1) = n× a(n+ 1, k) . (4.162)

Similarly, the number a(n, k + 1) is the product of k + 1 con-
secutive integers starting with n+1 and ending with n+k+1.
And this is clearly the product of k consecutive integers start-
ing with n+ 1, mutliplied by n+ k + 1. That is,

a(n+ 1, k + 1) = a(n+ 1, k)× (n+ 1 + k) . (4.163)

Therefore

a(n+ 1, k + 1)− a(n, k + 1) = a(n+ 1, k)× (n+ 1 + k)− n× a(n+ 1, k)

= (n+ k + 1)× a(n+ 1, k)− n× a(n+ 1, k)

=
(
(n+ k + 1)− n

)
× a(n+ 1, k)

= (k + 1)× a(n+ 1, k) .

So we get the formula

a(n+ 1, k+ 1)− a(n, k+ 1) = (k+ 1)× a(n+ 1, k) . (4.164)

(see the example in the box below to understand this formula).
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THE FORMULA
a(n+ 1, k + 1)− a(n, k + 1) = (k + 1)× a(n+ 1, k):

AN EXAMPLE

.

Take n = 11, k = 5. Then

a(11, 6) = 11× 12× 13× 12× 15× 16 ,

a(12, 6) = 12× 13× 12× 15× 16× 17 ,

a(11, 6) = 11×
(

12× 13× 12× 15× 16
)

= 11× a(12, 5)

a(12, 6) =
(

12× 13× 12× 15× 16
)

× 17

= 17×
(

12× 13× 12× 15× 16
)

= 17× a(12, 5) ,

so

a(12, 6)− a(11, 6) = (17− 11)× a(12, 5)

= 6× a(12, 5) .

That is, a(n+ 1, k + 1)− a(n, k + 1) = (k + 1)× a(n+ 1, k) .

Now comes the key point: remember that we are within
the k-induction. We are assuming P (k) and trying to prove
P (k + 1). So at this point we cah use P (k). Add P (k) says
that

∀n ∈ Z) k!
∣
∣
∣a(n, k) . (4.165)

So we can use (4.165).

Then k! divides a(n+ 1, k), so we can write a(n, k) = m× k!
for some m ∈ Z.

Then

a(n+ 1, k + 1)− a(n, k + 1) = (k + 1)× k!×m

= (k + 1)!×m,

so (k + 1)! divides a(n+ 1, k + 1)− a(n, k + 1).
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That is, we have proved (4.161) and, as explained before, it

follows that Q(n) ⇐⇒ Q(n+ 1) .

Since we have proved that Q(n) ⇐⇒ Q(n+1) for arbitrary n ∈ Z,

this shows that (∀n ∈ Z)
(
Q(n) ⇐⇒ Q(n+ 1)

)
.

This completes the inductive step of the n-induction.

We have proved that Q(0) and (∀n ∈ Z)
(
Q(n) ⇐⇒ Q(n + 1)

)
.

By the PMI Going Forward and Backward, is follows that

(∀n ∈ Z)Q(n) . (4.166)

– ] Since Q(n) is the predicate “(k+1)!
∣
∣
∣a(n, k+1)”, we have proved

(∀n ∈ Z)(k + 1)!
∣
∣
∣a(n, k + 1) , (4.167)

that is, we have proved P (k + 1).

Since we have proved P (k + 1) assuming P (k), it follows that

P (k) =⇒ P (k + 1) . (4.168)

Since we have proved (4.168) for an arbitrary natural numebr k, it follows
that

(∀k ∈ IN)
(
P (k) =⇒ P (k + 1)

)
. (4.169)

So we have proved P (1) and (∀k ∈ IN)
(
P (k) =⇒ P (k + 1)

)
. It follows from

the PMI that
(∀k ∈ IN)P (k) . (4.170)

But P (k) is the predicate “(∀n ∈ Z) k!
∣
∣
∣a(n, k)”.

So we have proved

(∀k ∈ IN)(∀n ∈ Z) k!
∣
∣
∣a(n, k) , (4.171)

which is exactly what we wanted to prove. Q.E.D.


