
MATHEMATICS 300 — SPRING 2019

Introduction to Mathematical Reasoning

H. J. Sussmann

INSTRUCTOR’S NOTES

Date of this version: September 13, 2019

Contents

Part I 2

1 Introduction 2

1.1 Sentences, propositions, terms, variables, theorems and proofs . . . 3

2 An example of a proof: Euclid’s proof of the infinitude of the set

of prime numbers 4

2.1 What Euclid’s proof is about . . . . . . . . . . . . . . . . . . . . . 4
2.2 Divisibility of integers; factors . . . . . . . . . . . . . . . . . . . . . 7
2.3 What is a “prime number” . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Why isn’t 1 prime? . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 The prime factorization theorem . . . . . . . . . . . . . . . 13
2.3.3 Clarification: What is a “product of primes”? . . . . . . . . 13

2.4 Proofs by contradiction . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 When is a negation true? . . . . . . . . . . . . . . . . . . . 17
2.4.3 What is a contradiction? . . . . . . . . . . . . . . . . . . . . 18
2.4.4 What is a proof by contradiction? . . . . . . . . . . . . . . 19

2.5 What is a finite set? What is an infinite set? . . . . . . . . . . . . 21
2.5.1 A simple lemma . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 The proof of Euclid’s Theorem . . . . . . . . . . . . . . . . . . . . 22
2.6.1 What is “Q.E.D.”? . . . . . . . . . . . . . . . . . . . . . . . 25
Appendix: Finite lists . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 An analogy: twin primes . . . . . . . . . . . . . . . . . . . . . . . . 29
2.8 A surprising fact: non-twin primes . . . . . . . . . . . . . . . . . . 31
2.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 More examples of proofs: irrationality of
√
2 and of other num-

bers 37

3.1 Numbers and number systems . . . . . . . . . . . . . . . . . . . . . 37



Math 300, Fall 2019 1

3.1.1 The most common types of numbers . . . . . . . . . . . . . 37
3.1.2 The symbol “∈” . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.3 The natural numbers . . . . . . . . . . . . . . . . . . . . . . 41
3.1.4 The integers . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.5 The real numbers . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.6 Positive, negative, nonnegative, and nonpositive numbers . 43
3.1.7 Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.8 The word “number”, in isolation, is too vague . . . . . . . . 45

3.2 Existential statements . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.1 The rule for using existential statements (Rule ∃use) . . . . 48

3.3 Pythagoras’ Theorem and two of its proofs . . . . . . . . . . . . . 51
3.4 Irrational numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 What are “numbers”? . . . . . . . . . . . . . . . . . . . . . 57
3.4.2 Why was the irrationality of

√
2 so important? . . . . . . . 65

3.4.3 What is a “real number”, really? . . . . . . . . . . . . . . . 67
3.4.4 The most important number systems: real numbers vs. in-

tegers and natural numbers; definition of “rational number” 67
3.4.5 A remark about sets . . . . . . . . . . . . . . . . . . . . . . 69
3.4.6 Proof of the irrationality of

√
2 . . . . . . . . . . . . . . . . 73

3.5 The proof of the irrationality of
√
2 . . . . . . . . . . . . . . . . . . 75

3.6 More irrationality proofs . . . . . . . . . . . . . . . . . . . . . . . . 77
3.6.1 What happens when you make a mistake in a proof . . . . 80
3.6.2 More complicated irrationality proofs . . . . . . . . . . . . 84

3.7 A general theorem on irrationality of square roots . . . . . . . . . . 89



Math 300, Fall 2019 2

Part I

1 Introduction

These notes are about mathematical proofs. We are going to get started
by presenting some examples of proofs. Later, after we have seen several
proofs, we will discuss in general, in great detail,

• What proofs are.

• How to read proofs.

• How to write and how not to write proofs.

• What proofs are for.

• Why proofs they are important.

But first, in Sections 2 and 3, I am going to show you several examples of
proofs.

In each of these examples, we are going to prove a theorem. Theorems
have statements. Each statement expresses a proposition, and the fact
that the statement has been proved implies that the proposition is true, in
which case we say that the statement is true.

