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Part V

1 The ordering of the integers

We have not yet discussed how we can order the integers, i.e., talk about
an integer m being “less than”, or “greater than”, an integer n, and prove,
for example, that if m and n are integers then one and only one of the three
possibilties m < n, m = n, m > n occurs.

1.1 Review of the basic facts about IN and Z

In section 1.6.1 of Part IV of these notes, we talked about the natural
numbers, and discussed how they are related to the integers.

Specifically, we listed four basic facts about IN and how it is related to Z.
Here is the list:

BASIC FACTS ABOUT THE NATURAL
NUMBERS

AND THE INTEGERS

BFZ1: IN ⊆ Z. (That is, every natural number is an integer.)
BFZ2: 1 ∈ IN∧ 0 /∈ IN. (That is: 1 is a natural number, and 0 is not a natural

number.)
BFZ3: The sum and the product of two natural numbers is a natural number.

number.) That is

(∀m ∈ Z)(∀n ∈ Z)(m+ n ∈ IN ∧m.n ∈ IN) . (1.1)

BFZ4: Every integer is either a natural number, or minus a natural number,
or zero. That is:

(∀n ∈ Z)(n ∈ IN ∨ n = 0 ∨ −n ∈ IN) (1.2)
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1.2 The definition of “<”, “>”, “≤”, and “≥”

It turns out that, using the natural numbers, it is very easy to define the
relations “less than”, “grater than”, “less than or equal to” and “greater
than or equal to”:

Definition 1. Let m,n be integers. We say that

• m is smaller than n (or m is less than n), and write

m < n ,

if n−m is a natural number.

• m is smaller than or equal to n (or m is less than or equal to n), and
write

m ≤ n ,

if m < n or m = n.

• m is larger than n (or m is greater than n), and write

m > n ,

if m− n is a natural number.

• m is larger than or equal to n (or m is greater than or equal to n), and
write

m ≥ n ,

if m > n or m = n. �

1.3 Elementary facts about <, >, ≤, and ≥

The symbols <, >, ≤, and ≥ represent binary relations. So before we
discuss them we must talk about relations in general.
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1.3.1 Unary and binary relations

Unary and binary relations, a.k.a. predicates, a.k.a.
properties

A relation, or predicate, or property, is something that can be as-
serted about one or several variable objects, called the inputs, or
arguments, of the relation (or predicate, or property), in such a way
that, for each choice of a value for each of the inputs, the assertion
has a definite truth value, i.e., is true or false.

A relation (predicate, property) with one argument is called a
unary relation (predicate, property).

A relation (predicate, property) with two arguments is called a
binary relation (predicate, property).

Usually, each of the arguments of a relation has a domain, i.e.
a set D such that the argument takes values in D. (And, for a
binary relation with two arguments x, y, it can happen sometimes
that the domain of the x variable is different from the domain of
the y variable. But usually both domains are the same set D, and
in that case we say that the relation is a binary relation on D.)

For unary relations (predicates, properties) it is customary to
use the words predicate, or property, rather than relation.

Example 1.

• Positivity of integers is a unary predicate, whose domain is the set
Z of all integers: it takes an integer n as input and results in the truth
value “true” if n > 0, and in the truth value “false” if it is not true that
n > 0 (that is, if n ≤ 0). We can name this predicate by the formula
describing it, and talk about “the predicate ‘n > 0’ ”, or we can call it
“positivity”, or, if you want to make it clear that we are talking about
integer inputs, “positivity of integers”.

• Nonnegativity of integers is also a unary predicate whose domain is
Z: it takes an integer n as input and results in the truth value “true” if
n ≥ 0, and in the truth value “false” if it is not true that n ≥ 0 (that is,
if n < 0). We can name this predicate by the formula describing it, and
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talk about “the predicate ‘n ≥ 0’ ”, or we can call it “nonnegativity”,
or, if you want to make it clear that we are talking about integer inputs,
“nonnegativitiy of integers”.

• There are also unary predicates positivity of real numbers and
nonnegativity of real numbers. They are defined in the same way
as positivity of integers and nonnegativity of integers, except for the
fact that now the arguments take values in the set IR of all real numn-
bers.

• Evenness of integers is a unary predicate whose domain is Z: it
takes an integer n as input and results in the truth value “true” if n is
even (i.e., if 2|n), and in the truth value “false” if n is not even (and
we know now that “n is ot even” is equiva;ent to “n is odd”). We
can name this predicate by the formula describing it, and talk about
“the predicate ‘n is even’ ”, or “the predicate ‘2|n’ ”, or we can call it
“evenness”, or, if you want to make it clear that we are talking about
integer inputs, “evenness of integers”.

• Primality, that is, the property of being a prime number, is a unary
predicate whose domain1: it takes an integer n as input and results in
the truth value “true” if n is a prime number, and in the truth value
“false” if n is not a prime number. We can name this predicate by the
formula describing it, and talk about “the predicate ‘p is prime’ ”, or
we can call this predicate “the ‘is prime’ predicate”, or “primality”.

• You may ask whether there is such a thing as “evenness of real num-
bers”. You could of course define such a thing, by saying that “a real
number x is even if there exists a real number y such that x = 2y”.
But this would be a very stupid predicate, because every real number
is even according to this definition, so saying that a real number x is
even would just amount to saying that x is a real number, which says
nothing new about x.

• Equality (on any set you want) is a binary relation 2: it takes two
objects x, y (of any kind, integers, real numbers, cows, giraffes, cities,

1You could also take the domain to be IN. It does not matter, because the integers
that are not natural numbers are never prime.

2Or predicate, or property.
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molecules, sets, functions), as inputs, and results in the truth value
“true” if x = y (that is, if x and y are one and the same thing) and the
truth value “false” if x 6= y. We can name this relation by the formula
describing it, and talk about “the relation ‘x = y’ ” but a nicer, better
way is to call it “equality”.

• Divisibility is a binary relation on the set Z of all integers: it takes
two integers m, n as inputs, and results in the truth value “true” if m
is divisible by n, that is, if n|m, and in the truth value “false” if m is
not divisible by n. We can name this relation by the formula describing
it, and talk about “the relation “n|m’ ” but a nicer, better way is to
call it “divisibility”.

• Less than is a binary relation on Z: it takes two integers m, n as
inputs, and results in the truth value “true” if m < n, and in the truth
value “false” if it is not true that m < n. We can name this relation
by the formula describing it, and talk about “the relation ‘m < n’ ” or
we can call it “the ‘less than’ relation”.

• Less than or equal to is a binary relation on Z: it takes two integers
m, n as inputs, and results in the truth value “true” if m ≤ n, and
in the truth value “false” if it is not true that m ≤ n, We can name
this relation by the formula describing it, and talk about “the relation
‘m ≤ n’ ” or we can call it “the ‘less than or equal to’ relation”.

• Naturally, there are also relations “less than” and “less than or equal
to between real numbers.

• And there are also relations “greater than” and “greater than or equal
to”, between integers and between real numbers.

Remark 1. You may have noticed that relations are very similar to oper-
ations. Both have arguments, and produce a value for each value of the
arguments. The difference between them is that an operation produces a
thing (number, set, function, giraffe, whatever) as output, and a relation or
predicate produces a truth value (true or false). �

For example:

• Addition of integers is a binary operation: given two integers m,n
it produces as output an integer m+ n.
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• Divisibility of integers is a binary relation: given two integers m,n
it produces a true-false output according to the following rule:

– If m is divisible by n then the output is “true”.

– If m is not divisible by n then the output is “false”.

3
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An operation and a relation

1.3.2 Properties of relations

There are several interesting properties that a binary relation may or may
not have.

In order to describe thse properties, we will use the following notation: if
R is a binary relation, then the expression “xRy” will stand for the statement
that x is R-related to y”. For example,

• if R is the relation “<”, i.e., “is less than”, then “x < y” is the state-
ment “x is less than y”;

• if R is the relation “|”, i.e., “divides”, or “is a factor of”, then “x|y” is
the statement “x divides y”;
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• if R is the relation “=”, i.e., “is equal to”, then “x = y” is the statement
“x is equal to y”.

Definition 2. A binary relation R on a set S is

• reflexive if xRx for all members x of S; that is, R is reflexive if

(∀x ∈ S)xRx ,

• irreflexive if3 ∼ xRx for all members x of S; that is, R is irreflexive if

(∀x ∈ S) ∼ xRx ,

• symmetric if, whenever x ∈ S, y ∈ S are such that xRy, then it follows
that yRx; that is, R is symmetric if

(∀x ∈ S)(∀y ∈ S)(xRy =⇒ yRx) ,

• antisymmetric if, whenever x ∈ S, y ∈ S are such that xRy and yRx,
then it follows that x = y. (That is, R is antisymmetric if

(∀x ∈ S)(∀y ∈ S)((xRy ∧ yRx) =⇒ x = y) ,

• transitive if, whenever x ∈ S, y ∈ S, z ∈ S are such that xRy and yRz,
then it follows that xRz. That is, R is transitive if

(∀x ∈ S)(∀y ∈ S)(∀z ∈ S)
(

(xRy ∧ yRz) =⇒ xRz
)

.

• trichotomous if it satisfies the trichotomy 4 law: whenever x ∈ S and
y ∈ S it follows that one and only one of the following three assertions
is true: xRy, x = y, yRx. That is, R is trichotomous if

(∀x ∈ S)(∀y ∈ S)

(

(xRy ∨ x = y ∨ yRx)

∧

(

x = y=⇒
(

(∼ xRy)∧(∼ yRx)
)

)

∧

(

xRy=⇒
(

(∼ x = y)∧(∼ yRx)
)

)

)

.

3Recall that “∼” stands for “it is not true that”, so “∼ xRx” means “x is not R-related
to x”.

4A dichotomy is a situation in which one and only one of two possibilities occurs.
Similarly, a trichotomy is a situation in which one and only one of three possibilities
occurs.
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Question 1. In the explanation of what it means for a binary relation to be
trichotomous, whwre I wrote the condition in formal language, explain why
it was not necessary to include a third clause stating that

yRx =⇒
(

(∼ x = y) ∧ (∼ xRy)
)

.

1.3.3 Properties of the relations <, >, ≤, and ≥

Theorem 1. The relations “<”, and “>”, on the set of integers, are irreflex-
ive, transitive, and trichotomous.

Translated into English, the above statement says that:

1. If m is an integer, then it is not the case that m < m or m > m.

2. If m,n, p are integers such that m < n and n < p, then m < p.

3. If m,n, p are integers such that m > n and n > p, then m > p.

4. If m, n are integers, then one and only one of the following three
possibilities occurs: m < n, m = n, n < m.

5. If m, n are integers, then one and only one of the following three
possibilities occurs: m > n, m = n, n > m.

Proof.
We first prove that “<” is irreflexive. We have to show that if n ∈ Z then
it cannot be tha case that n < n. But this is clear because “n < n” means
“n− n ∈ IN”, that is, “0 ∈ IN”, but Basic Fact BFZ2 tells us that 0 /∈ IN.

Next, we prove that “<” is transitive.

Let m,n, p be arbitrary integers.

Assume that m < n and n < p.

We want to prove that m < p.

It follows from Definition 1 that n−m ∈ IN and p− n ∈ IN.

Therefore (p− n) + (n−m) ∈ IN, because the sum of two natural
numbers is a natural number.

But (p− n) + (n−m) = p−m.

So p−m ∈ IN.
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Therefore m < p.

This completes the proof that “<” is transitive.

We now prove the trichotomy law.

Let m, n be arbitrary integers.

Let p = m− n.

Then p ∈ Z.

So Basic Fact BFZ4 tells us that either p ∈ IN, or −p ∈ IN, or p = 0.

We analyze separately the three cases, and show that

n < m ∨m = n ∨m < n (1.3)

in each of the cases.

If p ∈ IN, then m− n ∈ IN, so n < m, and then (1.3) holds.

If −p ∈ IN, then −(m − n) ∈ IN, so n − m ∈ IN, so m < n, and
(1.3) holds.

If p = 0, then m− n = 0, so m = n, and then (1.3) holds.

So in each of the three cases, we have proved that (1.3) is

Therefore n < m ∨m = n ∨m < n .

We now show that it is not possible for two of the three possibilities to
occur.

Suppose first that m = n ∧m < n or m = n ∧ n < m. Then it follows
that m < m, which we know is not true.

Now suppose that m < n and n < m. Then n−m ∈ IN and m−n ∈ IN,
so (m−n)+ (n−m) ∈ IN, because of Fact BFZ3. Hence 0 ∈ IN, which
we know is not true by Fact BFZ2.

So we have proved that one and only one of the possibilities ‘m < n’, ‘m = n’,
‘n < m’, occurs, for arbitrary integers m,n.



Math 300, Fall 2018 11

This proves that “<” is irreflexive, transitive, and trichotomous.
A similar proof works for “>”. Q.E.D.

Problem 1. The inverse of a binary relation R on a set S is the binary
relation R−1 on S defined by

xR−1y ⇐⇒ yRx if x ∈ S, y ∈ S .

Prove that

1. The inverse of “<” is “>”.

2. If a relation R on a set S is reflexive, then R−1 is reflexive.

3. If a relation R on a set S is irreflexive, then R−1 is irreflexive.

4. If a relation R on a set S is symmetric, then R−1 is symmetric.

5. If a relation R on a set S is antisymmetric, then R−1 is antisymmetric.

6. If a relation R on a set S is transitive, then R−1 is transitive.

7. If a relation R on a set S is trichotomous, then R−1 is trichotomous.�

Problem 2. For each of the following binary relations on the given set, indi-
cate whether the relation is reflexive, irreflexive, symmetric, antisymmetric,
transitive, or trichotomous:

1. Equality (on any set S).

2. Divisibility (that is, the relation “m|n”), on the set IN.

3. Divisibility (that is, the relation “m|n”), on the set Z.

4. “Less than or equal to”, on the set Z.

5. “<” on the set F of all continuous real-valued functions on the interval
[0, 1]. (If f, g are two functions defined on [0, 1], we say that f < g if
f(x) < g(x) for every x belonging to the interval [0, 1]. For example,
if f is the function defined by f(x) = x2 for 0 ≤ x ≤ 1. and g is the
function defined by g(x) = 1 + x for 0 ≤ x ≤ 1. then f < g, because,
if x is an arbitrary member of [0, 1], then x2 < 1 + x, fer the following
reason: if 0 < x < 1, then x2 < x, so x2 < 1 + x; if x = 0, then x2 = 0
and 1 + x = 1, so x2 < 1 + x; if x = 1 then x2 = 1 and 1 + x = 2, so
x2 < 1 + x.) �
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1.3.4 Positive, nonnegative, negative, and nonpositive integers

Definition 3. Let n be an integer. We say that n is

• positive if n > 0,

• negative if n < 0,

• nonnegative if n ≥ 0,

• nonpositive if n ≤ 0. �

The precise meaning of “positive”

The distinction between “positive” and “nonnegative”
is important. “Positive” means “> 0”, whereas “non-
negative” means “≥ 0”. So the positive integers are
exactly the same as the natural numbers, and the non-
negative integers are the natural numbers together
with 0.

Theorem 2.

1. The sum of two positive integers is a positive integer.

2. The product of two positive integers is a positive integer.

3. The sum of two negative integers is a negative integer.

4. The product of two negative integers is a positive integer.

5. The product of a positive integer and a negatiue integer is a negative
integer.

Proof. These statements are so trivial that they do not need really a proof.
But we will give one all the same.

The first and second statement are true because we already know that
the sum and the product of two natural numbers is a natural number, and
“positive integer” means exactly the same as “natural number”. The third
and fourth statements are true because, if a and b are negative integers, then
−a ∈ IN and −b ∈ IN, so
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• (−a) + (−b) ∈ IN and (−a)× (−b) ∈ IN. But (−a) + (−b) = −(a+ b),
so −(a+ b) ∈ IN, and then a+ b is negative.

• (−a)× (−b) = ab, so ab ∈ IN, i.e., ab is positive.

The fifth statement is true because, if a is a positive integer and b is a negative
integer, then a ∈ IN and −b ∈ IN, so a× (−b) ∈ IN. But a× (−b) = −ab, so
−ab ∈ IN, and then ab is negative. �

We now state the standard rules that you know for manipulating inequalities.
The proofs are all very easy, and I am leaving them up to you.

Theorem 3. Let a, b, c, d be arbitrary integers. Then Prove the following
laws for manipulating inequalities:

1. If a ≤ b and c ≤ d, then a+ c ≤ b+ d.

2. If a ≤ b and c < d, then a+ c < b+ d.

3. If a ≤ b and c ≥ 0 then ac ≤ bc.

4. If a < b and c > 0 then ac < bc.

5. If 0 < a < b, and 0 < c < d, then ac < bd.

6. If 0 < a < b, then a2 < b2.

Proof. YOU DO IT.

Problem 3. Prove Theorem 3.

1.4 When is the product of two integers equal to zero?

Is it possible for the product of two nonzero integers to be equal to zero?
The answer is “no”, and the proof of this fact is very easy, now that we know
about the ordering of the integers, so we give it now.

Theorem 4. If a, b are integers such that ab = 0, then a = 0 or b = 0.

Proof.
Let a, b be arbitrary integers.
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Assume that ab = 0.

We want to prove that a = 0 or b = 0.

We will do a proof by contradiction .

Assume that it is not true that a = 0 ∨ b = 0.

Then a 6= 0 and b 6= 0.

Since a 6= 0, either a > 0 or a < 0.

Similarly, either b > 0 or b < 0, because b 6= 0.

So there are four possibilities:

1. a > 0 and b > 0.

2. a > 0 and b < 0.

3. a < 0 and b > 0.

4. a < 0 and b < 0.

In cases 1 and 4, Theorem 2 tells us that ab > 0. So ab 6= 0.

In cases 2 and 3, Theorem 2 tells us that ab < 0. So ab 6= 0.

So we have proved that ab 6= 0 in all four cases.

Hence ab 6= 0.

But we know that ab = 0.

So ab 6= 0 ∧ ab = 0, which is clearly a contradiction.

We have derived a contradiction from the assumption that the sen-
tence “a = 0 ∨ b = 0” is not true. So the sentence is true, that is,
a = 0 ∨ b = 0 . Q.E.D.

1.5 The cancellation law for multiplication

Now that we know how to order the integers, we can use this to prove the
cancellation law for multiplication:

Theorem 5. If a, b, c are arbitrary integers such that c 6= 0 and ac = bc,
then it follows that a = b. That is,

(∀a ∈ Z)(∀b ∈ Z)(∀c ∈ Z)((c 6= 0 ∧ ac = bc) =⇒ a = b) . (1.4)
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Proof.

Let a, b, c be arbitrary integers.

Assume that c 6= 0 and ac = bc.

Then ac− bc = 0.

But ac− bc = (a− b)c.

So (a− b)c = 0.

Then Theorem 4 tells us that a− b = 0 or c = 0.

But c 6= 0.

Hence a− b = 0.

So a = b.

We have proved “a = b” assuming that c 6= 0 ∧ ac = bc.

So we have proved “if c 6= 0 ∧ ac = bc then a = b.”, that is, “(c 6=
0 ∧ ac = bc) =⇒ a = b.”

We have proved “(c 6= 0 ∧ ac = bc) =⇒ a = b” for arbitrary integers a, b, c.
So we can conclude, thanks to the rule for proving universal sentences, that

(∀a ∈ Z)(∀b ∈ Z)(∀c ∈ Z)((c 6= 0 ∧ ac = bc) =⇒ a = b).