So maybe it is a good idea to start by clarifying the meanings of the
words “theorem”, “statement”, “proof”, and of other related words such as
“proposition”, “fact”, and “conclusion”.
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1.1 Sentences, propositions, terms, variables, theorems
and proofs

THIS SECTION IS STILL BEING WRITTEN. WHEN

IT IS FINISHED IT WILL BE INCLUDED IN THESE

NOTES.
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2 An example of a proof: Euclid’s proof of

the infinitude of the set of prime numbers

Our first example of a proof will be Euclid’s proof that

there are infinitely many prime numbers. This proof is

found in Euclid’s Elements (Book IX, Proposition 20).

Euclid (who was probably born in 325 BCE and died in

270 BCE) was the first mathematician to write a large

treatise where mathematics is presented as a collection of

definitions, postulates, propositions (i.e., theorems and

constructions) and mathematical proofs of the proposi-

tions.

2.1 What Euclid’s proof is about

You probably know what a “prime number” is. (If you

do not know, do not worry; I will explain it to you pretty

soon.) Here are the first few prime numbers:

2, 3, 5, 7, 11, 13, 17, 19 . . .

Does the list of primes stop there? Of course not. It goes

on:

23, 29, 31, 37, 41, 43, 47, 53, 59, 61 . . .

And it doesn’t stop there either. It goes on:

67, 71, 73, 79, 83, 89, 97, 101, 103 . . . .



Math 300, Fall 2019 5

Does the list go on forever? If you go on computing

primes, you would find more and more of them. And

mathematicians have actually done this, and found an

incredibly large number of primes.

The largest known prime

As of January, 2019, the largest known prime was

282,589,933 − 1 .

(That is, 2 multiplied by itself 82, 589, 933 times,

minus one.) This is a huge number! It has

24, 862, 048 decimal digits.

Is it possible that the list of primes stops here, that is,

that there are no primes larger than 282,589,933 − 1?

Before we answer this, just ask yourself: suppose it was

indeed true that the list stops with this prime number.

How would you know that? If you think about it for

a minute, you will see that there is no way to know.

You could go on looking at natural numbers larger than

282,589,933 − 1, and see if among these numbers you find

one that is prime. But if you don’t find any it doesn’t

mean there aren’t any. It could just be that you haven’t

gone far enough in your computation, and if you went

farther you would find one.
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In fact, no matter how many primes you may compute,

you will never know whether the largest prime you have

found is indeed the largest prime there is, or there is a

larger one.

Can we know in some way, other than by computing

lots of primes, whether the list of primes goes on forever

or there is a prime number which is the largest one?

It turns out that this question can be answered by

means of reasoning. And, amazingly, the answer is

“yes, the list of primes goes on forever”! This was dis-

covered, in the year 300 B.C., approximately, by the

great Greek mathematician Euclid. Euclid’s 3,000-year

old proof is a truly remarkable achievement, the first re-

sult of what we would now call “number theory”, one of

the most important areas of Mathematics.

Euclid’s theorem says the following:

Theorem. The set of prime numbers

is infinite.

In order to prove the theorem, we need to understand the

precise meaning of the terms that occur in the statement.

So I will begin by explaining the meaning of “prime num-

ber” and “infinite set”.

And, in order to explain what a prime number is, we

will have to explain first what we mean by “divisibility”,
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and “factors”.

2.2 Divisibility of integers; factors

If you have two integers a and b, you would like to “divide

a by b”, and obtain a “quotient” q, i.e., an integer q that

multiplied by b gives you back a. For example, we can

divide 6 by 2, and get the quotient 3. And we can divide

6 by 3, and get the quotient 2.

But it is not always possible to divide a by b. For

example, if a = 4 and b = 3, then an integer q such that

3q = 4 does not exist1.

Since dividing a by b is sometimes possible and some-

times not, we will introduce some new words to describe

those situations when division is possible.

Definition 1. Let a, b be integers.

1. We say that b divides a if there exists an integer k

such that

a = bk .

2. We say that a is a multiple of b if b is a factor of a.
1You may say that “the result of dividing 4 by 3 is the fraction 4

3
”. That is indeed true,

but 4

3
is not an integer, and so far we are working in a world in which there are integers

and nothing else. If we want 4

3
to exist, we have to invent new numbers—the fractions,

or “rational numbers”. We are going to do that pretty soon, but for the moment, since
we are working with integers only, it is not possible to divide 4 by 3 and get a quotient
which is an integer.
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3. We say that b is a factor of a if b divides a.

4. We say that a is divisible by b if b divides a.

5. We write

b|a
to indicate that b divides a. �

Remark 1. As the previous definition indicates,

The following are five different ways of saying exactly
the same thing:

• m divides n,
• m is a factor of n,
• n is a multiple of m,
• n is divisible by m,
• m|n. �
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Reading statements with the “divides”

symbol “|”

The symbol “|” is read as “divides”, or “is a factor

of”.

For example, the statement “3|6” is read as “3 di-

vides 6”, or “3 is a factor of 6”. And the statement

“3|5” is read as “3 divides 5”, or “3 is a factor of

5”. (Naturally, “3|6” is true, but “3|5” is false.)

The vertical bar of “divides” has noth-

ing to do with the bar used to write

fractions. For example, “3|6” is the

statementa “3 divides 6’, which is true.

And “3
6” is a noun phrase: it is one of

the names of the number also known as

“1
2”, or “0.5”.
aA statement is something we can say that is true or false. A noun phrase is

something we can say that stands for a thing or person. For example, “Mount
Everest”, “New York City”, “My friend Alice”, “The movie I saw on Sunday”,
are noun phrases. “Mount Everest is very tall”, “I live in New York City”,
“My friend Alice studied mathematics at Rutgers”, and “The movie I saw on
Sunday was very boring”, are statements.

Example 1. Here are some examples illustrating the use

of the word “divides” and the symbol “|”:
• The following statements are true:

1. 6 divides 6,
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2. 6|6,
3. 6 divides 12,

4. 6|12,
5. 1 divides 5,

6. 1|5,
7. 13 divides 91,

8. 13|91,
9. 6 divides 0,

10. 6|0,
11. 6 divides −6,

12. 6| − 6,

13. −6 divides 6,

14. −6|6,
15. 6 divides −12,

16. −6|12,
17. 6 divides 0,

18. 6|0,
19. 0 divides 0,

20. 0|0,
• and the following statements are false:

1. 6 divides 7,
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2. 6|7,
3. 0 divides 1,

4. 0|1,
5. 12 divides 6,

6. 12|6,
7. −5 divides 6,

8. −5|6,
9. 0|6.

2.3 What is a “prime number”

Definition 2. A prime number is a natural number p

such that

I. p > 1,

II. p is not divisible by any natural numbers other than

1 and p. �

And here is another way of saying the same thing, in case

you do not want to talk about “divisibility”.

Definition 3. A prime number is a natural number p

such that

I. p > 1,

II. There do not exist natural numbers j, k such that

j > 1, k > 1, and p = jk. �
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2.3.1 Why isn’t 1 prime?

If you look at the definition of “prime number”, you will

notice that, for a natural number p to qualify

as a prime number, it has to satisfy p > 1.

In other words, the number 1 is not prime. Isn’t

that weird? After all, the only natural number factor of

1 is 1, so the only factors of 1 are 1 and itself, and this

seems to suggest that 1 is prime.

Well, if we had defined a number p to be prime if p has

no natural number factors other than 1 and itself, then

1 would be prime. But we were very careful not to do

that. Why?

The reason is, simply, that there is a very nice theorem

called the “unique factorization theorem”, that says that

every natural number greater than 1 either is prime or

can be written as a product of primes in a unique way.

(For example: 6 = 2 · 3, 84 = 2 · 2 · 3 · 7, etc.)
If 1 was a prime, then the result would not be true as

stated. (For example, here are two different ways to write

6 as a product of primes: 6 = 2 · 3 and 6 = 1 · 2 · 3.) And

mathematicians like the theorem to be true as stated, so

we have decided not to call 1 a prime2.
2This is exactly the same kind of reason why Pluto is not a planet. Pluto is not a planet

because astronomers have decided not to call Pluto a planet. Similarly, mathematicians
have decided not to call 1 prime, and that’s why 1 is not prime.
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If you do not like this, just keep in mind that we can

use words any way we like, as long as we all agree on

what they are going to mean. If we decide that 1 is not

prime, then 1 is not prime, and that’s it. If you think

that for you 1 is really prime, just ask yourself why and

you will see that you do not have a proof that 1 is prime.

2.3.2 The prime factorization theorem

In our proof of Euclid’s theorem, we are going to use the

fact that every natural number (except 1) can be written

as a product of prime numbers. This is a very important

result in arithmetic3, and we are going to prove it later.