Q.E.D.

1.6 Two obvious but very important theorems

We now state and prove two completely obvious but very important facts
about the integers.

We now state and prove two completely obvious but very important facts
facts about the integers. The first one is essentially a restatement of the
“successor theorem’, i.e., Theorem 28 in Part IV of these notes (page 56).

Theorem 6. Every natural number is greater than or equal to 1. (That is:
(∀n ∈ IN)n ≥ 1.)

Proof.
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Let n be an arbitrary natural number.

Then either n = 1 or n 6= 1.

If n = 1 then of course n ≥ 1 .

If n 6= 1 then by the successor theorem n−1 is a natural number,

and then Definition 1, n > 1, so n ≥ 1 .

So n ≥ 1 in both cases. Q.E.D.

Theorem 7. If n ∈ Z then there is no integer m such that n < m < n+ 1.

Proof.

Let n be an arbitrary integer.

Assume5 that there exists an integer m such that n < m < n+ 1.

Pick one such integer and call it m∗, so that m∗ ∈ Z, and n <
m∗ < n+ 1.

Since n < m∗, m∗ − n is a natural number.

Hence m∗ − n ≥ 1, by Theorem 6.

Hence m∗ ≥ n+ 1 .

Since m∗ < n + 1, and then the trichotomy law implies that
∼ m∗ ≥ n+ 1 .

So we have arrived at a contradiction.

So we have proved that there does not exist an integer m such that
n < m < n+ 1. Q.E.D.

5A proof by contradiction !



Math 300, Fall 2018 17

2 The Well-ordering Principle

The well-ordering principle is a very simple consequence of the PMI, and is
a very powerful tool for proving properties of the integers.

2.1 Statement of the Well-ordering Principle

The standard version of the well-ordering principle, the one that you will find
in most textbooks, says that every nonempty set of natural numbers has a
smallest member:

THE WELL-ORDERING PRINCIPLE

(WOP)
STANDARD VERSION

Theorem 8. Every nonempty set of natural numbers
has a smallest member.

In formal language, Theorem 8 says that

(∀S)
(

(

S ⊆ IN ∧ S 6= ∅
)

=⇒ (∃s ∈ S)(∀t ∈ S)s ≤ t
)

, (2.5)

or

(∀S ∈ P(IN))
(

S 6= ∅ =⇒ (∃s ∈ S)(∀t ∈ S)s ≤ t
)

. (2.6)

But there is a sligthly more general version that is often more useful than
the standard one: instead of subsets of IN, we can consider equally well sets
that are subsets of Zs∗ for some s∗ ∈ Z. (Recall that, if s∗ ∈ Z, then Zs∗ is
the set of all integers n such that n ≥ s∗. That is,

Zs∗ = {n ∈ Z : n ≥ s∗} . (2.7)

as explained earlier in these notes.) I will use the name “the well-ordering
principle” (WOP) for this more general version.

In order to state the WOP, we need a couple of definitions.
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Definition 4. A subset S of Z is bounded below if there exists an integer
s∗ such that S ⊆ Zs∗ . �

So a set S of integers is bounded below if there is an integer s∗ such that
all the members of S are to the right6 of s∗.

We also recall the definition of “smallest member” of a set:

Definition 5. A smallest member of a subset S of7 Z is a member s of S
such that

(∀t ∈ S)s ≤ t . (2.8)

The following theorem states the obvious fact that if a set has a smallest
member, then that smallest member is unique.

Trivial theorem. If a subset S of Z (or of IR) has a smallest member, then
it has only one smallest member.

Proof. Let s1, s2 be smallest members of S. Since s1 is a smallest member
of S, s1 ≤ t for every t ∈ S. In particular, since s2 ∈ S, s1 ≤ s2.

Similarly, s2 ≤ s1. So s1 = s2. Q.E.D.

6Let us be precise: “to the right of” means “≥”; “to the left of” means “≤”; “strictly
to the right of” means “>”; and “strictly to the left of” means “<”.

7or of IR, or of any set equipped with an onder relation ≤
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And now we are ready to state the WOP:

THE WELL-ORDERING PRINCIPLE

(WOP)
GENERAL VERSION

Theorem 9. Every nonempty set of integers which is bounded
below has a smallest member.

In formal language, Theorem 9 says that

(∀s∗∈Z)(∀S)
(

(

S ⊆ Zs∗ ∧ S 6= ∅
)

=⇒ (∃s∈S)(∀t∈S)s ≤ t
)

, (2.9)

or

(∀s∗ ∈ Z)(∀S ∈ P(Zs∗))
(

S 6= ∅ =⇒ (∃s ∈ S)(∀t ∈ S)s ≤ t
)

. (2.10)

2.2 Proof of the Well-Ordering Principle

We want to prove (2.10). So we fix an arbitrary integer s∗, and try to prove that

(∀S ∈ P(Zs∗))
(

S 6= ∅ =⇒ (∃s ∈ S)(∀t ∈ S)s ≤ t
)

. (2.11)

We will first prove a lemma.

Lemma. If n ∈ Z, S ⊆ Zs∗ and n ∈ S, then S ha a smallest member.

In formal language, the lemma says:

(∀n ∈ Zs∗)(∀S)

(

(

S ⊆ Zs∗ ∧ n ∈ S
)

=⇒ (∃s ∈ S)(∀t ∈ S)s ≤ t

)

. (2.12)

Before we prove the lemma, let us show how Theorem 9 —i.e., formula (2.11—
follows immediately from it.

Proof of formula (2.11) using the lemma:
Let S be a nonempty subset of Zs∗ . Since S 6= ∅, we may pick a member n of S.
Then S ⊆ Zs∗ and n ∈ S. So by the lemma, S has a smallest member, This proves
Theorem 9.
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Proof of the lemma.
We will do a proof by induction starting at s∗.

In the proof, we will write H(S) for “S has a smallest member”.
Let P (n) be the predicate “for every subset S of Zs∗ such that n ∈ S has a smallest
member”. That is, P (n) stands for

(∀S)

(

(

S ⊆ Zs∗ ∧ n ∈ S
)

=⇒ H(S)

)

. (2.13)

We will prove (∀n ∈ Zs∗)P (n), which is exactly formula (2.12), by induction
starting with n = s∗.

Basis step. We have to prove P (s∗). But P (s∗) says “if S ⊆ Zs∗ and s∗ ∈ S, then
H(S)”. And this is obvious because if s∗ ∈ S and S ⊆ Zs∗ , then all the members
of S are ≥ s∗, so s∗ is the smallest member of S, and then H(S) is true. Hence

P (s∗) holds.

Inductive srep. We have to prove

(∀n ∈ Zs)∗

(

P (n) =⇒ P (n+ 1)
)

. (2.14)

Let n ∈ Zs∗ be arbitrary.

We want to prove the implication P (n) =⇒ P (n+ 1).

Assume P (n). We want to prove that P (n+ 1).

But P (n+1) says “if S is an arbitrary subset of Zs∗ such that n+1 ∈ S,
then H(S)”.

Let S be an arbitrary subset of Zs∗ such that n+1 ∈ S. We want
to prove that H(S).

There are two possibilities, namely, n ∈ S or n /∈ S .

We first consider the case when n ∈ S.

Assume n ∈ S .

Then, since we are assuming that P (n) holds, H(S) .

So n ∈ S =⇒ H(S) . [Rule ∀prove]

We next consider the case when n /∈ S.

Assume n /∈ S .

Let 8 T = S ∪ {n}.

8That is, T is the set obtained from S by adding n as a new member to S.
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Then T ⊆ Zs∗ , because S ⊆ Zs∗ and n ∈ Zs∗ .

Furthermore, n ∈ T . Since we are assuming that P (n) holds,
and P (n) says ”if a subset of Zs∗ contains n, then the subset
has a smallest member”, it follows that H(T ).

Let t̄ be the smallest member of T . Then

t̄ ∈ T ∧ (∀t ∈ T )t̄ ≤ t . (2.15)

In particular, since S ⊆ T , (2.15) implies

(∀t ∈ S)t̄ ≤ t , (2.16)

So t̄ is less than or equal to every member of S.

If t̄ ∈ S , then t̄ is the smallest member of S, so H(S) .

If t̄ /∈ S , then t̄ = n, because T = S ∪ {n} and t̄ ∈ T .

Furthermore, every member t of S satisfies t ≥ t̄, by (2.15).

So, if t ∈ S then t ≥ t̄, i.e., t ≥ n, but t cannot be equal to
n, because t ∈ S and n /∈ S (since n = t̄ and t̄ /∈ S). Hence
t > n, and then t ≥ n+ 1.

So we have proved that every member t of S satisfies t ≥ n+1.
Since n+ 1 ∈ S, it follows that n+ 1 is the smallest member

of S, so H(S) .

Since we have shown that H(S) both when t̄ ∈ S and when

t̄ /∈ S, we have proved H(S) .

Since we have proved H(S) assuming n /∈ S, we can conclude that

n /∈ S =⇒ H(S) .

Since we have proved n ∈ S =⇒ H(S) and n /∈ S =⇒ H(S) , it

follows that H(S) .

So we have proved H(S) for an arbitrary subset S of Zs∗ such that

n+ 1 ∈ S. And this proves that P (n+ 1) holds.

So we have proved P (n+ 1) assuming P (n). Hence P (n) =⇒ P (n+ 1) .

And, since we proved that P (n) =⇒ P (n+1) for arbitrary n ∈ Zs∗ , it follows that

(∀n ∈ Zs)∗

(

P (n) =⇒ P (n+ 1)
)

. (2.17)

which is exactly (2.14).
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This completes the inductive step. Since we have also carried out the basic step,
the PMI enables us to conclude that

(∀n ∈ Zs)∗P (n) , (2.18)

which is exactly the statement of the lemma.

So we have proved the lemma and, as explained above, Theorem 9 is proved.

2.3 A simple example of a proof using well-ordering:
existence of prime factors

As an illustration of the power of the well-ordering pincple, let us use it to
prove the following

Theorem 10. If n is any natural number such that n > 1, then n has a
prime factor. (That is, there exists a prime number p such that p is a factor
of n, i.e., equivalently, p|n.)

Idea of the proof. Let n ∈ IN be arbitrary. Assume that n > 1. Then n has
at least one nontrivial9 natural number factor m. (Reason: n itself is one
such factor.)

Let p be smallest of all the nontrivial natural number factors of n. Then
p must be prime, because if p was not prime then p would have a smaller
nontrivial factor q, and then q would be a nonrivlal natural number factor of
n smaller than p.

And now we write this down in a more detailed fashion.
Proof.
Let n be a natural number such that n > 1.
Let F be the set of all natural numbers m such that m > 1 and m is a factor
of n.
Then F is nonempty. (Proof: The number n is obviously a factor of n. And
n > 1. So n ∈ F .)
Also, F is a subset of Z, and F is bounded below (because F ⊆ IN).
By the well-ordering principle, F has a smallest member.
Let q be the smallest member of F .
Then q is a factor of n, and q > 1.
Furthermore, we claim that q is prime.

9“Nontrivial” means “not equal to 1”.
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Proof that q is prime.

Suppose q was not prime.

Then either q=1 or q has a natural number factor other than 1 and q.

Pick one such factor and call it r.

Then r is a factor of q, so q=rk for somenatural number k.

And q is a factor of n, so n=qj for some natural number j.

So n = qj = (rk)j = r(jk).

So r is a factor of n.

But r < q, because r is a factor of q and r is not q.

And r > 1, because r is a factor of q and r is not 1.

Since r is factor of n and r > 1, it follows that r ∈ F .

Since r < q and r ∈ F , q is not the smallest member of F .

But q is the smallest member of F .

So we have reached a contradiction.

So q is prime.

Hence q is a prime number which is a factor of n. So n has a prime factor.
Q.E.D.

2.4 More examples of simple proofs using well-ordering

Every proof that can be done by induction can also be done using well or-
dering. Indeed, suppose P (n) is a one-variable predicate, and you can prove
P (1) and (∀n ∈ IN)

(

P (n) =⇒ P (n+ 1)
)

.
Then, instead of invoking the PMI, you could argue by well-ordering as

follows. Call a natural number “bad” if P (n) is not true. We want to prove
that there are no bad numbers. Let B be the set of all bad natural numbers.
We want to prove that B is empty. Suppose B is not empty. Then by the
WOP B has a smallest member b. So b is bad but every natural number c
such that c < b is good (i.e., not bad). Then b cannot be 1, because P (1)
is true, so 1 is good. Since b ∈ IN and b 6= 1, b − 1 is a natural number.
And b − 1 is not bad, because b is the smallest bad natural number. So
b − 1 is good, that is, P (b − 1) is true. But then, since the implication
P (n) =⇒ P (n + 1) is true for every n ∈ IN, it is true for n = b − 1, which
means that P (b− 1) =⇒ P (b) is true. Since P (b− 1) is true, t follows that
P (b) is true. So b is good, and we have derived a contradiction. Hence B = ∅.
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Example 2. Let us prove using well-ordering that if n is natural number,
then 8n − 5n is divisible by 3.

(We have already proved this by induction. I want to show that it can
be done using well-ordering, and it’s almost the same proof.)
Proof. We want to prove that

(∀n ∈ IN)3|8n − 5n . (2.19)

Call a natural number n “bad” if 3 does not divide 8n − 5n.
Ler B be the set of all bad natural numbers. We want to prove that

B = ∅.

Assume that B 6= ∅.

Then, by the WOP, B has a smallest member b.

Then b is bad, so 8b − 5b is not divisible by 3.

In paericular, this means that b 6= 1, because 81 − 51 is divisible by 3.

So b− 1 is a natural number, and 8b−1 − 5b−1 is divisible by 3.

So we can write
8b−1 − 5b−1 = 3k , k ∈ Z .. (2.20)

Then
8× (8b−1 − 5b−1) = 3× 8k . (2.21)

So
8b − 8× 5b−1 = 3× 8k , (2.22)

and then
8b = 8× 5b−1 + 3× 8k , (2.23)

But 8 = 5 + 3, so

8× 5b−1 = 5× 5b−1 + 3× 5b−1 = 5b + 3× 5b−1 , (2.24)

so
8b = 5b + 3× 5b−1 + 3× 8k , (2.25)
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and then
8b = 5b + 3(5b−1 + 8k) , (2.26)

so that
8b − 5b = 3(5b−1 + 8k) , (2.27)

Let j = 5b−1 + 8k. Then j ∈ Z and

8b − 5b = 3j . (2.28)

Hence 3|8b − 5b. That is, b is good .

But b is bad. So we have arrived at a contradiction.

The contradiction arose from assuming that B was nonemoty.

Hence B is empty, and our theorem is proved. Q.E.D.

2.5 An example of a proof using well-ordering; the ex-
istence part of the fundamental theorem of arith-
metic

In this section we prove the existence part of the fundamental theorem
of arithmetic (FTA). This theorem is one of the most important results
in integer arithmetic. It says that every natural number n such that n ≥ 2
can be written as a product of primes in a unique way. (That is, not only is
the number equal to a product of primes, but there is only one way to write
it as a product of primes.) We will prove a part of the FTA, namely, the
assertion that if n ∈ IN and n ≥ 2 then n can be written as a product of
primes.

The proof of uniqueness requires more sophisticated tools, and will be
done later.

Theorem 11. Every natural number n such that n ≥ 2 is a product of
primes.

Before we prove the theorem, let us explain what it says.
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2.5.1 Clarification: What is a “product of primes”?

Like all mathematical ideas, even something as simple as “product of primes”
requires a precise definition. Without a precise definition, it would not be
clear, for example, whether a single prime such as 2 or 3 or 5 is a “product
of primes”.

Definition 6. A natural number n is a product of primes if there exist

1. a natural number k,

and

2. a finite list10

p = (p1, . . . , pk) of prime numbers,

such that

n =
k
∏

i=1

pi . (2.29)

Notice that k can be equal to one. That is, a single prime, such as 2, or
3, or 23, is a product of primes in the sense of our definition. �

Definition 7. If n is a natural number, then a list p = (p1, . . . , pk) of prime
numbers such that (2.29) holds is called a prime factorization of n. �

Example 3. The following natural numbers are products of primes:

• 7 (because 7 is prime),

• 24 (because 24 = 2× 2× 2× 3),

• 309 (because 309 = 3× 103 and both 3 and 103 are prime).

• 3, 895, 207, 331, 689 . Here it would really take a lot of work to find

the primes p1, p2, . . . , pk such that 3, 895, 207, 331, 689 =
∏k

i=1 pi.
But the theorem that we are going to prove tell us that
3, 895, 207, 331, 689 is a product of primes. �

10Finite lists are defined and discussed in great detail in section 6.2 below, on page 83.
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2.5.2 Outline of the strategy for proving the theorem

Call a natural number n “bad” if n > 1 and n is not a product of primes.
What we want is to prove is that there are no bad natural numbers.
The strategy is going to be this: we let B be the set of all bad numbers,

so our goal is to prove that B is empty. For this purpose, we assume it
is nonempty, and use the well-ordering Principle to conclude that it has a
smallest member b. Then b is bad, and in addition b is the smallest bad
natural number. But then b cannot be prime, because if it is prime then it is
a product of primes, so b would not be bad. Since b > 1, and b is not prime,
b must be a product cd of two smaller natural numbers. But then c and d
cannot be bad. So c is a product p1 × p2 × · · · × pk of primes, and d is a
product q1 × q2 × · · · × qj of primes. So

b = cd = p1 × p2 × · · · × pk × q1 × q2 × · · · × qj .

But then b is a product of primes, so b is not bad. But b is bad, and we got
a contradiction. Hence B is empty, and that means that there are no bad
numbers.

2.5.3 The proof

Let B be the set of all natural numbers n such that n ≥ 2 and n is not a
product of primes.

We want to prove that the set B is empty. For this purpose, we assume
that B is not empty and try to get a contradiction.

So assume that B 6= ∅. By the well-ordering principle, B has a smallest
member b. Then b ∈ B, so

a. b is a natural number,

b. b ≥ 2,

c. b is not a product of primes .

And, in addition,

d. b is the smallest member of B, that is,

(∀m)(m ∈ B =⇒ m ≥ b) .
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Since b is not a product of primes, it follows in particular that b is not prime.
(Reason: if b was prime, then b would be a product of primes according to
our definition.)

Since b is not prime, there are two possibilities: either b = 1 or b has a factor
k which is a natural number such that k 6= 1 and k 6= b.

But the fist possibility (b = 1) cannot arise, because b ≥ 2.

Hence the second possibility occurs. That is, we can pick a natural number
k such that k divides b, k 6= 1, and k 6= b.

Since k|b, we can pick an integer j such that

b = jk .

And then j has to be a natural number. (Reason: we know that k ∈ IN, so
k > 0. If j was ≤ 0, it would follow that kj ≤ 0. But kj − b and b > 0.)

Then j 6= 1 and j 6= b. (Reason: j cannot be 1 because if j = 1 then it would
folows from b = jk that k = b, and we know that k 6= b. And j cannot be b
because if j = b then it would folows from b = jk that k = 1, and we know
that k 6= 1.)

Then j < b and k < b. (Reason: k ≥ 1, because k ∈ IN; so k > 1, because
k 6= 1; so11 k ≥ 2; and then if j was ≥ b it would follow that jk ≥ 2j > j > b,
but jk = b. The proof that k < b is exactly the same.)

Hence j /∈ B (because b is the smallest member of B, and j < b). And j ≥ 2
(because j > 1). This means that j is a product of primes (because if j
wasn’t a product of primes it would be in B).

Similarly, k is a product of primes. So we can write

j =
m
∏

i=1

pi and k =

µ
∏

ℓ=1

qℓ ,

where m ∈ IN, µ ∈ IN, and the pi and the qℓ are primes. But then

b =
(

m
∏

i=1

pi

)

×
(

µ
∏

ℓ=1

qℓ

)

,

11Notice that here we are using again Theorem 47: “there is no integer between 1 and
2”, so the fact that k > 1 implies k ≥ 2 because if k < 2 then we would have 1 < k < 2,
contradicting Theorm 47.
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so b is a product of primes . (Precisely: define uj, for j ∈ IN, 1 ≤ j ≤ m+µ,
by the formula

uj =

{

pj if 1 ≤ j ≤ m
qj−m if m+ 1 ≤ j ≤ m+ µ

.

Then

b =

m+µ
∏

i=1

uj .

And the uj are prime, because each uj is either one of the pis or one of the
qℓs.)

So b is a product of primes .

But we know that b is not a product of primes . So we got two contradictory
statements.

This contradiction was derived by assuming that B 6= ∅. So B = ∅, and
this proves that every natural number n such that n ≥ 2 is a product of
primes, which is our desired conclusion. Q.E.D.

Remark 2. The fundamental theorem of arithmetic (FTA) says that
every natural number greater than 2 can be written as a product of primes in
a unique way. (That is, not only is the number equal to a product of primes,
but there is only one way to write it as a product of primes.) Theorem 11
is a part of the FTA, namely, the assertion that if n ∈ IN and n ≥ 2 then n
can be written as a product of primes.

What we have not proved is the uniqueness of the factorization. This is
much more delicate, and we will prove it later.

At this point, just notice that even
bfdefining what “uniqueness” of the factorization of a natural number n into
primes means is not a trivial question. For example, we can write the number
6 as a product of primes in this way:

6 = 2× 3 ,

but we can also write it as
6 = 3× 2 .

Are these two expressions different ways of factoring 6 as a product of primes,
or are they “the same”? Obviously, they must be “the same”. because if
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they were different then the factorization of 6 as a product of primes would
not be unique, and the FTA would not be true.

This means that we will have to be very precise, and define very carefully
what “writing a number as a product of primes in a unique way” means.
And this will be done later. �
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3 The main theorems of elementary integer

arithmetic I: the division theorem

We now study the phenomena that make the natural numbers and the in-
tegers different in crucial ways from the real numbers. The root of this
difference is that the division operation on IN and Z is very different from
division on IR.

3.1 What is the division theorem about?

The first important fact about the integers is the division theorem. It
deals with an issue that you know very well, namely, what happens if you
have an integer a and an integer b and you want to “divide” a by b:

1. First of all: dividing by zero is never a good idea, so we have to work
with integers a and b such that b 6= 0.

2. Dividing a by b should amount, roughly, to finding a number q, called
the “quotient of a by b”, such that

a = bq . (3.30)

3. If we were dealing with real numbers rather than integers, then it is
always possible12 to find q. The real number q that satisfies (3.30) is
denoted by the expression a

b
, that we read as “a over b”, or “a divided

by b”.

4. The situation is different when we are dealing with integers rather than
real numbers. In this case, it is not always possible to find an integer
q for which (3.30) is satisfied exactly. But we can come close: we can
find an integer q for which (3.30) is satisfied approximately.

5. Precisely, let us rewrite (3.30) as follows:

a = bq + r and r = 0 . (3.31)

Then what happens is this: we cannot satisfy (3.31), but we can satisfy

a = bq + r and r is small . (3.32)
12Assuming, of course, that b 6= 0.
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6. And the precise meaning of “small”, if b > 0, is “0 ≤ r < b”. So what
you will be satisfying (if b > 0) is

a = bq + r and 0 ≤ r < b . (3.33)

7. The number q is called the quotient of the division of a by b, and
the number r is called the remainder of the division of a by b.

8. The reason that r is called the “remainder” is very straightforward:
suppose you have, say, 27 dollar bills, and you want to divide them
equally among 5 people. Then the best you can do is give 5 dollars to
each of the five people, and when you do that 2 dollars will “remain”.

9. Notice that, if instead of 27 dollar bills you were dealing with, say, 27
gallons of water, then you would be able to divide the water equally, by
giving 5.4 gallons to each of the five people. But with dollar bills you
cannot do that. That’s because dollar bills are countable, whereas
water is uncountable. In other words,

• You can talk about the amount of water in a tank, and amounts
of water are measured in terms of real numbers.

• And you cannot talk about the number of water in a tank.

• You can talk about the number of dollar bills in your wallet, and
numbers of dollar bills are measured in terms of natural
numbers. (And if you want to consider negative amounts as well,
e.g. to talk about debts, you would use integers.)

• And you cannot 13 talk about the amount of dollar bills in your
wallet.

• If you have a units of a countable quantity such as dollar bills or
coins, and b persons among whom you want to divide your a units
equally, then the best you can do is give q units to each of the
b persons, where q is the quotient of the division of a by b, and

13I really mean “you shouldn’t, because it’s wrong”. Strictly speaking, you can say
anything you want, in this free counrty of ours. But there are rules of grammar, and
according to those rules it is wrong to say things like “a large amount of people were at
the rally”, or “she has a large amount of dollar bills”. But it’s O.K. to ta;lk about “a
large amount of money”. “People”, like “dollar bills”, or “coins”, is countable. “Water”,
like “money”, is uncountable.
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when you do that there will be a remainder of r undistributed
dollar bills, where r is the remainder of the division of a by b.

• What happens if b is negative? Well, in this case you certainly
cannot have 0 ≤ r < b, because if b < 0 this is impossible. But
you can ask for a remainder r such that 0 ≤ r < |b|, where |b| is
the absolute value of b, that is, the number defined by

|x| =

{

x if x ≥ 0
−x if x < 0

. (3.34)

• So the final condition is

a = bq + r and 0 ≤ r < |b| . (3.35)

The division theorem says precisely that given integers a, b, there exist in-
tegers q, r such that (3.35) holds, provided, of course, that b is not equal to
zero. And in addition it makes the very important and very useful assertion
that q and r are unique, that is, there is only one possible choice of q and r.

3.1.1 An example: even and odd integers

Example 4. Let us apply the division theorem to the case when b = 2.
Suppose a is an integer.

What does the division theorem tell us about a?
The theorem makes two assertions, namely,

1. that the quotient and remainder exist (that’s the existence part),

2. that the quotient and remainder are unique (that’s the uniqueness
part).

So let us look at each of these two parts, and see what it tells us about a.

The existence part of the theorem tells us that we can find integers q and
r such that

a = 2q + r and 0 ≤ r < 2 .

Since 0 ≤ r < 2 and r is an integer, it follows that r = 0 or r = 1.
If r = 0 then a = 2q, so a is divisible by 2, that is, a is even.
If r = 1 then a = 2q + 1, so a− 1 = 2q, and then a− 1 is divisible by 2,

that is, a− 1 is even, and, according to our definition of “odd”, this implies
that a is odd.
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So we have shown that: either r = 0, in which case a is even, or r = 1,
in which case a is odd. So the existence part of the division theorem
tells us that a must be even or odd.

The uniqueness part of the theorem tells us that we cannot find integers
q, r such that

a = 2q + r and 0 ≤ r < 2 ,

and also find different integers q′, r′ such that

a = 2q′ + r′ and 0 ≤ r′ < 2 .

In particular, it is not possible to find integers q, q′ such that

a = 2q and a = 2q′ + 1 (i.e., a = 1 = 2q′) .

In other words, a cannot be both even and odd. So the uniqueness part
of the division theorem tells us that a cannot be both even and
odd.

Summarizing: the division theorem, for b = 2, tells us that an
integer a has to be even or odd and cannot be both even and odd.
And this is exactly Theorem 26, that we had to work so hard to prove!

In other words: The division theorem (that is, Theorem 12
below) is a generalization of the theorem that says that
every integer is even or odd and not both. �

Now that we understand what the division theorem says for b = 2, let us
look at what it says for other values of b.

• Theorem 12 says that, when you try to divide an integer a by 2, then
one and only one of two things will happen:

1. you will be able to divide a by 2 exactly, with a remainder equal
to zero, and conclude that a is even,

2. you will not be able to divide a by 2 exactly, but you will be able
to do it with a remainder equal to 1, and conclude that a − 1 is
divisible by 2, so a is odd.

• The division theorem, applied with b = 2, says exactly that that evry
integers is even or odd and not both.
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• The division theorem, applied with b = 3, says that, when you try to
divide an integer a by 3, then one and only one of three things will
happen:

1. you will be able to divide a by 3 exactly, with a remainder equal
to zero, and conclude that a is divisible by 3,

2. you will not be able to divide a by 3 exactly, but you will be able
to do it with a remainder equal to 1, and conclude that a = 3q+1
for some integer q, so a− 1 is divisible by 3.

3. you will not be able to divide a by 3 exactly, but you will be able
to do it with a remainder equal to 2, and conclude that a = 3q+2
for some integer q, so a− 2 is divisible by 3.

• The division theorem, applied with b = 4, says that, when you try
to divide an integer a by 4, then one and only one of four things will
happen: 4|a, 4|a− 1, 4|a− 2, 4|a− 3.

• The division theorem, applied with b = 5, says that, when you try
to divide an integer a by 5, then one and only one of five things will
happen: 5|a, 5|a− 1, 5|a− 2, 5|a− 3, 5|a− 4.

• · · ·

• The division theorem, applied with b = 29, says that, when you try
to divide an integer a by 29, then one and only one of 29 things will
happen: 29|a− j for j ∈ Z, 0 ≤ j < 29.

• · · ·

• The division theorem, applied with b = 372, 508, says that, when you
try to divide an integer a by 372, 508, then one and only one of 372, 508
things will happen: 372, 508|a− j for j ∈ Z, 0 ≤ j < 372, 508.

3.2 Precise statement of the division theorem

And here is, finally, the division theorem:
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The division theorem for integers

Theorem 12. If a, b are integers, and b 6= 0, then there
exist unique integers q, r such that

a = bq + r and 0 ≤ r < |b| .

3.3 Proof of the division theorem

3.3.1 The existence proof

Let a, b be arbitrary integers such that b 6= 0.
We want to prove

(E) There exist integers q, r such that

a = bq + r and 0 ≤ r < |b| . (3.36)

Let S be the set of all integers r such that r ≥ 0 and s = a − bq for some
integer q. In other words,

S = {s ∈ Z : (∃q ∈ Z)s = a− bq{ . (3.37)

We prove that

(I) S has a smallest member,

(II) if r is the smallest member of S, then 0 ≤ r < |b| and r = a − bq for
some q ∈ Z.

Proof of (I). The well ordering principle tells us that S has a smallest member,
provided we prove that

1. S is a set of integers,

2. S is bounded below,

3. S is nonempty.
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The fact that S is a set of integers is obvious from the definition of S, i.e.,
formula (3.37).

It also follows from formula (3.37) that S is bounded below, since every
member of S is ≥ 0.

Finally, S is nonempty for the following reason: take q = −b|a|, and let
s = a− bq, then

s = a− bq = a− b(−b|a|) = a+ b2|a| ≥ a+ |a| ≥ 0 ;

then s ∈ S (because s ∈ Z, s ≥ 0, s = a− bq, and q ∈ Z).
Since we have proved that the three conditions needed to be able to apply

the WOP hold, we can apply the WOP and conclude that S has a smallest
member.

Proof of (II). Let r be the smallest member of S. Then r is nonnegative,
because all the members of S are nonnegative. And, since r ∈ S, we may
pick q ∈ Z such that r = a− bq. Then a = bq + r and r ≥ 0.

Only one thing is missing, namely, proving that r < |b|. We prove this by
contradiction.

Assume that r ≥ |b|.

Let

m =

{

1 if b > 0
−1 if b < 0

.

Then m ∈ Z and mb = |b|.

Let q′ = q +m, and let r′ = r − |b|. Then r′ ∈ Z, and the assumption that
r ≥ |b| implies that r′ ≥ 0.

Furthermore, if we let q′ = q +m, then q′ ∈ Z, and

r′ = r − |b| = r −mb = a− bq −mb = a− b(q +m) = a− bq′ .

Since r′ ≥ 0, r′ = a− bq′, and q′ ∈ Z, it follows that r′ ∈ S.

But r′ = r− |b|, and b 6= 0, so r′ < r. Hence r is not the smallest member of
S, because r′ ∈ S and r′ < r.

So the assumption that r ≥ |b has led us to a contradction. Hence r < |b|.

So we have proved that S has a smallest member r, that 0 ≤ r < |b|, and
that a = bq+ r for some integer q. This completes the proof of the existence
of q and r.
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3.3.2 The uniqueness proof

To prove thet the pair (q, r) is unique, we have to prove

(U) If q1, q2, r1, r2 are integers such that

a = bq1 + r1 , (3.38)

0 ≤ r1 < b , (3.39)

a = bq2 + r2 , (3.40)

0 ≤ r2 < b , , (3.41)

then q1 = q2 and r1 = r2.

Proof of (U).

Let q1, q2, r1, r2 be integers such that (3.38), (3.39), (3.40), and (3.41)
hold.

We will prove that q1 = q2 and r1 = r2.

Since a = bq1 + r1 and a = bq2 + r2, we have

bq1 + r1 = bq2 + r2 ,

so
b(q2 − q1) = r1 − r2 , (3.42)

and then
|b| · |q2 − q1| = |r1 − r2| , (3.43)

because |xy| = |x| · |y| for arbitrary real numbers x, y.

Since q1 and q2 are integers, the number |q1 − q2| is a nonnegative
integer.

We now prove14 that q1 = q2.

Assume that q1 6= q2.

Then the nonnegative integer |q1−q2| is not zero, so it is a natural
number.

14by contradiction , naturally.
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And then |q1 − q2| ≥ 1, because of Theorem 6.

COMMENT: This is the only step in the proof where we use the
fact the we are working with the integers. All the other would be
equally valid if we were working in IR rather than Z.

Therefore (3.43) implies that |r1 − r2| ≥ |b| .

So it’s not true that |r1 − r2| < |b| .

On the other hand, |r1 − r2| < |b| . (Reason: Since r1 < |b| and

0 ≤ r2, we have −r2 ≤ 0, so r1 − r2 < |b|. Similarly, r2 − r1 < |b|.
Since one of the two numbers is r1 − r2, it follows that |r1 − r2| <
|b|.)

So wee have arrived at a contradiction.

This proves that q1 = q2 .

And then (3.43) implies that r1 = r2 .

So we have proved (U), for arbitrary integers a, b such that b 6= 0.
This completes the proof of the uniqueness part of the division theorem.

So our proof is complete. Q.E.D.
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4 The main theorems of elementary integer

arithmetic II: the greatest common divisor

and Bézout’s lemma

Elementary integer arithmetic

Integer arithmetic is the study of the integers.
Elementary integer arithmetic is the study of the most
basic facts about the integers. It is a body of theory that

• involves a number of important concepts, such as

(**) divisibility,

(**) prime numbers,

(! !) greatest common divisor,

• contains interesting and sometimes surprising results,
such as

(* !) the fundamental theorem of arithmetic,

(! !) Bézout’s lemma,

(! !) Euclid’s lemma,

(! !) Euclid’s theorem on the existence of infinitely
many prime numbers,

and uses several powerful tools, such as

(**) the principle of mathematical induction (PMI),

(**) the well-ordering principle (WOP),

(**) the division theorem.

(The items marked “(**)” have already been discussed in these
notes. The items marked “(! !)” will be discussed in this sec-
tion. One item is marked “(* !)”, because we have already
proved one half of it, whereas the other half has not yet been
proved, but will be proved in this section.
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We now explain the concepts and results from the above list that have
not been discussed yet, and prove the theorems.

4.1 The greatest common divisor of two integers

The first item in the list that is new to us is the concept of “greatest common
divisor”, so we begin by explainimg what this means.

Remark 3. We are about to define “greatest common divisor”. If in an
exam you are asked to define “greatest common divisor”, then the first two
questions that you have to ask yourself are is “greatest common divisor”
a term or a predicate?, and what are the arguments?. There are two
equally correct possible answers15:

FIRST ANSWER:

1. “the greatest common divisor of” is a term: we talk about “the great-
est common divisor of two integers a, b”, which is an integer; so “the
greatest common divisor of a and b” is a term, because it is the name
of a thing (specifically, an integer),

2. “the greatest common divisor of” has two arguments: we talk about
the greatest common divisor of two integers a and b.

SECOND ANSWER:

1. “is the greatest common divisor of ” is a predicate: we say things such
as “g is the greatest common divisor of the integers a, b”, and this is a
statement that can be true or false, depending on who a, b, and g are;
so “is the greatest common divisor of” is a predicate, because it has a
true-false truth value,

2. “is the greatest common divisor of” has three arguments: we write
sentences such as g is the greatest common divisor of a and b.

So, even before you specify exactly what “greatest common divisor” means,
you already know how the definition should start:

15There is not contradiction between those two answers. The words “greatest common
divisor” are part of both the two-argument term “the greatest common divisor of a and
b”, and the three-argument predicate “g is the greatest common divisor of a and b”.
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1. If you choose Answer No. 1, then your definition should start with the
words

Let a, b be integers. The greatest common divisor of a
and b is . . . .

2. If you choose Answer No. 2, your definition should start with the words

Let a, b, g be integers. We say that g is a
greatest common divisor of a and b if . . . . �

We are going to choose Answer No. 2. That is, we are going to define the
three-argument predicate “g is a greatest common divisor of a and b”. And
then we will prove that if a greatest common divisor of a and b exists, then it
is unique. And this will allow us to talk about the greatest common divisor
of a and b.

In order to define “geatest common divisor”,

1. We will first define “common divisor”. This is going to be a three-
argument predicate (because “c is a common divisor of a and b” is a
statement about a, b and c that can be true or false depending on who
a, b, c are).

2. Having defined “common divisor”, the definition of “greatest common
divisor” will just say the most obvious thing: a greatest common divisor
of a and b is a common divisor that is the largest of all commmon
divisors.

And here, finally, are the definitions:

Definition 8. Let a, b, g be integers. We say that c is a common divisor
(or common factor) of a and b if c divides a and c divides b. �

In other words,

c is a common divisor of a and b ⇐⇒ (c|a ∧ c|b) . (4.44)

Definition 9. Let a, b, g be integers. We say that g is a greatest common
divisor of a and b if

1. g is a common divisor of a and b.
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2. If c is any common divisor of a and b, then c ≤ g. �

In other words: a greatest common divisor of the integers a, b, is
a common divisor that is greater that or equal to every common
divisor of a and b.

We are going to use “GCD” as an abbreviation for “greatest common
divisor. Then

g is a GCD of a and b ⇐⇒
(

g|a ∧ g|b ∧ (∀c ∈ Z)
(

(c|a ∧ c|b) =⇒ c ≤ g
)

)

. (4.45)

4.1.1 When do we use “a” and when do we use “the”?

Can we talk about “the” greatest common divisor of a and b? The answer
would be

• “no”, if there is more than one gcd. For example:

– We do not say “Piscataway is the town in New Jersey”, because
there are lots of towns in New Jersey; we say “Piscataway is a
town in New Jersey”,

– We do not say “B is the subset of A”, because a set typically has
lots of subsets; we say “B is a subset of A”,

– We do not say “John McCain is the U.S. Senator”, because there
are many U.S. Senators; we say “John McCain is a U.S. Senator”.