The precise statement is as follows:

Theorem. (The prime factorization theorem.) Every

natural number n such that n ≥ 2 is a product of

primes. �

2.3.3 Clarification: What is a “product of primes”?

Like all mathematical ideas, even something as simple as

“product of primes” requires a precise definition. With-

out a precise definition, it would not be clear, for example,

whether a single prime such as 2 or 3 or 5 is a “product

of primes”.
3Actually, many mathematicians call “The Fundamental Theorem of Arithmetic”.
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Definition 4. A natural number n is a product of primes

if there exist

1. a natural number k,

and

2. a finite list4

p = (p1, . . . , pk)

of prime numbers,

such that

n = p1 · p2 · · · · · pk . (2.1)

(If you are familiar with the product “
∏

” notation, for-

mula (2.1) says that n =
∏k

i=1 pi .)

Notice that k can be equal to one. That is, a single

prime, such as 2, or 3, or 23, is a product of

primes in the sense of our definition. �

Definition 5. If n is a natural number, then a list p =

(p1, . . . , pk) of prime numbers such that (2.1) holds is

called a prime factorization of n. �

Example 2. The following natural numbers are prod-

ucts of primes:

• 7 (because 7 is prime); the list (7) is a prime

factorization of 7,
4Finite lists will be defined and discussed in great detail later in these notes.
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• 24; (the list (2, 2, 2, 3) is a prime factorization of

24, because 24 = 2× 2× 2× 3),

• 309; (the list (3, 103) is a prime factorization of

309);

• 3, 895, 207, 331, 689 . Here it would really take a

lot of work to find the natural number k and the

prime numbers p1, p2, . . . , pk such that

3, 895, 207, 331, 689 = p1 · p2 · · · · · pk .
But the prime factorization theorem guarantees to

us that 3, 895, 207, 331, 689 is a product of primes.�

2.4 Proofs by contradiction

Our proof if Euclid’s theorem is going to be a proof by

contradiction

Proof by contradiction is probably the most impor-

tant and most widely used of all proof strategies. So you

should not only learn what proofs by contradiction are,

but acquire the habit of alwaysa seriously consid-

ering the possibility of using the proof by con-

tradiction strategy when you are trying to figure

out how to do a proof.

aSure, I am exaggerating a little bit. There are quite a few direct proofs
(that is, proofs that are not by contradiction). But the number of proofs by
contradiction is huge.
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Let me first explain what proofs by contradiction are, and

then I will tell you why they are so important.

And the first thing I need to explain is what a con-

tradiction is.

And, ir order to explain that, I have to discuss how to

negate a sentence.

2.4.1 Negation

To negate (or deny) a statement A is to assert that A

is false. (Any such statement is called a denial of A)

So, for example, a denial of “7 is a prime number” is “7

is not a prime number”. (But there are many other ways

to write a denial of “7 is a prime number.” For example,

we could write “it is not true that 7 is a prime number”,

or “it is not the case that 7 is a prime number”.)

The symbol “∼” (“it’s not true that”)

The symbol “∼”, put in front of a statement, is used to
assert that the statement is false.

So “∼” stands for “it is not the case that”, or “it is not

true that”.
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Example 3. The following sentences are true:

• ∼ 6 is a prime number (that is, “6 is not a prime

number”),

• ∼ 2 is an odd integer (that is, “2 is not an odd

integer”),

• ∼(6 is even and 7 is even) (that is, “it’s not true that

6 and 7 are both even”).

The following sentences are false:

• ∼ 7 is a prime number (that is, “7 is not a prime

number”),

• ∼ 3 is an odd integer (that is, “3 is not an odd

integer”),

• ∼(6 is even or 7 is even) (that is, “it’s not true that

6 is even or 7 is even”),

• ∼ 6 is even and 7 is even (that is, “6 is not even and

7 is even”).

2.4.2 When is a negation true?

If A is a sentence, then

• ∼ A is true if A is false;

• ∼ A is false if A is true.
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2.4.3 What is a contradiction?

The precise definition of “contradiction” is complicated,

and requires some knowledge of logic. So let me give you

a simplified definition that is easy to understand and is

good enough for our purposes.

Temporary, simplified definition of “contradic-

tion”: A contradiction is a statement of the form “A and

∼ A”, that is, “A is true and A is not true”. �

Example 4.

• The sentence “2 + 2 = 7” is not a contradiction.

It is a false statement, of course, but not every false

statement is a contradiction.

• The sentence “2 + 2 = 7 and 2 + 2 = 4” is not a

contradiction either. It is a false statement (because

it is the conjunction of two sentences one of which is

false), but that does not make it a contradiction.