– We do not say “2 is the factor of 6”, because 6 has several factors
(eight of them, to be precise: 1, −1, 2, −2, 3, −3, 6, and −6). We
say “2 is a factor of 6”, .

– We do not say “c is the common divisor of a and b”, because two
integers typically have lots of common divisors16; we say “c is a
common divisor of a and b”.

• “the”, if there is only one gcd. For example:

16They always have at least two comoon divisors, namely, 1 and −1. And in most cases
they have many more: for example, 12 and 18 have eight common divisors: 1, −1, 2, −2,
3, −3, 6, and −6.
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– We do not say “Paris is a capital of France”, because France has
only one capital; we say “Paris is the capital of France”.

– We do not say “P(A) is a power set of A”, because a set only has
one power set; we say “P(A) is the power set of A”.

– We do not say “p is a product of a and b”, because two integers
have only one product; we say “p is the product of a and b”.

– We do not say “A×B is a Cartesian product of A and B”, because
two sets have only one Cartesian product; we say “A × B is the
Cartesian product of A and B”.

In general: whatever a “shmoo” might be, we talk about “the shmoo” if
there is only one shmoo, and we talk about “a shmoo” if there is more that
one shmoo.

4.1.2 Uniqueness of the greatest common divisor

So which one is it? Shall we talk about “the” greatest common divisor of
two integers, or about “a” greatest common divisor?

So far, in Definition 9, I talked about a greatest common divisor, because
we didn’t know yet if there is only one or more than one greatest common
divisor of two given integers.

But now we are going to prove that the greatest common divisor, if it
exists, is unique. And once we know that, we will be able to talk about the
greatest common divisor of two integers.

Proposition 1. Let a, b be integers. Then, if a greatest common divisor of
a and b exists, it follows that a and b have only one greatest common divisor.

Proof. To prove that there is only one GCD of a and b, we assume that g1
and g2 are GCDs of a and b, and prove that g1 = g2.

Since g1 is a GCD of a and b, the definition of “GCD” tells us that g1|a
and g1|b.

Since g2 is a GCD of a and b, the definition of “GCD” tells us that if c is
any integer such that c|a and c|b, then c ≤ g2. And we can apply this with
g1 in the role of c. Since g1|a and g1|b, it follows that g1 ≤ g2.

Exactly the same argument works to prove that g2 ≤ g1.
Since g1 ≤ g2 and g2 ≤ g1, it follows that g1 = g2. Q.E.D.
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So from now on we can talk about “the GDC of a and b”. And we can give
it a name. So we shall call it “GCD(a, b)”.

If a, b are integers, and the greatest common
divisor of a and b exists, then “GDC(a, b)” is
the name of the GCD of a and b.

Example 5.

1. GCD(5, 7) = 1. Reason: The only common divisors of 5 and 7 are 1
and −1. And 1 is the largest of the two, so 1 = GCD(5, 7).

2. GCD(5, 15) = 5. Reason: The common divisors of 5 and 15 are 1, −1, 5
and −5. And 5 is the largest of these four integers, so 5 = GCD(5, 15).

3. GCD(18, 30) = 6. Reason: The common divisors of 18 and 30 are 1,
−1, 2, −2, 3, −3, 6, and −6. And 6 is the largest of these integers, so
6 = GCD(18, 30).

4. GCD(28, 73) = 1. Reason: 73 is prime. So the only factors of 73 are
1, −1, 73 and −73. But 73 and −73 are not factors of 28. So the only
common divisors of 28 and 73 are 1 and −1. And 1 is the largest one.
So 1 = GCD(28, 73).

5. GCD(28, 0) = 28. Reason: Every integer k is a factor of 0, because
0 = 0 × k, so (∃u ∈ Z)0 = uk, so k|0. So the common factors of 28
and 0 are the factors of 28. And the largest of those factors is 28. So
28 = GCD(28, 0).

6. GCD(−28, 0) = 28. Reason: Every integer k is a factor of 0, as ex-
plained before. So the common factors of −28 and 0 are the factors of
−28. And the largest of those factors is 28. So 28 = GCD(−28, 0).

In all the examples in the previous list, the GDC turned out to be positive.
We can prove easily that this is a general fact:

Proposition 2. Let a, b be integers such that the greatest common divisor
GCD(a, b) exists. Then

GCD(a, b) ≥ 1 .

Proof. GCD(a, b) is greater than or equal to every common factor of a and
b. And 1 is a common factor of a and b. So GCD(a, b) ≥ 1. Q.E.D.
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4.1.3 Bézout’s lemma: an example

Problem 4. Suppose you have two bottles. One of the bottles has a volume
of exactly 500 milliliter and the other one has a volume of 700 milliliter. In
addition, you have a large container and you can pour water from the bottles
to the container or from the container to the bottles.

Show how, using these two bottles, you can end up with exactly 100
milliliter of water in the container.

Solution. The greatest common divisor of 500 and 700 is 100. By Bézout’s
Lemma, there exist integers u, v such that

100 = 500u+ 700v . (4.46)

Integers u, v for which (4.46) holds can be oomputed, for example, using the
Euclidean algorithm. We find that u = 3, v = −2 are possible values17 of u
and v. So

100 = (−2)× 700 + 3× 500 .

So we can measure exactly 100 milliliters if water as follows:

• Fill the bottle whose volume is 500 milliliters with water, and then
empty the bottle by pouring its contents into the large container. Do
this three times.

• You will end up with 1500 milliliters in the container.

• Now pour water from the container into the bottle whose volume is 700
milliliters, until you fill it, and then empty the bottle. Do this twice.
This will remove 1400 milliliters from the large container.

• So you will end up with 100 milliliters in the container, as desired

4.1.4 Bézout’s lemma: the statement

An extremely important, and rather surprining, fact about geratest common
divisors is Bézout’s lemma:

17But they are not the only possible values. Other values are, for example, u = −4,
v = 3.
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Bézout’s lemma

If a and b are two integers that are not both equal to
zero, then GCD(a, b) is equal to the sum of a multiple
of a and a multiple of b. That is, there exist integers
u, v such that

GCD(a, b) = ua+ vb . (4.47)

4.1.5 Bézout’s lemma: the proof

In order to prove Bézout’s lemma we will have to work all the time with
numbers that are sums ua + vb of a multiple of a and a multiple of b. So it
will be convenient to give those numbers a name.

Definition 10. Assume that a, b, and c are integers. Then we say that c
is an integer linear combination of a and b if c is the sum of a multiple of a
and a multiple of b.

In other words: c is an integer linear combination of a and b if

(∃u ∈ Z)(∃v ∈ Z) c = ua+ vb .

In order to avoid having to write the words “c is an integer linear combination
of a and b” all the time, we give a name to the set of all numbers c such that
c is an integer linear combination of a and b. We call this set “ILC(a, b)”.

So the set ILC(a, b) is defined as follows:

ILC(a, b) = { c ∈ Z : (∃u ∈ Z)(∃v ∈ Z)c = ua+ bv } . (4.48)

And now that we have defined the set ILC(a, b), we can say “c ∈ ILC(a, b)”
instead of “c is an integer linear combination of a and b”.

And now we are ready to state the main theorem of this section, which
is a result that contains Bézout’s lemma as a special case.

Theorem 13. Let a, b be integers. Then:
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1. If a = 0 and b = 0, then a greatest common divisor in the sense of
Definition 9 does not exist.

2. If a 6= 0 or b 6= 0, then

(a) The greatest common divisor GCD(a, b) of a and b exists,

(b) GCD(a, b) is the smallest of all positive integers that are integer
linear combinations of a and b. (In other words, GCD(a, b) is the
smallest member of the set ILC(a, b) ∩ IN.)

Proof. First let us look at the case when a = 0 and b = 0. In this case,
every integer is a common factor of a and b, because every integer divides 0.
So there is no largest integer that is a common factor of a and b. That is,
the GDC of a and b does not exist.

Now let us look at the case when a 6= 0 or b 6= 0. In this case, one of the
four numbers a,−a, b,−b must be positive. (If a 6= 0 then either a > 0 or
−a > 0. If b 6= 0 then either b > 0 or −b > 0.) And all four numbers belong
to ILC(a, b). So one of the four numbers belongs to ILC(a, b) ∩ IN. Hence

ILC(a, b) ∩ IN 6= ∅ .

So ILC(a, b)∩ IN is a nonempty set of natural numbers. By the well-ordering
principle, ILC(a, b) ∩ IN has a smallest member. And, in addition, we know
that the smallest member of a subset of IR, if it exists, is unique. So we can
talk about the smallest member of ILC(a, b) ∩ IN.

Let us give a name to this smallest member; let us call it g. So

g ∈ ILC(a, b) ∩ IN

and (∀n ∈ Z)(n ∈ ILC(a, b) ∩ IN =⇒ g ≤ n) .

We want to prove that

(*) g is the greatest common divisor of a and b.

In order to prove (*), the definition of “greatest common divisor” tells us
that we have to prove the following two things:

(*1) g is a common divisor of a and b; that is,

g|a ∧ g|b . (4.49)
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(*2) g is the largest of all common divisors of a and b; that is,

(∀c ∈ Z)
(

(c|a ∧ c|b) =⇒ c ≤ g
)

. (4.50)

Since g ∈ ILC(a, b), we can pick integers u, v such that

g = ua+ vb . (4.51)

Proof of (*1). Using the division theorem, we can divide a by g with a
remainder r. That is, we can pick integers q, r such that

a = gq + r and 0 ≤ r < g . (4.52)

(The division theorem says “0 ≤ r < |g|”. But in our case we know that
g ∈ IN, so |g| = g.)

Then

r = a− gq

= a− (ua+ vb)q

= a− uqa− vqb

= (1− uq)a+ (−vq)b .

So
r ∈ ILC(a, b) . (4.53)

We know that r ≥ 0. Let us prove that r = 0, by contradition.

Assume that r 6= 0.

Since r ≥ 0, it follows that r > 0.

So r is an integer and r > 0.

Hence r ∈ IN.

Since r ∈ ILC(a, b), it follows that r ∈ ILC(a, b) ∩ IN.

In addition, (4.52) tells us that r < g.

So g is not the smallest member of ILC(a, b)∩IN, because r is a member
of ILC(a, b) ∩ IN and r < g.
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But g is the smallest member of ILC(a, b) ∩ IN.

Hence

g is the smallest member of ILC(a, b) ∩ IN and g is not the
smallest member of ILC(a, b) ∩ IN,

which is a contradiction.

So we have derived a contradiction from the assumption that r 6= 0.

Hence r = 0.

Since r = 0 and a = gq + r, we can conclude that a = gq.

Therefore g|a.

The proof that g|b is identical, and we omit it.

So g|a ∧ g|b , and this completes the proof of (*1).

Proof of (*2). We want to prove the universal sentence (4.50).

Let c ∈ Z be arbitrary.

Assume that c|a ∧ c|b.

Then we can pick integers j, k such that

a = cj and b = ck .

Since g = ua+ vb, we get

g = ua+ vb

= ucj + vck

= c(uj + vk) .

Furthermore, uj + vk is an integer, because u, v, j and k are inte-
gers.

Hence c divides g.

Our goal is to prove that c ≤ g. And for that purpose we distin-
guish two cases: either c ≤ 0 or c > 0.
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Case 1: c ≤ 0. In this case, the conclusion that c ≤ g is obvious,
because c ≤ 0 and g > 0, since g ∈ IN.

Case 2: c > 0. In this case, we have

g = ℓc ,

where ℓ = uj + vk. Then ℓ is an integer.

Then ℓ must be > 0. (Reason: if ℓ was ≤ 0 then ℓc would be ≤ 0,
since c > 0. But ℓc = g, and g > 0. So ℓ cannot be ≤ 0. So
ℓ > 0.)

Since ℓ is an integer, and ℓ > 0, it follows that ℓ is a natural
number. Hence ℓ ≥ 1.

Since ℓ ≥ 1 and ℓc = g, it must be the case that c ≤ g . (Reason:
if c > g, then it would follow that ℓc > g, because ℓc ≥ c—since
ℓ ≥ 1—and c > g. But ℓc = g.)

So we have shown that c ≤ g. And this completes our proof.
Q.E.D.

4.2 The Euclidean Algorithm

Bézout’s Lemma says that, if a, b are integers and are not both sero, then

(a) the gratest common divisor g of a and b can be written as an integer
linear combination

g = ua+ vb (4.54)

of a and b,

(b) g is actually the smallest positive integer linear combination of a and
b.

The Euclidean algorithm is a method for computing g and finding the
coefficients u, v of the expression (4.54) of g as an integer linear combination
of a and b.
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4.2.1 Description of the algorithm for the computation of the
greatest common divisor

We are given two integers a, b, and we want to find their greatest common
divisor g. And, in addition, we may also want to find an expression of g as
an integer linear combination of a and b.

We first observe that the greatest common divisor of a and b is the same
as the greatest common divisor of |a| and |b|. So we might as well asume
that a and b aare nonnegative.

Second, if a = b =, the greatest common divisor does not exist. Sp we
will assume that 6= 0 or b 6= 0.

Third, if a > 0 and b = 0, then g = a, and an expression of g as an integer
linear combination of a and b is

g = a× 1 + b× 0 .

So we have the results we want and there is no need to do any computations.
Similarly, if a = 0 and b > 0, then g = b, and an expression of g as an

integer linear combination of a and b is

g = a× 0 + b× 1 ,

so again there is no need to do any computations.
Finally, if a and b are equal, then g = a (or g = b), and an expression of

g as an integer linear combination of a and b is

g = a× 1 + b× 0 ,

so again there is no need to do any computations.
So we are going to assume from now on that the integers a, b are positive

and not equal. After relabeling them, if necessary, we assume that a > b > 0.
Here is how the alogorithm proceeds to find the greatest common divisor

of a and b:

• We compute a sequence r0, r1, r2, . . ., rk of positive integers as follows:

– r0 = a, r1 = b, and then

– if r1 6= 0, then we write18

r0 = r1q2 + r2 , where q2 ∈ Z , r2 ∈ Z , 0 ≤ r2 < r1
18Naturally, this is possible because of the division theorem, which not only tells us that

q2 and r2 exist, but also guarantess that they are unique.
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(that is, we divide r0 by r1, and let q2 be the quotient and r2 be
the remainde of the division);

– if r2 6= 0, then we write

r1 = r2q3 + r3 , where q3 ∈ Z , r3 ∈ Z , 0 ≤ r3 < r2

(that is, we divide r1 by r2, and let q3 be the quotient and r3 be
the remainder of the division);

– if r3 6= 0, then we write

r2 = r3q4 + r4 , where q4 ∈ Z , r4 ∈ Z , 0 ≤ r4 < r3

(that is, we divide r2 by r3, and let q4 be the quotient and r4 be
the remained of the division);

– as so on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

– once we have computed r0, r1, . . . , rk and q2, . . . , qk, if rk 6= 0, then
we write

rk−1 = rkqk+1 + rk+1 , where qk+1 ∈ Z , rk+1 ∈ Z , 0 ≤ rk+1 < r3

(that is, we divide rk−1 by rk, and let qk+1 be the quotient and
rk+1 be the remainder of the division);

– as so on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• the first time we get to rk+1 = 0, the process stops.

• The reason that we necessarily have to get to rk+1 = 0 at some point is
this: if the process went on for ever, we would be generating numbers
r0, r1, r2, r3 that are always positive and in addition are decreasing (that
is, r0 > r1 > r2 > r3 > · · · , and rj > 0 for every j). But this is not
possible because of the well-ordering principle: let S be the set whose
members are all the rj that are > 0. Then S is a nonempty set of
natural numbers. By the WOP, S has a smallest member s. But then
s = rk for some k. And then rk+1 must be zero, because if rk+1 was
6= 0 then it would be > 0, so it would be a member of S smaller than
rk, contradicting the fact that rk is the smallest member of S.

• Then rk is the greatest common divisor of a and b.
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4.2.2 Proof that the algorithm works to compute the greatest
common divisor of a and b

Since rk−1 = rkqk+1 + rk+1, and rk+1 = 0, we have

rk−1 = rkqk+1 ,

so rk divides rk−1.
Since rk−2 = rk−1qk + rk, and rk divides rk−1, it follows that rk divides

rk−2 as well.
Since rk−3 = rk−2qk−1+rk−1, and rk divides rk−1, and rk−2, it follows that

rk divides rk−3 as well.
Continuing in this way, we show that rk divides rk−1, rk−2, . . ., until

eventually we find that rk divides r0 and r1, that is, rk divides a and b.
So rk is a common divisor of a and b.
Now we need to prove that rk is the greatest common divisor of a and b.

For this purpose, we have to prove that if c is any common divisor of a and
b then c ≤ rk.

So let c ∈ Z be a common divisor of a and b. Then c divides r0 and c
divides r1.

Since r0 = r1q2 + r2, we have r2 = r0 − r1q1 and, since c divides r0 and
r1, it follows that c divides r2.

Since r1 = r2q3 + r3, we have r3 = r1 − r2q3 and, since c divides r1 and
r2, it follows that c divides r3.

Continuing in this way, we prove that c divides r0, r1, r2, r3, r4, and so on,
until we end up proving that c divides rk.

Since c divides rk, it follows that c ≤ rk. (Proof: if c ≤ 0 then c ≤ rk,
because rk > 0. If c > 0, then c and rk are both positive integers. Since c|rk,
we may write rk = cm, m ∈ Z. But then m > 0, so m ∈ IN, and then m ≥ 1.
It follows that rk = mc ≥ c. So c ≤ rk.)

So we have proved that rk satisfies the two conditions in the definition of
“greatest common divisor of a and b”: it divides both a and b, and it is ≥ c
for every common divisor c of a and b.

Therefore rk is the greatest common divisor of a and b. Q.E.D.

4.2.3 How the algorithm can be used to express the greatest com-
mon divisor as an integer linear combination of a and b

Having computed the greatest common divisor rk of a and b, it turns out
that, if we are interested, we can also use our computation to express rk as
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an integer linear combination of a and b.
The key point is this: whenever two integers u, v are integer linear com-

binations of a and b, it follows that every integer w which is an integer linear
combination of u and v can be expressed as an integer linear combination of
a and b.

(This how this can be done: write

u = ma+ nb , v = pa+ qb , w = ru+ sv , m, n, p, q, r, s ∈ Z .

Then

w = ru+ sv

= r(ma+ nb) + s(pa+ qb)

= rma+ rnb+ spa+ sqb

= (rm+ sp)a+ (rn+ sq)b ,

so w = (rm + sp)a + (rn + sq)b is the desired expression of w as an integer
linear combination of a and b.)

Using this, we can successively express r0, r1, r2, r3, . . ., as integer linear
combinations of a and b as follows:

• r0 and r1 are integer linear combinations of a and b, because r0 = a
and r1 = b;

• r2 is an integer linear combination of r0 and r1, because r2 = r0 − r1q1,
so r2 is an integer linear combination of a and b,

• r3 is an integer linear combination of r1 and r2, because r3 = r1 − r2q2;
since r1 and r2 are integer linear combinations of a and b, it follows
that r3 is an integer linear combination of a and b,

• r4 is an integer linear combination of r2 and r3, because r4 = r2 − r3q4;
since r2 and r3 are integer linear combinations of a and b, it follows
that r4 is an integer linear combination of a and b,

• continuing in this way, we end up finding an expression for rk as an
integer linear combination of a and b.

Example 6. Let us find the greatest common divisor of a and b, if a = 700,
b = 500, using the Euclidean algorithm.
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We let r0 = 700, r1 = 500. We then divide r0 by r1, and find q2, r2 such
that r0 = r1q2 + r2. We get

700 = 500× 1 + 200 ,

so q2 = 1, r2 = 200.
We then divide r1 by r2, and find q3, r3 such that r1 = r2q3 + r3. We get

500 = 200× 2 + 100 ,

so q3 = 2, r3 = 100.
Next, we r2 by r3, and find q4, r4 such that r2 = r3q4 + r4. We get

200 = 100× 2 + 0 ,

so q4 = 2, r4 = −0.
Since r4 = 0, the process stops here, and the greatest common divisor is

r3, that is, 100.
To express the greatest common divisor as an integer linear combination

of 700 and 500, we successively express r0, r1, r2, r3 as integer linear combi-
nations of 700 and 500:

r0 = 700 ,

r1 = 500 ,

r2 = r0 − r1q2

= 700− 500 ,

r3 = r1 − r2q3

= 500− (700− 500)× 2

= 3× 500 + (−2)× 700 ,

so we end up with 100 = 3× 500 + (−2)× 700 , which is the expression of

the greatest common divisor 100 as an integer lienar combination of 500 and
700 that we used in our solution of problem 4. �

Problem 5. Prove that if a, b are nonzero integers, g is the greatest com-
mon divisor of a and b, and |a| + |b| > 2, then g can be expressed as an
integer linear combination

g = ua+ vb , u ∈ Z , v ∈ Z ,

in such a way that |u| < |b| and |v| < |a|.
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NOTE: The reason for the asumption that |a|+ |b| > 2 is as follows. First of
all, we are assuming that a and b are nonzero, and this means that |a| ≥ 1
and |b| ≥ 1, so |a| + |b| ≥ 2. So all our hypothesis that |a| + |b| > 2 does in
exclude the possibility that |a| + |b| = 2. If |a| + |b| = 2, then |a| = 1 and
|b| = 1. Now, when |a| = 1 and |b| = 1, then g = 1, and no matter how
we exprsss g as a linear combination ua+ vb is with integer coefficients u, v,
either u or v will have to be nonzero. If u 6= 0, then |u| ≥ 1, because u is
an integer, so the condition “|u| < |b| and |v| < |a|” is not satisfied, because
|b| = 1 and |u| ≥ 1. If v 6= 0, then |v| ≥ 1, because v is an integer, so the
condition “|u| < |b| and |v| < |a|” is not satisfied in this case either, because
|a| = 1 and |v| ≥ 1. So in the exceptional case the conclusion that we can
take u, v such that |u| < |b| and |v| < |a| is not true. Therefore, if we want
this concusion to be true, we have to exclude the special case. �
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5 The main theorems of elementary integer

arithmetic III: Prime numbers and Euclid’s

lemma

5.1 The definition of “prime number”

Definition 11. A prime number is a natural number p such that

I. p > 1,

II. p does not have any natural number factors other than 1 and p. �

And here is another way of saying the same thing, in case you do not want
to talk about “factors”.

Definition 12. A prime number is a natural number p such that

I. p > 1,

II. There do not exist natural numbers j, k such that j > 1, k > 1, and
p = jk. �

5.1.1 Why isn’t 1 prime?

If you look at the definition of “prime number”, you will notice that, for a
number p to qualify as a prime number, it has to satisfy p > 1. In
other words, the number 1 is not prime. Isn’t that weird? After all, the
only natural number factor of 1 is 1, so the only factors of 1 are 1 and itself,
and this seems to suggest that 1 is prime.

Well, if we had defined a number p to be prime if p has no natural number
factors other than 1 and itself, then 1 would be prime. But we were very
careful not to do that. Why?

The reason is, simply, that there is a very nice theorem called the “unique
factorization theorem”, that says that every natural number greater than 1
either is prime or can be written as a product of primes in a unique way.
(For example: 6 = 3 · 2, 84 = 7 · 3 · 2 · 2, etc.)

If 1 was a prime, then the result would not be true as stated. (For
example, here are two different ways to write 6 as a product of primes:
6 = 3 · 2 and 6 = 3 · 2 · 1.) And mathematicians like the theorem to be true
as stated, so we have decided not to call 1 a prime.
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If you do not like this, just keep in mind that we can use words any way
we like, as long as we all agree on what they are going to mean. If we decide
that 1 is not prime, then 1 is not prime, and that’s it. If you think that for
you 1 is really prime, just ask yourself why and you will see that you do not
have a proof that 1 is prime.

5.2 Euclid’s lemma: an important application of Bézout’s
lemma

Euclid’s lemma is one of the most important technical results in elemen-
tary integer arithmetic. For example, Euclid’s lemma is the key fact
needed to prove the missing half of the Fundamental Theorem of
Arithmetic (FTA), that is, the uniqueness of the prime factor-
ization.

And, as you will see, the key fact that makes the proof of Euclid’s lemma
work is Bézout’s lemma.

Euclid’s lemma is about the following question:

Question 2. Suppose an integer p divides the product ab of two integers a,
b. Does it follow that p must divide a or p must divide b? �

The answer is “no” if a, b and p are arbitrary integers.

Example 7. 6 divides 2× 3 (because 6 = 2× 3) but 6 doesn’t divide 2 and
6 does not divide 3. �

But it turns out that the answer s “yes” if p is prime, and this is what Euclid’s
lemma says:

Theorem 14. (Euclid’s lemma) If a, b, p are integers, such that p is
prime and p divides the product ab, then p divides a or p divides b.

Proof. To prove that p|a ∨ p|b, we prove19 that (∼ p|a) =⇒ p|b. i.e., that if
p does not divide a then p divides b.

19Why do we do that? This is so because of Rule ∨prove, the rule for proving “∨”
sentences: if, assuming ∼ A, you prove B, then you can go to A ∨B. And the reason for
Rule ∨prove is this: suppose we want to prove A∨B. There are two possibilities: either A
is true or A is not true. If A is true then A∨B is true, and we are done. If A is false then,
since we know how to prove B assuming ∼ A, B follows, so “A ∨ B” is true in this case
as well. Here is another way to see this: “A ∨B” is false if and only if both A and B are
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Assume that p does not divide a. Since p is prime, the only natural
numbers that are factors of p are 1 and p. And p is not a factor of a, because
we are assuming that p does not divide a.

Therefore the greatest common divisor of p and a is equal to 1.
It then follows from Bézout’s lemma that 1 is equal to the sum of a

multiple of p and a multiple of a. That is, we can pick integers u, v such that

1 = up+ va .

On the other hand, since p divides ab, we may pick an integer k such that

ab = pk .

Then

b = b× 1

= b× (up+ va)

= ubp+ vab

= ubp+ vpk

= (ub+ vk)p ,

so p divides b. Q.E.D.

5.2.1 An important notational convention: the sets INk

In what follows we will be making lots of statements about “the natural
numbers 1, 2, . . . , k”, that is “all the natural numbers j such that j ≤ k”. So
it will be convenient to give a name to the set of all such js.

false. And the implication “(∼ A) =⇒ B” is false only if and only if the premise is true
and the conclusion is false, that is, if and only if A is false and B is false. So “A ∨ B” is
false if and only if “(∼ A) =⇒ B” is false. So “A∨B” is true if and only if “(∼ A) =⇒ B”
is true. So proving “A ∨ B” amounts to the same thing as proving “(∼ A) =⇒ B”. And
to prove “(∼ A) =⇒ B” we assume ∼ A and prove B.
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THE SETS INk (A.K.A. {1, 2, . . . , k})

The expression “INk” stands for the set of all natural

numbers that are less than or equal to k. That is,

INk = {n ∈ IN : n ≤ k} . (5.55)

Another notation often used for this set is

“{1, . . . , k}”, or “{1, 2, . . . , k}”.
We will use “INk” when k is a natural number, and also

when k = 0. (So INk makes sense when k ∈ IN∪{0}.)
Naturally, for n = 0 the set defined by (5.55) has no

members, because there are no natural numbers k such

that k ≤ 0. So

IN0 = ∅ . (5.56)

For example:

IN0 = ∅ , IN1 = {1} , IN2 = {1, 2} ,
IN3 = {1, 2, 3} , IN4 = {1, 2, 3, 4} , IN5 = {1, 2, 3, 4, 5} .

Then

j ∈ INk

is just another way of saying “j ∈ IN and j ≤ k”.
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5.2.2 The generalized Euclid lemma

Theorem 14 (that is, Euclid’s lemma) tells us that If p is a prime and a, b,
are integers such that p is prime and p divides the product ab, then p divides
a or p divides b.

The generalized Euclid lemma answers the following more general
question:

Question 3. What happens if instead of two integers a, b we have three in-
tegers a, b, c? Is it still true that if p|abc then p|a or p|b or p|c?

What if we have four integers a, b, c, d. Is it still true that if p|abcd then
p|a or p|b or p|c or p|d? �

The answer is “yes”, for three, four, or any number of integers, as we now
prove.

Theorem 15. Let k be a natural number, and let p, a1, a2, . . . , ak be integers
such that

1. p is a prime number,

2. p divides the product
∏k

j=1 aj.

Then p divides one of the factors. That is, (∃j ∈ INk)p|aj,

Proof. We will prove this by induction.
We want to prove

(∀k ∈ IN)(∀p, a1, a2, . . . , ak ∈ Z)
(

(

p is a prime number ∧ p
∣

∣

∣

k
∏

j=1

aj

)

=⇒ (∃j ∈ INk)p|aj

)

. (5.57)

Sentence (5.57) is a closed sentence. i.e., a sentence with no open variables,
because the sentence contains the variables k, p, a1, a2, . . . , ak and j, but they
are all quantified, so no variables are open.

We can express sentence (5.57) as “(∀k ∈ IN)P (k)”, where P (k) be the
sentence

(∀p, a1, a2, . . . , ak ∈ Z)
(

(

p is a prime number ∧ p
∣

∣

∣

k
∏

j=1

aj

)

=⇒ (∃j ∈ INk)p|aj

)

. (5.58)
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Then P (k) is a sentence with one open variable, and the open variable is k.
So P (k) is exactly the kind of sentence for which we can expect to be able
to prove “(∀k ∈ IN)P (k)” by induction.

Now let us prove “(∀k ∈ IN)P (k)” by induction.

Base step. We have to prove P (1). But P (1) says

(∀p, a1∈Z)

(

(

p is a prime number ∧ p
∣

∣

∣

1
∏

j=1

aj

)

=⇒(∃j∈ IN1)p|aj

)

. (5.59)

But IN1 is just the set {1}, so “(∃j ∈ IN1)p|aj” just amounts to saying “p|a1”.
Furthermore.

∏1
j=1 aj = a1. So P (1) actually says

(∀p, a1 ∈ Z)

(

(

p is a prime number ∧ p|a1
)

=⇒ p|a1

)

. (5.60)

And this is clearly true. So (5.60) is true.
Hence P (1) is true.

Inductive step. We want to prove that

(∀k ∈ IN)(P (k) =⇒ P (k + 1)) . (5.61)

Let k ∈ IN be arbitrary.

Assume that P (k) is true.

Then

(∀p, a1, a2, . . . , ak ∈ Z)
(

(

p is a prime number ∧ p
∣

∣

∣

k
∏

j=1

aj

)

=⇒ (∃j ∈ INk)p|aj

)

. (5.62)

We want to prove P (k + 1), that is,

(∀p, a1, a2, . . . , ak, ak+1 ∈ Z)
(

(

p is a prime number ∧ p
∣

∣

∣

k+1
∏

j=1

aj

)

=⇒ (∃j ∈ INk+1)p|aj

)

. (5.63)

So let p, a1, a2, . . . , ak, ak+1 be arbitrary integers such that
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1. p is a prime number.

2. p divides
∏k+1

j=1 aj.

We want to prove that (∃j ∈ INk+1)p|aj. i.e., that p|aj for some
j ∈ INk+1.

The inductive definition of “
∏

” tells us that

k+1
∏

j=1

aj =
(

k
∏

j=1

aj

)

ak+1 .

So

p
∣

∣

∣

(

k
∏

j=1

aj

)

ak+1 .

Euclid’s lemma tells us, since p is prime, that if p divides a product
uv of two integers then p|u or p|v. In our case, if we take
u =

∏k

j=1 aj and v = ak+1, the lemma tells us that either

(i) p divides
∏k

j=1 aj

or

(ii) p divides ak+1..

We now see what happens in each of these two cases.

Case (i): Assume that p divides
∏k

j=1 aj. Then we can use P (k)
and conclude that p divides one of the factors, that is, we can
conlude that (∃j ∈ INk)p|aj. So we may pick j in INk such that

p|aj. Then obviously j ∈ INk+1, so (∃j ∈ INk+1)p|aj .

Case (ii): Assume that p divides ak+1. Then it is is also true that

(∃j ∈ INk+1)p|aj .

So in both cases (∃j ∈ INk+1)p|aj, so we have established the

conclusion that (∃j ∈ INk+1)p|aj .

We have proved this for arbitrary integers p, a1, a2, . . . , ak, ak+1 such
that p is a prime number and p divides

∏k+1
j=1 aj.

Hence we have proved P (k + 1).

Since we have proved P (k+1) assuming P (k), we have proved the implication
P (k) =⇒ P (k + 1).
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Since we have proved P (k) =⇒ P (k+1) for arbitray k ∈ IN, we have proved
(∀k ∈ IN)(P (k) =⇒ P (k + 1)).

This completes the inductiove step.

So we have proved (∀k ∈ IN)P (k). Q.E.D.

5.2.3 Coprime integers

Definition 13. If a, b are integers, we say that a and b are coprime (or that
“a is coprime with b”, or that “b is coprime with a”) if a and b have no
nontrivial common factors (that is, if the only integers f such that f |a and
f |b are 1 and −1). �

If a and b are coprime, then they cannot both be zero, because if a = 0
and b = 0 then every integer is a common factor of a and b (because every
integer n is a factor of 0, since 0 = 0× n), so a and b have lots of nontrivial
common factors.

And if a and b are not both 0, then the greatest common divisorGCD(a, b)
exists. If a and b are coprime, then GCD(a, b) must be equal to 1, because
GCD(a, b) is a common factor of a and b.

On the other hand, if GCD(a, b) = 1 then a and b must be coprime.
(Reason: if a and b were not coprime, then they would have a common
factor f such that f > 1, and since f ≤ GCD(a, b), we would conclude that
GCD(a, b) > 1.)

So we have proved:

Proposition 3. Let a and b are integers, then a and b are coprime if and
only if they are not both equal to zero and GCD(a, b) = 1. �

We now introduce a symbol for coprimeness:
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If a and b are integers, we write

a ⊥ b

for “a and b are coprime”.

For example:

3 ⊥ 7 −12 ⊥ 55 1 ⊥ 0

∼ 22 ⊥ 14 ∼ 78 ⊥ −15 ∼ 49 ⊥ 77
.

5.2.4 Divisibility of an integer by the product of two integers

In this section we look at the following question:

Question 4. If an integer n is divisible by two integers a, b, when can we
conclude that n is divisible by the product ab? �

It is clear that the answer is “not always”.

Example 8. If a = 6 and b = 4, then it is not true that every integer that
is divisible by a and by b is divisible by ab. For example, 12 is divisible by a
and by b, but it is clearly not divisible by ab, since ab = 24. �

The answer to Question 4 is: if a|n and b|n, then we can conclude that
n is divisible by the product ab if a and b are coprime.

Indeed, we can prove:

Theorem 16. If

1. a, b, n are integers,

2. a divides n,

3. b divides n,

4. a and b are coprime,
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then ab divides n.

Proof. Since a and b are coprime, we may pick integers u, v such that

1 = ua+ vb .

Since n is divisible by a and by b, we can pick integers j, k such that

n = aj and n = bk .

Then

n = n× 1

= n× (ua+ vb)

= nua+ nvb

= (bk)ua+ (aj)vb

= ab(ku+ jv) .

So ab divides n. Q.E.D.

5.2.5 Coprime integers and divisibility: an extension of Euclid’s
lemma

In this section we look at the following question:

Question 5. If

1. p, a, b are integers,

2. p divides ab,

3. p does not divide a,

can we conclude that p must divide b?

Euclid’s lemma tells us that the answer is “yes” if p is prime.
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But if p is not prime the answer could be “no”, as we showed in Example 7.
It turns out that, using exactly the same strategy—nased on Bézout’s

lemma—that we used to prove Euclid’s lemma, we can extend Euclid’s lemma
by proving that the answer is “yes” not only when p is prime but also in some
cases when p is not prime.

What is needed is that p and a should be coprime. This will always
be the case when p is prime, because when p is prime and p does not divide
a it follows that p and a are coprime.

Theorem 17. If

• a, b, p, are integers,

• p is coprime with a,

• p divides the product ab,

then p divides b.

Proof. Since p ⊥ a, the greatest common divisor GCD(p, a) is equal to 1.
Using Bézout’s lemma, we can pick integers u, v such that

ua+ vp = 1 . (5.64)

Then, if we multiply both sides of (5.64) by b, we get

uab+ vpb = b .

Since p divides ab, we can pick an integer k such that

ab = kp .

Then

b = uab+ vpb

= ukp+ vpb

= (uk + vb)p ,

so p divides b. Q.E.D.
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We said before that Theorem 17 is an extension of Euclid’s lemma. To
see this, let me show how, once you have Theorem 17, Euclid’s lemma follows
easily:

An easy derivation of Euclid’s lemma from Theorem 17: Suppose p
is prime and p divides the product ab of two integers a, b. We want to prove
that p|a or p|b. For this purpose, we assume that p does not divide a and
prove that p divides b.

Since p is prime and p does not divide a, p is coprime with a. Then
Theorem 17 tells us that p divides b, which is exactly what we want to prove
in order to prove Euclid’s Lemma. Q.E.D.

5.2.6 Another extension of Euclid’s lemma

In addition to providing an easy way to prove Euclid’s lemma, Theorem 17
has another important consequence:

Theorem 18. If a, b, p, are integers, and p is coprime with a and with b,
then p is coprime with the product ab.

Theorem 17 is easy to remember: it says that

If p ⊥ a and p ⊥ b then p ⊥ ab .

Proof of Theorem 18.

Assume that p is not coprime with ab. Then p and ab have a common factor
m such that m > 1.

Since m|p, and p ⊥ a, m must be coprime with a as well. (Reason: any
common factor of m and a would be a common factor of p and a, since m|p.
Since p and a do not have nontrivial common factors, m and a cannot have
nontrivial common factors either.)

On the other hand, m divides ab, because m|p and p|ab.
So m divides ab and m is coprime with a. By Theorem 17, m divides b.
Hence m|b, m|p, and m > 1. Therefore p and b have a nontrivial common

factor.
It follows that p and b are not coprime .
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But p and b are coprime .
So we have reached a contradiction, and this was the result of assuming

that p is not coprime with ab.
Hence p is coprime with ab. Q.E.D.