• The sentence “2 + 2 = 7 and 2 + 2 6= 7” is a con-

tradiction. because it is of the form “A and no A”,

with the sentence “2 + 2 = 7” in the role of A.

• The sentence “n = 1 and n 6= 1” is a contradiction.

• The sentence “John Adams was the first U.S. presi-

dent” is false, but it not a contradiction.
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• The sentence “John Adams was the first U.S. presi-

dent and was the second U.S. president” is false, but

it not a contradiction.

• The sentence “John Adams was the first U.S. presi-

dent and was not the first U.S. president” is a con-

tradiction. �

2.4.4 What is a proof by contradiction?

A proof by contradiction is a proof in which you

start by assuming that the statement you want to prove

is false, and you prove a contradiction. Once you have

done that, you are allowed to conclude that the statement

you are trying to prove is true.

To do a proof by contradiction, you would write some-

thing like this:

We want to prove A.

Assume that A is false.
...
2 = 1 and 2 6= 1.
And “2 = 1 and 2 6= 1” is a contradiction.

So assuming that A is false has led us to a

contradiction.

Therefore A is true. Q.E.D.



Math 300, Fall 2019 20

WARNING

Having explained very precisely what a contradiction is, I have to warn
you that mathematicians will often say things like “ ‘2 + 2 = 7’ is a
contradiction”.
This is not quite true, but when a mathematician says that every math-
ematician will understand what is really intended.
What the person who said “ ‘2 + 2 = 7’ is a contradiction” really meant
is something like this:

Now that I have proved that 2 + 2 = 7, I can easily get a
contradiction from that, because we all know how to prove
that 2 + 2 6= 7, and then we can deduce from these two
formulas the sentence “2 + 2 = 7 and 2 + 2 6= 7”, which is
truly a contradiction.
In other words, once I get to “2 + 2 = 7”, it is clear to me,
and to every mathematician, how to get to a contradiction
from there, so there is no need to go ahead and do it, so I
can stop here.

This is something mathematicians do very oftena: once we get to a
point where it is clear how to go on and finish the proof, we
just stop there.

For a beginning student I would recommend that you actually write your

proof until you get a real contradiction, because this is the only way to

make it clear to the person reading (and grading) your work that you

do understand what a contradiction is.

aAnd not only mathematicians! In chess, once you get to a position from
which it is clear that you can take your rival’s King and win, you say “check-
mate” and the game stops there.
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WHAT DOES “ASSUME” MEAN?

“Assume” means “imagine”. In order to

prove that some statement S is true, we imagine

that it is not true, that is, we explore an imaginary

world W in which S is not true, and we prove

that in this imaginary world something impossible

(such as a contradiction, “A is true and A is not

true”) would have to happen. And from this we

draw the conclusion that a world in which S is not

true is impossible, so in the real world S must be

true.

2.5 What is a finite set? What is an infinite set?

We now explain what a “finite set” is.

Definition 6. Let S be a set,

1. We say that S is finite if there exist a natural number

n and a finite list5

a = (a1, a2, . . . , an)

with n entries which is a list of all the members of

S. (This means: every member of S occurs in the
5If you are wondering “what is a finite list?”, then I can tell you two things: (1) you

are asking a good question, (2) I will give you more information about “finite lists” later,
on page 25.
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list; that is, for every member x of S there exists

a natural number j such that j ≤ n and x = pj.)

2. We say that S is infinite if it is not finite.

�

2.5.1 A simple lemma

A lemma is a statement that one proves in order to use

it in the proof of a theorem. In our proof of Euclid’s

Theorem we are going to need the following lemma:

Lemma 1. If a, b, c are integers, and c divides both a

and b, then c divides a + b and a− b.

Proof. Since c|a and c|b, we may write

a = cj and b = ck , (2.2)

where j and k are integers.

But then

a + b = c(j + k) and a− b = c(j − k) , (2.3)

and j + k and j − k are integers. So c|a+ b and c|a− b.

Q.E.D.

2.6 The proof of Euclid’s Theorem

The proof I am going to present here is not exactly Eu-

clid’s, but is based essentially on the same idea.



Math 300, Fall 2019 23

First, here is Euclid’s result, again:

Theorem 1. The set of prime numbers

is infinite.

And here is the proof.

Let S be the set of all prime numbers.

We want to prove that S is an infinite set.

We will prove this by contradiction.

Suppose S is not infinite.

Then S is a finite set.