Why is Theorem 18 “an extension of Euclid’s lemma”? The reason is, once
again, that from Theorem 18 one can easily derive Euclid’s lemma.

An easy derivation of Euclid’s lemma from Theorem 18: Suppose p
is prime and p divides the product ab of two integers a, b. We want to prove
that p|a or p|b. For this purpose, we assume that it is not true that p|a∨ p|b.
Then p does not divide a and p does not divide b. Since p is prime and p
does not divide a, p is coprime with a. Since p is prime and p does not divide
b, p is coprime with b. Then Theorem 18 tells us that p is coprime with ab .

On the other hand, we are assuming that p|ab, so p and ab have a non-

trivial common factor, namely, p. So p is not coprime with ab .
So we have reached a contradiction, and this happened because we as-

sumed that it is not true that p|a ∨ p|b. Hence p|a ∨ p|b . Q.E.D.

5.2.7 Another extension of Euclid’s lemma

Theorem 18 tells us that if an integer p is coprime with two integers a, b,
then it is coprime with the product ab.

We now consider the following question:

Question 6. What happens if instead of two integers a, b we have three in-
tegers a, b, c? Is it still true that if p ⊥ a, p ⊥ b, and p ⊥ c, then p ⊥ abc?

What if we have four integers a, b, c, d. Is it still true that if p ⊥ a, p ⊥ b,
p ⊥ c, and p ⊥ d, then p ⊥ abcd? �

The answer is “yes”, for three, four, or any number of integers, as we now
prove.

Theorem 19. Let k be a natural number, and let p, a1, a2, . . . , ak be integers
such that p is coprime with aj for every j ∈ INk. Then p is coprime with the

product
∏k

j=1 aj.

Proof. We will do a proof by induction.
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Let P (k) be the sentence

(%) If p, a1, a2, . . . , ak are integers such that p ⊥ aj for every j ∈ INk, then

p ⊥
∏k

j=1 aj.

In formal language, P (k) is the sentence

(∀p, a1, a2, . . . , ak ∈ Z)
(

(∀j ∈ INk)p ⊥ aj =⇒ p ⊥
k
∏

j=1

aj

)

. (5.65)

Remark 4. Formula (5.65) contains the variables p, j, k, a1, a2, . . . , ak. But
all these variables, except k, are quantified. So k is the only open variable.
Hence (5.65) is a one-variable predicate, and the open variable is k. That’s
why we can call the predicate (5.65) P (k), and try to prove by induction on
k that (∀k ∈ IN)P (k). �

We will prove (∀k ∈ IN)P (k), by induction.

Base step. We have to prove that P (1) is true. But P (1) says

(∀p ∈ Z)(∀a1 ∈ Z)
(

p ⊥ a1 =⇒ p ⊥
1
∏

j=1

aj

)

, (5.66)

and the inductive definition of “
∏

” says that

1
∏

j=1

aj = a1 .

Therefore P (1) says

(∀p ∈ Z)(∀a1 ∈ Z)
(

p ⊥ a1 =⇒ p ⊥ a1

)

. (5.67)

Since “p ⊥ a1 =⇒ p ⊥ a1” is clearly true for every p and every a1, P (1) is
true.

Inductive step. We have to prove (∀k ∈ IN)(P (k) =⇒ P (k + 1)).

Let k ∈ IN be arbitrary.

We want to prove that P (k) =⇒ P (k + 1).
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Assume that P (k) holds.

We want to prove P (k + 1). That is, we want to prove

(*) if p, a1, a2, . . . , ak+1 are integers such that p ⊥ aj for every

j ∈ INk+1, then p ⊥
∏k+1

j=1 aj.

Let p, a1, a2, . . . , ak+1 be arbitrary integers.

Assume

(♦) p ⊥ aj for every j ∈ INk+1 .

Then

(&) a1, a2, . . . , ak are integers such that p ⊥ aj for every j ∈ INk.

Since we are assuming that P (k) is true, we can conclude that
p ⊥

∏k

j=1 aj.

Let b =
∏k

j=1 aj.

It then follows that
k+1
∏

j=1

aj = bak+1 ,

p ⊥ b ,

and (since we are assuming (♦) ),

p ⊥ ak+1 .

So Theorem 18 implies that p ⊥ bak+1, i.e., that

p ⊥
k+1
∏

j=1

aj . (5.68)

We have proved (5.68) assuming (♦).

Hence (♦) implies (5.68).

And this has been proved for arbitrary integers p, a1, a2, . . . , ak+1.

So (*) holds. That is, P (k + 1) is true.

We have proved P (k + 1) assuming P (k), so we have proved the implication
P (k) =⇒ P (k + 1).
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And “P (k) =⇒ P (k + 1)” has been proved for arbitrary k ∈ IN.

So we have proved (∀k ∈ IN)(P (k) =⇒ P (k + 1)). This completes the
inductive step.

It then follows from the PMI that P (k) is true for all k ∈ IN, which is what
we wanted to prove. Q.E.D.

5.2.8 Another proof of the generalized Euclid lemma

Theorem 14 (that is, Euclid’s lemma) tells us that If p is a prime and a, b,
are integers such that p is prime and p divides the product ab, then p divides
a or p divides b.

The generalized Euclid lemma answers the more general question
“what happens if instead of two integers a, b we have three integers a, b, c?
Or four integers a, b, c, d” Or, more generally, any number n of integers.

We answered this question by proving the generalized Euclid lemma (The-
orem 15). Here I am giving you another proof of Theorem 15, based on
Theorem 15).
Proof of Theorem 15 using Theorem 15.

Let p, a1, a2, . . . , ak be integers such that p is prime and p divides
∏k

j=1 aj.
We want to prove that p divides one of the aj.

Assume that p does not divide any of the aj .

Then, for each j, p is coprime with aj. (Reason: since p is prime the only
natural numbers that divide p are 1 and p. Since p does not divide aj, the
only natural number that divides both p and aj is 1. So the greatest common
divisor of p and aj is 1. Then p is coprime with aj.)

According to Theorem 19, it follows that p is coprime with the product
∏k

j=1 aj.

But then p does not divide the product
∏k

j=1 aj .

But p divides the product
∏k

j=1 aj .

So we have reached a contradiction. And this happened because we as-
sumed that p does not divide any of the aj.

So p must divide one of the aj. Q.E.D.
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5.2.9 Divisibility of an integer by the product of several integers

Supose an integer n is divisible by three integers a, b, c. Can we conclude
that n is divisible by the product abc?

What if n is divisible by four integers a, b, c, d? Can we conclude that n
is divisible by the product abcd?

In general, let us look at the following question:

Question 7. Suppose that

1. n is an integer,

2. k is a natural number,

3. a1, a2, . . . , ak are integers,

4. n is divisible by all the aj; that is,

aj|n for each j ∈ INk ,

or, in more formal language,

(∀j ∈ INk)aj|n .

Can we conclude that the product
∏k

j=1 divides n? �

For the case of two integers a1, a2, we know that the answer is “yes” if a1
and a2 are coprime. The answer for several integers a1, a2, . . . , ak is similar:
we have to require that a1, a2, . . . , ak be pairwise coprime. This means
that a1 ⊥ a2, a1 ⊥ a3, a2 ⊥ a3, a1 ⊥ a4, a2 ⊥ a4, and so on. Every pair ai, aj
has to be coprime (except of course when i = j; we do not want to demand,
for example, that a1 be coprime with a1, because that would amount to
requiring that a1 be equal to 1). .

Definition 14. Let k ∈ IN, and let a1, a2, . . . , ak be integers. We say that
a1, a2, . . . , ak are pairwise coprime if for every i ∈ INk and every j ∈ INk, if
i 6= j then ai and aj are coprime. �

Theorem 20. Assume that n, a1, a2, . . . , ak are integers, k is a natural num-
ber, and
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1. n is divisible by all the aj; that is,

aj|n for each j ∈ INk ,

or, in more formal language,

(∀j ∈ INk)aj|n .

2. a1, a2, . . . , ak are pairwise coprime, that is,

ai ⊥ aj whenever i, j ∈ INk , i 6= j ,

or, in more formal language,

(∀i, j ∈ INk)(i 6= j =⇒ ai ⊥ aj) .

Then the product
∏k

j=1 aj divides n.

Proof. We prove this by induction on k. Let P (k) be the statement

(♦) If n, a1, a2, . . . , ak are integers such that each aj divides n, and the aj
are pairwise coprime, then the product

∏k

j=1 aj divides n,

or, in formal language

(∀n, a1, a2, . . . , ak ∈ Z)
(

(

(∀j ∈ INk)aj|n ∧ (∀i, j ∈ INk)(i 6= j =⇒ ai ⊥ aj)
)

=⇒
k
∏

j=1

aj|n

)

. (5.69)

Remark 5. Formula (5.69) contains the variables n, i, j, k, a1, a2, . . . , ak. But
all these variables, except k, are quantified. So k is the only open variable.
Hence (5.69) is a one-variable predicate, and the open variable is k. That’s
why we can call the predicate (5.69) P (k), and try to prove by induction on
k that (∀k ∈ IN)P (k). �

We will prove (∀k ∈ IN)P (k), by induction.
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Base step. We have to prove that P (1) is true. But P (1) says

(∀n, a1 ∈ Z)
(

a1|n =⇒
1
∏

j=1

aj|n
)

, (5.70)

and the inductive definition of “
∏

” tells us that

1
∏

j=1

aj = a1 ,

so P (1) says

(∀n, a1 ∈ Z)
(

a1|n =⇒ a1|n
)

. (5.71)

Since “a1|n =⇒ a1|n” is clearly true for all n and all a1, P (1) us true.

Inductive step. We have to prove that (∀k ∈ IN)(P (k) =⇒ P (k + 1)).

Let k ∈ IN be arbitrary.

We want to prove that P (k) =⇒ P (k + 1).

Assume P (k). That is, assume that

(*) if a1, a2, . . . , ak are integers that are pairwise coprime, n is an
integer, and every aj, for j ∈ INk, divides n, then

∏k

j=1 aj
divides n.

We want to prove

(**) if a1, a2, . . . , ak+1 are integers that are pairwise coprime, and
every aj, for j ∈ INk+1, divides an integer n, then

∏k+1
j=1 aj

divides n.

In order to prove (**), let n, a1, a2, . . . , ak+1 be integers such that
a1, a2, . . . , ak+1 are pairwise coprime, and aj|n for every j ∈ INk+1.

It then follows that

(&) a1, a2, . . . , ak are integers that are pairwise coprime, and every
aj, for j ∈ INk, divides n.

Since we are assuming that P (k) is true, i.e., that (*) holds, we
can conclude that the product b =

∏k

j=1 aj divides n.
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Then
k+1
∏

j=1

aj = bak+1 .

We are assuming that the aj, for j ∈ INk+1, are pairwise coprime.

Hence ak+1 ⊥ aj for every i ∈ INk.

And this implies, thanks to Theorem (19), that ak+1 is coprime
with b.

So now we know that ak+1 ⊥ b, b|n, and ak+1|n.

Then Theorem 16 tells us that bak+1 divides n, that is, that

k+1
∏

j=1

aj

∣

∣

∣
n .

So we have proved (**), that is, P (k + 1), assuming P (k),

Hence ∀k ∈ IN)(P (k) =⇒ P (k + 1)). And this completes the inductive step.
Q.E.D.
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6 The main theorems of elementary integer

arithmetic IV: The fundamental theorem

of arithmetic

6.1 Introduction to the fundamental theorem of arith-
metic

The fundamental theorem of arithmetic (FTA) says, roughly, that

(I) Every natural number n such that n ≥ 2 is a product of prime numbers.

(II) The expression of n as a product of prime numbers is unique.

Statement (I) is an existence result: it says that

(E) For every n ∈ IN such that n ≥ 2 there exists a list

L = (p1, p2, . . . , pk)

such that p1, p2, . . . , pk are prime numbers, and

n =
k
∏

j=

pj . (6.72)

And we have already proved this, in Theorem 59.

The second half of the FTA is Statement (II), the uniqueness assertion: the
list L such that (6.72) holds is unique.

We now have to prove (II). But before we do that, we have to make it
precise. One possible meaning of (II) would be this:

(II1) If n ∈ IN and n ≥ 2, then, if

L = (p1, p2, . . . , pk)

and
M = (q1, q2, . . . , qm)

are two lists of prime numbers such that

n =
k
∏

j=1

pj and n =
m
∏

i=1

qi , (6.73)



Math 300, Fall 2018 79

then L = M . (That means “m = k, and qj = pj for every j ∈ INk” ,
that is, q1 = p1, q2 = p2, . . ., qk = pk.)

But it is easy to see that statement (II1) cannot be true.

Example 9. Let n = 6, p1 = 2, p2 = 3, q1 = 3, q2 = 2. Then

6 = 2× 3 and 6 = 3× 2 ,

so that
6 = p1p2 and 6 = q1q2 ,

but it is not true that p1 = q1 and p2 = q2. �

In this example, it is clear what is really going on: it is not necessarily
true that p1 = q1 and p2 = q2. It could be the case that p1 = q2 and
p2 = q1. In other words, “the pjs have to be the same as the qjs, but not
necessarily in the same order”.

How can we say this precisely? Let us try a second option:

(II2) If n ∈ IN and n ≥ 2, then, if

L = (p1, p2, . . . , pk)

and
M = (q1, q2, . . . , qm)

are two lists of prime numbers such that

n =
k
∏

j=1

pj and n =
m
∏

j=1

qj , (6.74)

then m = k and the set P whose members are the pj; that is, the set

P = {p ∈ IN : (∃j ∈ INk)p = pj} , (6.75)

is the same as the set Q whose members are the qj, that is, the set

Q = {q ∈ IN : (∃j ∈ INm)q = qj} . (6.76)

But it is easy to see that this cannot be the right formulation either.



Math 300, Fall 2018 80

Example 10. Let

n = 72 , that is n = 2× 2× 2× 3× 3 . (6.77)

Then Formula (6.77) gives us a factorization of n as product of primes,
namely,

n = p1p2p3p4p5 , where p1 = 2 , p2 = 2 , p3 = 2 , p4 = 3 , p5 = 3 .

We would like to say that, if we have any other factorization

n = q1q2 · · · qm ,

then the qjs must be “the same” as the pjs, meaning first of all, that m = 5,
and second, that three of the qjs must be equal to 2, and two of the qjs must
be equal to 3.

And just saying that the set of the pj is the same as the set of the qj is
not enough. The set P defined by Equation (6.75) is just the set {2, 3}, i.e.,
the set whose members are 2 and 3. (Remember that, for a set P , an object
p is a member of P or is not a member of P ; there is no such thing as “being
a member of P twice”, or “being a member of P three times”.)

We want the qjs to be “the same” as the pjs not just in the set sense (that
is, the set Q is also the set {2, 3}), but in the much stronger sense that “there
are five qjs; three of them are 2s and two of them are 3s”. And Formulation
(II2) does not capture that. �

So, how shall we say what we want to say? Let us go back to our examples.

Example 11. For the factorization

6 = p1p2 where p1 = 2 and p2 = 3 ,

we want to say that if q1, q2, · · · , qm are primes and 6 = q1q2 · · · qm, then

• m must be 2, so the equation “6 = q1q2 · · · qm”becomes “6 = q1q2”.

• q1 must be 2 and q2 must be 3.

We can achieve this if we limit ourselves to ordered factorizations of 6,
i.e., factorizations of 6 in which 6 is expressed as a product q1q2 · · · qm of
primes, but the qj are required to be in increasing order, that is, to be
such that q1 ≤ q2 ≤ q3 ≤ · · · ≤ qm. This excludes the factorization 6 = 3×2,
and leaves 6 = 2× 3 as the only possible prime factorization of 6. �
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Example 12. For the factorization

72 = p1p2p3p4p5 where p1 = 2 , p2 = 2 , p3 = 2 , p4 = 3 , p5 = 3 ,

we want to say that if q1, q2, · · · , qm are primes and 72 = q1q2 · · · qm, then m
must be 5, three of the qj must be 2, and two of the qj must be 3. Again,
we can achieve that if we limit ourselves to ordered factorizations of 72,
i.e., factorizations of 72 in which 72 is expressed as a product q1q2 · · · qm of
primes, but the qj are required to be in increasing order, that is, to be such
that q1 ≤ q2 ≤ q3 ≤ · · · ≤ qm. This excludes other factorizations such as
72 = 3×3×2×2×2, or 72 = 3×2×2×3×2, and leaves 72 = 2×2×2×3×3
as the only possible prime factorization of 72. �

Examples 11 and 12 show us the path: we have to define ”ordered factor-
ization” precisely, and then the statement of the FTA will be: every natural
number n such that n ≥ 2 has a unique ordered factorization as a product of
prime numbers.

6.1.1 Precise statetement of the fundamental theorem of arith-
metic

6.1.2 Is a prime factorization a set of primes?

If we are going to say that “every natural number n such that n ≥ 2 has
a unique prime factorization”, then, to begin with, we have to answer the
following question:

Question 8. What do we mean, exactly, by a prime factorization of an
integer n? �

A prime factorization is, of course, something like “several primes that mul-
tiplied together result in n”.

But such vague language will not do. We have to give a precise definition.

1. First of all, “prime factorization” is not an entity20, like water, or pol-
itics. We can say things like

Water is a transparent and nearly colorless chemical substance

20According to the Merriam-Webster dictionary, an entity is “something that has sepa-
rate and distinct existence and objective or conceptual reality”.
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or

Politics is the process of achieving and exercising posi-
tions of governance or organized control over a human
community, particularly a state.

But we cannot say “prime factorization is . . .”.

2. “Prime factorization” is like “subset”, or “factor”, or “divisible”, or
“absolute value”: it is a relational concept, it has arguments:

(a) You cannot say “factor is . . .”, because “factor”, by itself, is not
something that can be or not be anything.

(b) But you can say things like “a is a factor of b”.

(c) You cannot say “divisible is . . .” (or, even worse, “divisible is when
. . .”), because “divisible”, by itself, is not something that can be
or not be anything.

(d) But you can say things like “a is divisible by b”.

(e) You cannot say “absolute value is . . .”, because “absolute value”,
by itself, is not something that can be or not be anything.

(f) But you can talk about “the absolute value of x”.

3. More precisely, “prime factorization” is a two-argument predicate:
we say things like “P is a prime factorization of n”. The arguments
are n and P. And, clearly, n must be a number.

4. And we haven’t yet answered the question what kind of a thing
shall P be?

5. A prime factorization P should be a single object, not “several things”.

6. And we have seen that it is not a good idea to think of a prime factor-
ization as a set of primes, because, for example, the factorization of 72
given by 72 = 2× 2× 2× 3× 3 contains more information than the set
{2, 3}. It contains the fact that 2 “occurs three times”, and 3 “occurs
twice”.

The conclusion of all this is that a “prime factorization” should not be a set:
it should be a finite list.

And, to make this precise, we need to say a few words about finite lists.
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6.2 Finite lists

In this section we will use the sets INk. The meaning of “INk” is
explained in section 5.2.1, on page 60.

Definition 15. Let n be a natural number.

1. A finite list of length n consists of the specification, for each natural
number j in the set INn, of an object aj.

2. The aj are called the entries of the list:

(a) a1 is the first entry,

(b) a2 is the second entry,

(c) a3 is the third entry,

and so on, so that, for example, a283 is the 283rd entry.

3. The entries aj of a finite list a could be numbers of any kind (integers,
real numbers, complex numbers, integers modulo 37), or matrices, or
aets, orpoints, or lines, or planes, or functions, or lists, or planets, or
animals, or people, or books, or viruses, or mice, or atoms, or ghosts,
or unicorns, or angels, objects of any kind whatsoever, concrete or
abstract, real or imaginary.

4. Actually, the entries of a list do not all have to be objects of the same
kind (whatever “pf the same kind” means). So for or example, you can
perfectly well have a finite list a = (a1, a2, a3, a4, a5) in which a1 is the
number 5, a2 is Mickey Mouse, a3 is Abraham Lincoln, a4 is the word
“cow”, and a5 is the Pacific Ocean.

Remark 6. There are finite lists and infinite lists. In this section,
we will only be talking about finite lists. But infinite lists are very
important, and we will come back to them later. �

6.2.1 How to introduce, specify, and name lists

• In principle, any symbol or string of symbols can be used as the name
of a list, so we could name a list “a”, or “q”, or “Alice”, or “list-of-
primes”.
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• But in these notes we will use boldface lower-case letters for lists.

• And often, when we use a boldface letter such as a or b or p or x for a
list, we will use the same letter in italic, with a subscript, as the name
of an entry of a list.

• So, for example, if p is a list, then we may write “p1” for the first entry
of p, “p2” for the second entry, and, in general, “pj” for the j-th entry.

• So, if p is a list of length n, then pj will make sense for every j ∈ INn.

• We will write
a = (aj)

n
j=1 or a = (aj)k∈INn

(6.78)

to indicate that a is a finite list or length n and, for each
j ∈ INn, the j-th entry of a is called aj.

• For short lists weill write (a1), or (a1, a2), or (a1, a2, a3), or (a1, a2, a3, a4),
rather than (aj)

1
j=1, or (aj)

2
j=1, or (aj)

3
j=1, or (aj)

4
j=1.

And here are some examples of list specification:

Example 13. Suppose, for example, that we want to create a list of length
3, whose entries are the first three prime numbers, and we want to call it a.
We could write any of the following things to specify such a list:

Let a = (2, 3, 5) , (6.79)

Let a = (a1, a2, a3) , where a1 = 2, a2 = 3, a3 = 5 , (6.80)

Let a = (aj)
3
j=1 , where a1 = 2, a2 = 3, a3 = 5 , (6.81)

Let a = (aj)
3
j=1 , where aj is the j−th prime for j = 1, 2, 3 ,(6.82)

Let a = (aj)
3
j=1 , where aj is the j−th prime for j ∈ IN3 , (6.83)

Let a = (aj)
3
j=1 , where (∀j ∈ IN3)aj is the j−th prime . (6.84)

Example 14. Suppose we want to introduce the list of the first 500 prime
numbers and give it a name. In this case, if we try to write something like
(6.79) or (6.80) or (6.81) or (6.82) the formulas would get too long. But we
can write

Let a = (aj)
500
j=1 , where aj is the j−th prime for j ∈ IN500 ,(6.85)

Let a = (aj)
500
j=1 , where (∀j ∈ IN500)aj is the j−th prime . (6.86)
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Example 15. Suppose we want to introduce the list of the first 500 squares
of natural numbers and give it a name. In this case we can write one of the
following:

Let a = (aj)
500
j=1 , where aj is the j−th square for j ∈ IN500 ,(6.87)

Let a = (aj)
500
j=1 , where (∀j ∈ IN500)aj is the j−th square , (6.88)

but, since we have the formula aj = j2 for aj, we have the additional options
of writing one of the following:

Let a = (aj)
500
j=1 , where aj = j2 for j ∈ IN500 , (6.89)

Let a = (j2)500j=1 . (6.90)

Example 16. Suppose we want to introduce the list of all the U.S. presidents
from George Washington to Donald Trump, in chronological order, that is,
starting with George Washington and ending with Donald J. Trump.

We could do this by writing

Let a = (a46−j)
45
j=1 , where, for j ∈ IN45 , aj is the j−th president . �

Now suppose we don’t know how many presidents there have been from
Washington to Trump, and we don’t know that Trump is the 45-th president.
We could write:

Let a = (aj)
N
j=1 , where :

(a) N is the number of U.S. presidents from G.Washington to D.Trump

and

(b) for j ∈ INN , aj is the j−th U.S. president .

Example 17. Suppose we want to introduce the list of all the U.S. presidents
from George Washington to Donald Trump, in reverse chronological order,
that is, starting with George Washington and ending with Donald J. Trump.

We could do this by writing

Let a = (aj)
45
j=1 , where, for j ∈ IN45 , aj is the N+1−j−th U.S. president .

Remark 7. Often, one writes

a = (a1, . . . , an) ,
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or
a = (a1, a2, . . . , an) ,

instead of a = (aj)
n
j=1. I strongly prefer the (aj)

n
j=1 notation, but I will accept

the other one. �

Remark 8. Pay attention to the following:

SETS VS. LISTS

1. Sets have members, not entries.

2. Finite lists have entries, not members.

3. In the set notation, we use braces, as in “the
set {x ∈ IR : x > 0}”, or “the set {1, 2, 3, 4}′′.

4. In the finite list notation, we use parentheses,
as in “the list (pj)

n
j=1”, or “the list (2, 3, 5)”.

5. In a set S, an object a either is a member or
is not a member. There is no such thing as
“being a member of the set S twice”.

6. In a finite list a = (aj)
n
j=1 it is possible for

an object a to be the first entry of a (that is
a = a1) and also the second entry (that is,
a = a2) and the 25th entry (that is, a = a25).

7. So a finite list can have repeated entries,
but a set cannot have repeated members.
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and to the following:

8. If a is a finite list, then we can associate to a
a set Set(a), called the set of entries of the
list a

9. The set of entries of the list a = (aj)
n
j=1 is the

set Set(a given by

Set(a) = {x : (∃j ∈ INn)x = aj} .

This set is a totally different object

from the list a.

Remark 9. Not all books and journals use the same notation. So if you
are reading a mathematics book or article you have to make sure to check
which notations are being used. For example, some books use braces for
lists, so they would write “the list {pj}

n
j=1”. I strongly prefer the parenthesis

notation, and in this course this is the official notation, so we write “the list
(2, 2, 3, 4)”, or “the list p = (pj)

n
j=1”, which are very different from “the set

{2, 2, 3, 4}”, or “the set {p : (∃j ∈ INn)p = pj}”. (For example: the list
(2, 2, 3, 4) has four entries, but the set {2, 2, 3, 4} has three members.) �

6.2.2 Equality of lists

We know that two sets A, B are equal if they have the same members. That
is

A = B ⇐⇒ (∀x)(x ∈ A ⇐⇒ x ∈ B) .

When are two finite lists equal?
Here is the asnwer:



Math 300, Fall 2018 88

Two lists

p = (pj)
n
j=1 , q = (qj)

m
j=1 ,

are equal if

1. n = m,

and

2. pj = qj for every j ∈ INn. (That is,
(∀j ∈ INn)pj = qj.)

Example 18. The lists p = (2, 2, 3) and q = (3, 2, 2) are not equal because,
for example, the first entry of the first list is not equal to the first entry of
the second list.

But, of course, the sets {2, 2, 3} and {3, 2, 2} are equal, because they are
both equal to the set {2, 3}. �

Example 19. Let P = (pj)
45
j=1 be the list of all U.S. presidents from George

Washington to Donald Trump. Then, for each j ∈ IN45, pj stands for “the
j-th president of the United States”.

Then P has 45 entries. Let S be the associated set Set(P). Then S is the
set of all U.S. presidents from George Washington to Donald Trump. That
is,

S = {x : (∃j ∈ IN45)x = pj} .

How many members does S have?
If you guessed “45”, you are wrong!
The correct answer is 44.
The reason for this is that Grover Cleveland was U.S. president from 1885

to 1889, and then again from 1893 to 1897. During his first presidency, he was
the 22nd president. Then Benjamin Harrison served as the 23rd president,
from 1889 to 1893, and after that Grover Cleveland was elected president
again, and Congress decided that he would be counted at the 24th president,
in addition to being counted as the 22nd president.
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So the list P has a repeated entry: p22 is the same as p24. The set
Set(P) does not know this, because all a set knows is whether something (or
somebody) is a member or not. So the set Set(P) has only 44 members. �

6.2.3 The sum, the product and the maximum and minimum of
a finite list of real numbers

If a is a finite list of real numbers, then we can define several numbers asso-
ciated to a, using inductive definitions:.

Specifically, we will define

1. the sum
∑

a of the entries of a,

2. the product
∏

a of the entries of a,

3. the maximum Max a of the entries of a.

4. the minimum Min a of the entries of a.

In each of the cases, we start from a binary operation on IR, that is, an
operation that can be performed on two real numbers, and extend it to finite
lists.

The sum
∑

a will be defined starting with the addition operation, i.e.,
the operation that for two real numbers x, y produces the number x+ y.

The product
∏

a will be defined starting with the multiplication oper-
ation, i.e., the operation that for two real numbers x, y produces the number
x · y.

The maximum Max a will be defined starting with the maximum oper-
ation, i.e., the operation that for two real numbers x, y produces the number
max(x, y) (the “maximum of a and b”) defined as follows:

max(x, y) =

{

x if x ≥ y
y if y ≥ x

. (6.91)

The minimum Min a will be defined starting with the minimum opera-
tion, i.e., the operation that for two real numbers x, y produces the number
min(x, y) (the “minimum of a and b”) defined as follows:

min(x, y) =

{

y if x ≥ y
x if y ≥ x

. (6.92)
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Problem 6. The absolute value of a real number is defined as follows: if
x ∈ IR, then the absolute value of x is the number |x| given by

|x| =

{

x if x ≥ 0
−x if x ≤ 0

. (6.93)

Prove that

(∀x ∈ IR)(∀y ∈ IR)max(x, y) =
x+ y + |x− y|

2

and

(∀x ∈ IR)(∀y ∈ IR)min(x, y) =
x+ y − |x− y|

2
.

The four operations
∑

,
∏

, Max, Min are defined as follows:

Definition 16. Let a = (aj)
n
j=1 be a finite list of real numbers.

1. The sum
∑

a, or
∑n

j=1 aj, is defined inductively as follows:

0
∑

j=1

aj = 0 , (6.94)

1
∑

j=1

aj = a1 , (6.95)

n+1
∑

j=1

aj =
(

n
∑

j=1

aj

)

+ an+1 if n ∈ IN . (6.96)

2. The product
∏

a, or
∏n

j=1 aj, is defined inductively as follows:

0
∏

j=1

aj = 1 , (6.97)

1
∏

j=1

aj = a1 , (6.98)

n+1
∏

j=1

aj =
(

n
∏

j=1

aj

)

× an+1 if n ∈ IN , (6.99)

(6.100)
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3. The maximum Max a, or Maxnj=1aj, is defined inductively as follows:

Max1j=1aj = a1 , (6.101)

Maxn+1
j=1aj = max

(

Maxnj=1aj, an+1

)

if n ∈ IN . (6.102)

4. The minimum Min a, or Minn
j=1aj, is defined inductively as follows:

Min1
j=1aj = a1 , (6.103)

Minn+1
j=1aj = max

(

Minn
j=1aj, an+1

)

if n ∈ IN . (6.104)

There are several facts about these operations that are fairly obvious, and
whose proofs are very easy but very boring. I would urge you to practice
by doing a few of these proofs, just to make sure that you can do them if
you are asked to. Naturally, since the operations are defined inductively, the
proofs will have to be by induction.

Before I tell you what these obvious facts are, let me define the concate-
nation of two lists: Roughly, the concatenation a#b is the list obtained by
listing the entries of a first, and then the entries of b.

Example 20.

1. Let

a = (3, 6, 1, 3, 5) ,

b = (1, 0, 1, 3, 7) .

Then
a#b = (3, 6, 1, 3, 5, 1, 0, 1, 3, 7) .

2. Let p = (pj)
16
j=1 be the list of the first 16 U.S. presidents, in chronolog-

ical order. Let q = (qj)
10
j=1 be the list in chronological order of the first

10 presidents after the 16th one, that is, the list defined by

qj = the (16 + j)−th U.S. president for j ∈ IN10 .

(So, for example, q1 =Andrew Johnson, q2 =Ulysses Grant, and so on.)

Then p#q is the list of the first 26 U.S. presidents, in chronological
order. �
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And here is the precise definition:

Definition 17. Let a = (aj)
m
j=1 and b = (bj)

n
j=1 be two finite lists. The

concatenation of a = (aj)
m
j=1 and b = (bj)

n
j=1 is the finite list a#b given by

a#b = (cj)
m+n
j=1 , where cj =

{

aj if j ∈ INm

bj−m if j ∈ IN ∧m+ 1 ≤ j ≤ m+ n
.

And here are some of the obvious theorems I announced.

Theorem 21. If a and b are finite lists of real numbers. Then:
∑

(a#b) = (
∑

a) + (
∑

b) , (6.105)
∏

(a#b) = (
∏

a)× (
∏

b) , (6.106)

Max (a#b) = max
(

Max a,Maxb
)

, (6.107)

Min (a#b) = min
(

Min a,Minb
)

. (6.108)

Proof. YOU PROVE THIS.

Problem 7. Prove Theorem 21. �

Theorem 22. Let a = (aj)
n
j=1, b = (bj)

n
j=1, be finite lists of real numbers of

the same length. Then,

1. If
(∀j ∈ INn)aj ≤ bj

then
∑

a ≤
∑

b

Max a ≤ Maxb

Min a ≤ Minb .

2. If all the aj and all the bj are integers, and

(∀j ∈ INn)aj|bj

then
∏

a

∣

∣

∣

∣

∣

∏

b .
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Proof. YOU PROVE THIS.

Problem 8. Prove Theorem 22. �

Theorem 23. Let a = (aj)
n
j=1 be a finite list of real numbers. Then

1. Min a ≤ aj ≤ Max a for every j ∈ INn.

2. There exist indices j−, j+ in INn, such that Min a = aj− and Max a =
aj+.

Proof. YOU PROVE THIS.

Problem 9. Prove Theorem 22. �

6.3 Prime factorizations

Definition 18. A prime factorization of a natural number n is a finite list
p = (pj)

m
j=1 such that

(1) pj is a prime number for every j ∈ INm. (That is, all the entries in the
list are prime numbers.)

(2)
∏m

j=1 pj = n. �

Example 21. The list (2, 2, 3) is a prime factorization of the number 12,
because each of the three entries (2, 2, and 3) is a prime number, and the
product 2× 2× 3 is equal to 12. �

Example 22. The list (3, 2, 2) is also a prime factorization of 12, and is
different from the prime factorization (2, 2, 3) of Example 21. �

So the number 12 has at least two different prime factorizations. And yet we
want the prime factorization of a natural number to be unique!

To solve this problem we have to introduce the concept of an “ordered
prime factorization”.

Definition 19. A finite list p = (pj)
m
j=1 whose entries are real numbers is

ordered if

(ORD) pj ≤ pj+1 for every j ∈ INm−1. �

Definition 20. An ordered prime factorization of a natural number n is a
prime factorization p = (pj)

m
j=1 of n which is an ordered list. �

Example 23. The list (2, 2, 3) is an ordered prime factorization of 12, but
the list (3, 2, 2) is not. �
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6.4 A correct (and nearly perfect) statement of the
FTA

Here, finally, is a correct, nearly perfect21 statement of the FTA:

Theorem 24. (A nearly perfect version of

the fundamental theorem of arithmetic.)

Every natural number n such that n ≥ 2

has a unique ordered prime factorization.

6.5 The proof

We have to prove existence and uniqueness of the ordered prime factorization.
The existence of a prime factorization of any natural number n such that

n ≥ 2 has been proved before, in Theorem 11 on page 25,
But here we need to prove the existence of an ordered prime factorization.

Intuitively, this is obvious, because we can take any prime factorization and
rearrange the entries putting them in increasing order. More precisely: Let
n ∈ IN be such that n ≥ 2. Take a prime factorization p = (pj)

m
j=1 of n.

(We know that such a factorization exists. Then Rule ∃use enables us to
pick one such factorization and call it p.) Then reorder p, by forming a new
list q = (qj)

m
j=1 that has the same entries as p, but in increasing order. This

gives us an ordered prime factorization of n, proving that such a factorization
exists. This is not a completely rigorous proof, but the conclusion
is fairly obvious, so I will omit the proof at this point. But if you
really care about this, and are not satisfied with a nonrigorous
proof22, you can find the proof in the Appendix, on page 105.

So the existence part of the FTA has been proved.

21I say “nearly perfect” because the statement can be made even nicer and more elegant,
thus obtaining a truly “perfect” statement. We will do this later.

22If you take this issue seriously, and want to see a real proof, then I congratulate
you: you are thinking like a true mathematician! A true matematician understands that
nothing can be justified by saying “it is obvious”. If it seems obvious, then either (a) it
can be proved easily, or (b) maybe it is not so obvious; maybe it is not even true! Every
time something seems obvious to you, you should ask yourself “how can I prove it?”. And
if you do not know how to prove it, then you should not say it is obvious.
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The uniqueness proof. This is the most delicate part. We have to prove
that if we have two ordered prime factorizations p, q, of a natural number
n, it follows that p = q. In other words: we have to assume that

(♦) We have two finite lists

p = (pj)
k
j=1 , q = (qj)

ℓ
j=1 ,

such that

(1) all the pj and all the qj are prime numbers,

(2) p and q are ordered lists (that is, pj ≤ pj+1 whenever j ∈ INk−1,
and qj ≤ qj+1 whenever j ∈ INℓ−1),

(3)
∏k

j=1 pj =
∏ℓ

j=1 qj,

and we want to conclude that

(♦♦) p = q.

That is, we want to prove, assuming (♦), that

k = ℓ ∧ (pj = qj for j = 1, 2, . . . , k) . (6.109)

So from now one we assume (♦).
First, let prove that p1 = q1. To prove this, we observe that, since

p1p2 · · · pk = q1q2 · · · qℓ ,

the prime number p1 divides the product q1q2 · · · qℓ. Hence, by the generalized
Euclid lemma, p1 divides one of the factors of this product, so we may pick
j such that p1|qj. Then p1 is a factor of qj, so p1 = 1 or p1 = qj. But p1 is
prime, so23 p1 6= 1, So p1 = qj. But q1 ≤ qj, so q1 ≤ p1.

23Notice how important it is that in the definition of “prime number” (def-
inition 11, on page 58) we included the requirement that, for p to be prime,
p has to be > 1. This is the step where that condition is used. As explained in section
5.1.1, or page 58, if we had decided to count 1 as a prime number, then the Fundamental
Theorem of Arithmetic would not be true. What would fail is the uniqueness part. For
example, we could take k = 2, ℓ = 3, p1 = 2, p2 = 3, q1 = 1, q2 = 2, and q3 = 3, and
we would get p1p2 = q1q2q3, with p1, p2, q1, q2, q3 prime, p1 ≤ p2, and q1 ≤ q2 ≤ q3, but
it is not true that ℓ = k and p1 = q1 and p2 = q2. So it is not surprising that, since the
condition “p 6= 1” is needed for the uniqueness part of the FTA to be valid, it is precisely
in the proof of the uniqueness part of the FTA that this condition is used. And the step
where it is used is preciely here.
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Similarly, q1 must equal one of the pj, and this pj is ≥ p1, so q1 ≥ p1.
Since q1 ≤ p1 and q1 ≥ p1, it folows that p1 = q1 .
We then have, since p1 = q1,

p1p2 · · · pk = q1q2 · · · qℓ

= p1q2 · · · qℓ ,

so p1p2 · · · pk = p1q2 · · · qℓ, from which it follows that

p2 · · · pk = q2 · · · qℓ .