Since S is finite, we may write a finite list

p = (p1, p2, . . . , pn)

of all the members of S, i.e., of all the prime numbers.

Let N = p1.p2. · · · .pn. (That is, N is the product

of all the entries of the list p.)

Let M = N + 1.

Then M ≥ 2, so by the prime factorization theo-

rem (in section 2.3.2) M is a product q1.q2. · · · .qk of
prime numbers.

Then q1 is a prime number6, and q1 divides M (be-

cause M = q1u, if u = q2.q3. · · · .qk).
6All we need here is to have a prime number that divides M . We choose q1, but we

could equally well have chosen q2, or any of the other qj .
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On the other hand, since p is a list of all the prime

numbers, and q1 is a prime number, we can conclude

that q1 is one of the entries p1, p2, . . . , pn of the list

p.

So we may write

q1 = pj ,

where j is one of the nmbers 1, 2, . . . , n.

It follows that q1 divides N (because pj divides N

and q1 = pj).

Since q1 divides M and q1 divides N , it follows that

q1 divides M −N , by Lemma 1.

But M −N = 1. So q1 divides 1 .

On the other hand, q1 is prime. It then follows from

the definition of “prime number” (Definition 2, on

page 11) that q1 > 1.

Hence q1 6= 1.

But then q1 does not divide 1 , because the only nat-

ural number that divides 1 is 1.

So q1 divides 1 and q1 does not divide 1 , which is a

contradiction.

Hence the assumption that S is not an infinite set has

led us to a contradiction.

Therefore S is an infinite set . Q.E.D.
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2.6.1 What is “Q.E.D.”?

What does “Q.E.D.” mean?

“Q.E.D.” stands for the Latin phrase quod erat

demonstrandum, meaning “which is what was to be

proved”. It is used to indicate the end of a proof.

Appendix: Finite lists

Finite lists have entries. Sets have members.

We can write7 finite lists as follows:

1. First we write a left parenthesis, i.e., the symbol “(”.

2. Then we write the names of the entries of the list,

in order, beginning with entry number 1, then entry

number 2, and so on. The entries must be separated

by commas.

3. Then, finally, write a right parenthesis, i.e., the sym-

bol “)”.

And we can write finite sets as follows:

1. First we write a left brace, i.e., the symbol “{”.
2. Then we write the names of the members of the set,

in some order, separated by commas.
7I am saying “we can write” rather than “we write” because there are other ways to

write lists and sets. We will discuss those ways later.
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3. Then, finally, we write a right brace, i.e., the symbol

“}”.

WARNING

Be careful with the distinction between sets, writ-

ten with braces (“{” and “}”) and lists, written

with parentheses ( “(“ and “)”).

For example, the sentence

(1, 2, 3) = (3, 1, 2)

is false, but the sentence

{1, 2, 3} = {3, 1, 2}

is true.

Example 5.

• Here is the list a of the first ten natural numbers, in

increasing order:

a = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) . (2.4)

• Here is the list b of the first ten natural numbers, in

decreasing order:

b = (10, 0, 8, 7, 6, 5, 4, 3, 2, 1) . (2.5)
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And here is a list c of the first ten natural numbers,

in a different order:

c = (10, 1, 5, 8, 3, 2, 4, 9, 6, 7) . (2.6)

These three lists are different. For example, the second

entry of a is 2, whereas the second entry of b is 9 and

that of c is 1.

Now let S be the set whose members are the first ten

natural numbers. Then we can write

S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} , (2.7)

or

S = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1} , (2.8)

or, for example,

S = {1, 3, 5, 7, 9, 2, 4, 6, 8, 10} , (2.9)

or

S = {4, 2, 7, 8, 10, 1, 9, 3, 5, 6} , (2.10)

or even

S = {4, 4, 2, 7, 7, 7, 5, 5, 5, 8, 10, 1, 9, 4, 3, 5, 6} . (2.11)

The sets S given by equations (2.7), (2.8),

(2.9), (2.10), (2.11), are all the same set, even

though the formulas describing them are different. What
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the formulas do is tell us who the members of the set

are. So, for example, according to formula (2.7), 1 is a

member of S, and 23 is not. And the other formulas also

say that 1 is a member of S, and 23 is not.

The key facts are these:

• Two sets S, T are the same set if they have the same

members, that is, if every member of S is a member

of T and every member of T is member of S.

• Two lists a, b are the same if the first entry of a is

the same as the first entry of b, the second entry of

a is the same as the second entry of b, and so on.

That is, a = b if the j-th entry of a is the same as

the j-th entry of b for every j.

Example 6. Let S be the set whose members are all the

presidents of the United States, from George Washington

to Donald Trump.

Let a be the list of all the presidents of the United

States, from George Washington to Donald Trump, in

chronological order, so

a = (a1, a2, . . . , a45) ,

where, for j = 1, 2, . . . , 45, aj is the j-th U.S. president.

Then a has 45 entries. How many members does S

have?
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If you think that the answer is 45, think again!

It turns out that Grover Cleveland served two non-

consecutive terms as president, from 1885 to 1889 and

from 1893 to 1897, and Congress decided that Cleveland

would count as both the 22nd and the 24th president of

the United States. So in the list a, the 22nd entry a22
and the 24th entry a24 are equal. So the set S has in fact

44 members, even though the list a has 5 entries. �

2.7 An analogy: twin primes

Let me tell you about another problem, very similar to

the one we have just discussed, for which the situation is

completely different.

Definition 7. A twin prime is a prime number p such

that p + 2 is also prime. �

Example 7. Here are the first few twin primes:

3, 5, 11, 17, 29, 41, 59, 71, 101, 107 . �

Now we can ask the same question that we asked for

primes: does the list go on forever, or does it stop at

some largest pair of twin primes?

In other words,

Are there infinitely many twin primes?
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This looks very similar to the question whether there are

infinitely many primes. And yet, the situation in this

case is completely different:

Nobody knows whether there are infinitely

twin primes. Mathematicians have been try-

ing for more than 2,000 years to solve this

problem, by proving that there are infinitely

many twin primes, or that that there aren’t,

and so far they haven’t been successful.

The twin prime conjecture is the statement that there are

infinitely many pairs of twin primes. It was formulated

by Euclid, about 2,300 years ago, and it is still an open

problem.

THE LARGEST KNOWN TWIN

PRIME

According to Wikipedia, as of September 2018, the cur-

rent largest twin prime known was 2996863034895 ×
21290000 − 1, with 388, 342 decimal digits. It was dis-

covered in September 2016. (The fact that the number

2996863034895× 21290000− 1 is a twin prime means that

it is prime, and the number 2996863034895×21290000+1

is also prime.)
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2.8 A surprising fact: non-twin primes

How about primes that are not twin?

Definition 8. A non-twin prime is a prime number p

such that p + 2 is not prime. �

Example 8. Here are the first few non-twin primes:

2, 7, 13, 19, 23, 31, 37, 43, 47, 53,

61, 67, 73, 79, 83, 89, 97, 103 . �

And now we can ask, again, the same question that we

asked for primes and for twin primes: does the list go

on forever, or does it stop at some largest pair of twin

primes?

In other words,

Are there infinitely many non-twin primes?

This looks very similar to the question whether there are

infinitely many twin primes. And yet, the situation in

this case is completely different: it is very easy to prove

the following:

Theorem 2. The set of non-twin primes is infinite.

(I am asking you to do this proof. See Problem 8

below.)
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2.9 Problems

Problem 1. Using the definition of “divides” (Defini-

tion 1), explain precisely why the statements “1 divides

5”, “6 divides −6”, “6 divides 0”, and “0 divides 0” are

true, and the statements “5|6” and “0|6” are false. �

Problem 2. Indicate which of the statements in the fol-

lowing list are true and which ones are false, and explain

why. (That is, prove that the true statements are true

and the false ones are false.)

1. Every integer is divisible by 1.

2. Every integer is divisible by 2.

3. Every integer is divisible by 0.

4. Every integer divides 1.

5. Every integer divides 2.

6. Every integer divides 0.

Problem 3. Express each of the following numbers

• 37,

• 28,

• 236,

• 2247,

as a product of prime numbers. �
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Problem 4. Give a precise mathematical definition of

“prime number”. �

Problem 5. Give a precise mathematical definition of

“twin prime”. �

Problem 6. Give a precise mathematical definition of

“finite set” and “infinite set”. �

Problem 7. Give precise mathematical definitions of

each of the following concepts:

• divides,

• is divisible by,

• factor (as in “is a factor of”),

• multiple (as in “is a multiple of”). �

Problem 8. Prove Theorem 2 (on page 31). �

Problem 9. Prove that if a, b, c are integers, a|b and
b|c, then a|c. �

Problem 10. Prove that if a, b are integers, a|b and

b|a, then a = b or a = −b. �

Problem 11. The proof that was given in Section 2.6 of

Euclid’s Theorem uses the definition of “prime number”

given on page 11. In this problem, we change the defini-

tion of “prime number” and use the following definition:
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A prime number is a natural number p such that p is

not divisible by any natural numbers other than 1 and

p. That is, we do not require p to be > 1. So according

to this new definition 1 is now prime

Rewrite the proof of Euclid’s Theorem given in Sec-

tion 2.6 using the new definition of “prime number”.