So we find ourselves in the same situation we started with, except that now
we have p2, q2 in the role previously played by p1, q1. So, repeating the same
argument, we get p2 = q2 and then we can go on and repeat the argument
once more and prove that p3 = q3, and so on.

However, we know that “and so on” is problematic, and the rigorous way
to do an “and so on”’ argument is with a proof by induction. So let us do a
proof by induction.

What we have done so far is show that we can prove that p1 = q1, and
then go from that to p2 = q2, then go from that to p3 = q3. So this suggests
that, for our induction, we could use the predicate P (n), where P (n) stands
for “p1 = q1 ∧ p2 = q2 ∧ · · · ∧ pn = qn”.

There is, however, a minor problem with this idea:

• P (n) only makes sense for n if p1, p2, . . . , pn and q1, q2, . . . , qn are de-
fined, that is, if n ≤ k and n ≤ ℓ.

• But to do induction we need a predicate that makes sense for every
n ∈ IN.

So we modify the previous P (n) a little bit and use instead the following
choice for P (n):

(*) We let P (n) be the predicate

if n ≤ k and n ≤ ℓ then pj = qj for j = 1, 2, . . . , n . (6.110)

That is,

P (n) stands for : (n ≤ k ∧ n ≤ ℓ) =⇒ (∀j ∈ INn)pj = qj . (6.111)

(The virtue of this precdicate is that when n > k or n > ℓ, the premise
“n ≤ k ∧ n ≤ ℓ)” is false, so P (n) is true. and we don’t need to worry about
the issue whether pn or qn is well defined.)

Let prove (∀n ∈ IN)P (n) by induction.



Math 300, Fall 2018 97

Basis step. We want to prove P (1), that is,

(1 ≤ k ∧ 1 ≤ ℓ) =⇒ p1 = q1 . (6.112)

But we have already proved that p1 = q1. So (6.112) is true, and we have

proved P (1) .

Inductive step. We want to prove that

(∀n ∈ IN)
(

P (n) =⇒ P (n+ 1)
)

. (6.113)

Let n ∈ IN be arbitrary. Assume P (n).

We want to prove P (n+ 1). That is, we want to prove

(n+ 1 ≤ k ∧ n+ 1 ≤ ℓ) =⇒
(

p1 = q1 ∧ · · · ∧ pn+1 = qn+1

)

. (6.114)

To prove the implication (6.114) we assume the premise and try to
prove the conclusion.

Assume that n+ 1 ≤ k ∧ n+ 1 ≤ ℓ .

Then n < k and n < ℓ, so in particular n ≤ k ∧ n ≤ ℓ.

Since we are assuming P (n), we know that

(n ≤ k ∧ n ≤ ℓ) =⇒
(

p1 = q1 ∧ · · · ∧ pn = qn
)

. (6.115)

But we know that n ≤ k ∧ n ≤ ℓ, which is the premise of the
implication (6.115).

Then Rule =⇒use (the Modus Ponens rule) allows us to go to the
conclusion of (6.115), i.e.,

p1 = q1 ∧ · · · ∧ pn = qn . (6.116)

Since n < k and n < ℓ, the equality p1p2 · · · pk = q1q2 · · · qℓ can be
rewritten as

p1p2 · · · pnpn+1 · · · pk = q1q2 · · · qnqn+1 · · · qkqk+1 · · · qℓ ,

and, since pj = 1 for j = 1, . . . , n, this says

p1p2 · · · pnpn+1 · · · pk = p1p2 · · · pnqn+1 · · · qkqk+1 · · · qℓ ,

from which it follows that

pn+1 · · · pk = qn+1 · · · qkqk+1 · · · qℓ . (6.117)
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We then repeat the same argument used earlier to prove that
p1 = q1 and conclude that pn+1 = qn+1. (The prime pn+1 divides
the product qn+1 · · · qkqk+1 · · · qℓ, so it is equal to one of the factors;
but this factor is ≥ qn+1, so pn+1 ≥ qn+1; similarly, qn+1 ≥ pn+1;
and then pn+1 = qn+1.)

Since we already know that pj = qj for j = 1, . . . , n, we have
proved that

p1 = q1 ∧ · · · ∧ pn+1 = qn+1 , (6.118)

Since we have proved (6.118) assuming that n+ 1 ≤ k ∧ n+ 1 ≤ ℓ, we
have proved that

(n+ 1 ≤ k ∧ n+ 1 ≤ ℓ) =⇒
(

p1 = q1 ∧ · · · ∧ pn+1 = qn+1)
)

. (6.119)

That is, we have proved P (n+ 1).

Since we have proved P (n+1) assuming P (n), we have proved the implication
P (n) =⇒ P (n+ 1).

Since we have proved P (n) =⇒ P (n + 1) for arbitrary n ∈ IN, it follows

that (∀n ∈ IN)
(

P (n) =⇒ P (n+ 1)
)

.

This completes the inductive step. Since we have also proved P (1), we
can conclude, thanks to the PMI, that (∀n ∈ IN)P (n).

End of the uniqueness proof. Now that we have proved that P (n) is true for
every n ∈ IN, we can conclude our uniqueness proof.

Let ν = min(k, ℓ), so ν is the smallest of k and ℓ.
Then ν ∈ IN, so P (ν) is true.
But P (ν) says

if ν ≤ k and ν ≤ ℓ then pj = qj for j = 1, 2, . . . , ν . (6.120)

But ν ≤ k and ν ≤ ℓ, so we can conclude that

pj = qj for j = 1, 2, . . . , ν . (6.121)

We are now going to prove that ℓ = k. Suppose ℓ > k. Then ν = k, and the
formula p1p2 · · · pk = qqq2 · · · qℓ can be rewritten as

p1p2 · · · pk = q1q2 · · · qkqk+1qk+2 · · · qℓ

= p1p2 · · · pkqk+1qk+2 · · · qℓ .
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Hence
qk+1qk+2 · · · qℓ = 1 .

but this is impossible, because the product qk+1 · · · qℓ is a product of at least
one prime24, so the product is > 1.

Hence it is not true that ℓ > k. A similar argument shows that it cannot
happen that ℓ < k. So ℓ = k .

Since ℓ = k, ν equals k as well, and then formula (6.121) tells us that

pj = qj for j = 1, 2, . . . , k .

Ths completes the proof. Q.E.D.

6.5.1 The perfect statement of the FTA

Mathematicians like to have their theorems as simple and general as possible.
The FTA, as we have stated it, has a condition that makes it inelegant,
namely, the requirement that n ≥.

Wouldn’t it be nicer if we could just say

Theorem 25. (The fundamental theorem

of arithmetic.) Every natural number has

a unique ordered prime factorization.

?

This would clearly be more elegant, wouldn’t it? It’s much simpler than our
previous version, and it is also more general, because it applies to all natural
numbers, even to the number 1.

But, of course, just because a statement is nice, it doesn’t mean that it
is true.

Is our new statement of the FTA true? The answer is “yes”, but we have
to be careful about what this means.

Notice that the only difference between the previous statement of the
FTA and our new statement is that the new statement says that the number
1 also has a unique ordered prime factorization. And we have to ask the
obvious question: what is that factorization?

The answer is: the ordered prime factorization of 1 is the empty list. Let
me explain.

24There is at least one prime in this product because ℓ > k.
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First of all, until now we said that every list has a length, and that this
length is a natural number. We now change that, and add a new list: the
empty list.

The empty list is a list of length zero, that has no entries whatsoever. We
use the symbol ∅ to denote this list25.

And we can also think of the empty list as the list (aj)
0
j=1, because there

are no values of j such that 1 ≤ j and j ≤ 0, so the list (aj)
0
j=1 has no entries.

Then the following is true:

Proposition 4. The empty list is an ordered list of primes.

This can be rigoruously proved as follows.

Proof. First, we want to prove that ∅ is a list of primes.
Write the empty liist ∅ as (pj)

0
j=1.

We have to prove that

(∀j)(j ∈ IN0 =⇒ pj is a prime number) (6.122)

where “pj” stands for “the j-entry of the empty list”.
So let j be arbitrary. We want to prove that

j ∈ IN0 =⇒ pj is a prime number . (6.123)

But IN0 is the empty set, so IN0 has no members, and then “j ∈ IN0” is false,
no matter who j might be.

Since “j ∈ IN0” is false, the implication (6.123) is true.
So we have proved (6.123), for arbitrary j, And then we have proved

(6.122).
We can use a similar argument to prove that ∅ is an ordered list. (Sketch

of the argument: we have to prove that “if j ∈ IN0 and j + 1 ∈ IN0 then
pj ≤ pj+1”. And this is true because it is an implication with a false premise.)
Q.E.D.

Finally, it turns out that
∏0

j=1 pj = 1 . If you have trouble believing this,

I will give you three reasons:

25You may worry that “∅” already stands for the empty set. You need not worry. If one
does things carefully, it turns out that the empty set and the empty list truly are the same
thing, so it is perfectly all right to use “∅” both to denote the empty set and to denote
the empty list. But it takes some work to establish this, so for the moment just accept
that the empty list is called “∅”.
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Reason No.1:
∏0

j=1 pj = 1 because in these notes we defined
∏0

j=1 pj to be
equal to 1, when we gace the inductive definition of “

∏

”.

Reason No.2:
∏0

j=1 pj = 1 because mathematicians have agreed that this is

so. In other words, the statement “
∏0

j=1 pj = 1” is true by convention,
because mathematicians have agreed that the product of the empty list is
equal to one26.

Reason No.3: Mathematicians are reasonable people, so if we decided that
∏0

j=1 pj = 1 we must have had a good reason.
Here is the reason. The inductive definition of “

∏

” tells us that

n+1
∏

j=1

pj =
(

n
∏

j=1

pj

)

pn+1 (6.124)

if n is a natural number. This means that
n
∏

j=1

pj =

∏n+1
j=1 pj

pn+1

(6.125)

for n ∈ IN. Now suppose we want to make Formula (6.125) also true for
n = 0. Then we must have

0
∏

j=1

pj =

∏1
j=1 pj

p1
. (6.126)

But
1
∏

j=1

pj = p1 .

So we must have
0
∏

j=1

pj =
p1
p1

= 1 . (6.127)

This is not a rigorous proof. But it is an argument showing that the conven-
tion that

∏0
j=1 pj = 1 is a reasonable one.

26This is like many other conventions. Why is Pluto not a planet? Because astronomers
have decided that it is isn’t. Why is 1 not a prime number? Because mathematicians
have decided that it isn’t. Why do we drive on the right side of the street? Because at
some point it was decided (in the U.S and many other countries, but not in all countries)
that the right side of the street is the side on which people should drive. Why are cows
called “cows” rather than, say, “zebras”, or “tables”? Because English-speaking people
have agreed that that is the name of those animals.
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In any case, once you agree that
∏0

j=1 pj = 1 follows that our nicer
version of the FTA is true.
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7 The main theorems of elementary integer

arithmetic V: Euclid’s proof that there are

infinitely many primes

About 2,300 years ago, the great mathematician Euclid, in his book the Ele-
ments (ca. 300 BCE), proved that there are infinitely many prime numbers.

7.0.1 Statement of Euclid’s theorem

The proof I am going to present here is not exactly Euclid’s, but is based
essentially on the same idea.

First, here is Euclid’s result:

THEOREM. The set of prime numbers
is infinite.

And now we discuss the proof. And, before that, we have to clarify what
the statement means, by giving a precise definition of “finite set”.

7.0.2 What is a finite set? What is an infinite set?

We now explain what a “finite set” is. t

Definition 21. Let S be a set,

1. We say that S is finite if S = ∅ or there exists a finite list a = (aj)
n
j=1

such that S = Set(a), that is

S = {x : (∃j ∈ INn)x = aj} .

2. We say that S is infinite if it is not finite. �

7.0.3 The proof of Euclid’s Theorem

Let S be the set of all prime numbers. We want to prove that S is an infinite
set.

Suppose S is not infinite, so S is a finite set.
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Let p = (p1, p2, . . . , pn) be a list27 such that S is the set Set(p) of all
entries of p. (This means that S is the set {x : (∃j ∈ INn)x = pj}.)

Let M =
∏n

j=1 pj (so M is the product of all the entries of the list p).

Let N = M + 1.

Then N is a product of primes, by the Fundamental Theorem of Arith-
metic, so N has a prime factor.

Pick a prime number which is a factor of N , and call it q.

We will show that the prime number q is not on the list p.

Suppose q was one of the entries of the list p.

Then we may pick j ∈ INn such that q = pj.

Then q is a factor of the number M , because pj is a factor of the
product p1.p2. · · · .pn.
But q is also a factor of N .

So q is a factor of N − M . That is, q is a factor of 1 (because

N −M = 1).

But q is a prime number, so q is not be a factor of 1 .

So we have derived a contradiction from the assumption that q is
one of the entries of the list p.

Hence q is not one of the entries of the list p .

But p is supposed to be a list of all the prime neumebrs, and q is a
prime number, so q is one of the entries of the list p .

So we have derived a contradiction from the assumption that S is a
finite set.

So S is an infinite set. Q.E.D.

27I say “a list” rather than “the list”, because you could list the primes in different ways,
for example: in increasing order, or in decreasing order.
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Appendix: a lemma on rearranging lists of numbers

First of all, let us introduce the notion of “equivalent lists”.

Definition 22. Let p = (pj)
n
j=1 and q = (qj)

m
j=1 be finite lists. We say that

p and q are equivalent (or that p is a rearrangement of q, or that q is a
rearrangement of p) if

1. m = n,

2. the sets

Set(p) = {x : (∃j ∈ INm)pj = x} ,

Set(q) = {x : (∃j ∈ INm)qj = x} ,

are equal,

3. every member of Set(p) (i.e., of Set(q)) occurs the same number of
times as an entry of p as it does as an entry of q. �

We will write
p ≡ q

to indicate that p is a rearrangement of q.

(II) Lemma 1. Let p = (pj)
n
j=1 be a finite list of real numbers. Then there

exists a list q = (qj)
n
j=1 such that

1. q ≡ p,

2. q is ordered,

3.
∑n

j=1 pj =
∑n

j=1 qj,

4.
∏n

j=1 pj =
∏n

j=1 qj.

Proof. We do a proof by induction.

Let P (n) be the statement

For every list p = (pj)
n
j=1 of length n consisting of real num-

bers there exists an ordered list q = (qj)
n
j=1 that is equivalent

to p and satisfies
∑n

j=1 pj =
∑n

j=1 qj and
∏n

j=1 pj =
∏n

j=1 qj.

We prove that (∀n ∈ IN)P (n) by induction on n.
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The base case. P (1) is obviously true, because if p = (pj)
1
j=1 is a list

having just one entry, then of course p is ordered, so we can take q to be p,
and then q is an ordered list and is equivalent to p.

The inductive step. We want to prove (∀n ∈ IN)(P (n) =⇒ P (n+ 1)).

Let n ∈ IN be arbitrary.

Assume that P (n) is true.

We want to prove P (n+ 1).

Statement P (n+ 1) says

(∀p)

(

p = (pj)
n+1
j=1 is a list of real numbers =⇒

(∃q)
(

q = (qj)
n+1
j=1 is a list of length n+ 1 ∧ q is ordered ∧

q ≡ p ∧
n+1
∑

j=1

pj =
n+1
∑

j=1

qj ∧
n+1
∏

j=1

pj =
n+1
∏

j=1

qj

)

)

.

To prove P (n+1) we must take an arbitrary p, assume that p is a
list of real numbers of lenght n+1, and prove that there exists an
ordered list q that is equivalent to p and satisfies the conditions
on the sum and the product.

Let p be an arbitrary list of real numbers of length n+ 1.

Let p = (pj)
n+1
j=1 .

Let j∗ be an index belonging to INn+1 such that pj∗ has the
maximum possible value of all the pj. (That is, precisely28,
j∗ ∈ INn+1 and pj∗ = Maxp.)

Let p′ be the list of length n obtained from p by removing
the j∗-th entry. (Precisely, let p′ = (p′j)

n
j=1 be the list defined

by p′j = pj for j < j∗, and p′j = pj+1 for j∗ ≤ j ≤ n.)

Then p′ is a list of primes of length n.

28The existence of such a j∗ is a consequence of Theorem 23. This theorem says that
every finite list of real numbers has a lagest entry, which is completely obvious, but can
also be proved rigorously if anyone so desires.
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Since we are assuming that P (n) holds, there exists an ordered
list q′ = (q′j)

n
j=1 such that q′ ≡ p′,

∑n

j=1 q
′

j =
∑n

j=1 p
′

j, and
∏n

j=1 q
′

j =
∏n

j=1 p
′

j.

Let p′′ be the list of length n+ 1 obtained from p′ by adding
pj∗ as the n + 1-th entry. (Precisely, p′′ = (p′′j )

n+1
j=1 , where

p′′j = p′j for j ∈ IN, and p′′n+1 = pj∗ .)

Let q′′ be the list of length n+ 1 obtained from q′ by adding
pj∗ as the n + 1-th entry. (Precisely, q′′ = (q′′j )

n+1
j=1 , where

q′′j = q′j for j ∈ IN, and q′′n+1 = pj∗ .)

Since q′ ≡ p′ and the lists q′′, p′′ are obtained from q′ and
p′ by adding the same entry pj∗ at the end, it is clear that
q′′ ≡ p′′.

Since p′′ is obtained from p by interchanging two entries (by
moving pj∗ from the j∗-th position to the n + 1-th position),
it is clear that p′′ ≡ p.

So q′′ ≡ p.

Furthermore, q′′ is ordered. (Reason: q′ is ordered, so the
first n entries of q′′ satisfy q′′1 ≤ q′′2 ≤ · · · ≤ q′′n. In addition,
for some j ∈ INn+1, q

′′

n = pj ≤ pj∗ = q′′n+1.)

Finally,

n+1
∑

j=1

q′′j = (
n
∑

j=1

q′′j ) + q′′n+1 = (
n
∑

j=1

q′j) + pj∗ = (
n
∑

j=1

p′j) + pj∗

= (

j∗−1
∑

j=1

p′j +
n
∑

j=j∗

p′j) + pj∗ = (

j∗−1
∑

j=1

pj +
n
∑

j=j∗

pj+1) + pj∗

= (

j∗−1
∑

j=1

pj +
n+1
∑

j=j∗+1

pj) + pj∗

= (

j∗−1
∑

j=1

pj) + pj∗ + (
n+1
∑

j=j∗+1

pj)

=
n+1
∑

j=1

pj ,
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so
n+1
∑

j=1

q′′j =
n+1
∑

j=1

pj .

∗ A similar argument shows that

n+1
∏

j=1

q′′j =
n+1
∏

j=1

pj .

So, if we take q to be q′′, we have shown that q satisfies all
the conditions that appear in statement P (n+ 1).

This completes the proof of P (n+ 1), assuming P (n).

Hence P (n) =⇒ P (n+ 1).

• So (∀n ∈ IN)(P (n) =⇒ P (n+ 1)).

This completes the inductive step, and the proof of our lemma. Q.E.D.