(What you have to do is basically copy the proof, but

making a few changes. For example, one of the steps of

the proof given in Section 2.6 says “It follows from the

definition of ‘prime number’ that q1 > 1”. This step is

not valid now, because 1 is prime, so q1 could be 1. You

have to make some slight changes in the proof to adapt

it to this new situation.) �

Problem 12. Prove that if p is a prime number and

p 6= 2 then p is odd.

In the following problems, you may want to use the

division theorem: If a, b are integers and b 6= 0,

then it is possible to write a = bq+r, where q, r

are integers such that 0 ≤ r < |b|. (For example:

if a is an integer then we can write a = 3q + r where

r = 0 or r = 1 or r = 2.)

Problem 13. Prove that if p is a prime number such

that p + 2 and p + 4 are also prime, then p = 3.
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Problem 14.

1. Find at least ten different prime numbers p such

that p + 4 is also prime.

2. Prove that the only prime number p such that p+4

and p + 8 are also prime is p = 3.

3. Prove that there does not exist a prime number p

such that p + 4, p + 8 and p + 12 are also prime.

Problem 15.

1. Find at least ten different prime numbers p such

that p + 6 is also prime.

2. Find at least ten different prime numbers p such

that p + 6 and p + 12 are also prime.

3. Find at least four8 different prime numbers p such

that p + 6, p + 12 and p + 18 are also prime.

4. Prove that there exists a unique prime number p

such that p + 6, p + 12, p + 18 and p + 24 are also

prime.

5. Prove that there does not exist a prime number p

such that p+6, p+12, p+18, p+24 and p+30 are

also prime.
8There are many more. I am just asking you to find four because I don’t want to make

you work too hard.
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Problem 16.

1. Express the integer 28 as a difference of two squares

of integers. (That is, find two integers m,n such

that m2 − n2 = 28.)

2. Express the integer 29 as a difference of two squares

of integers. (That is, find two integers m,n such

that m2 − n2 = 29.)

3. Prove that it is not possible to express the integer

30 as a difference of two squares of integers. (That

is, prove that there do not exist two integers m,n

such that m2 − n2 = 30.) �
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3 More examples of proofs: irrationality of√
2 and of other numbers

3.1 Numbers and number systems

There are several different kinds of numbers, i.e., several

different number systems. It is convenient to give the

number systems names, and to introduce mathematical

symbols to represent them.

3.1.1 The most common types of numbers

Here are some examples of number systems:

• the symbol IN stands for the set of natural numbers,

• the symbol Z stands for the set of integers,

• the symbol Q stands for the set of rational numbers,

• the symbol IR stands for the set of real numbers,

• the symbol C stands for the set of complex numbers,

• there are sets Z2, Z3, Z4, Z5, Z6, and, more generally,

Zn—the set of integers modulo n—for every natural

number n such that n ≥ 2. (So, for example, there

are the systems Z2, Z3, Z10, Z11, Z5403.)

Some of the above kinds of numbers should be familiar

to you, and others may be less so or not at all. Do not

worry if you find on our list things that you have never
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heard of before: we will be coming back to the list later,

and discussing all the items in much greater detail.

A number can belong to different number systems, in

the same way as, say, a person can belong to different

associations. (For example, somebody could be a mem-

ber, say, of the American Association of University Pro-

fessors, the Rutgers Alumni Association, and the Sierra

Club. Similarly, the number 3 belongs to lots of different

number systems, such as, for example, IN, Z, Q, and IR.)

At this point, we will just discuss IN, Z, Q, and IR,

and we will do so very briefly. We will talk much more

about these systems later, and we will also discuss later

other number systems such as C, and the Zn.

The symbols IN, Z, Q, IR, C, are special

mathematical symbols. They are not the

capital letters N, Z, Q, R, C.

(Why do we use these special symbols? It’s because

mathematicians need to use lots of letters in their proofs,

so they do not want to take the letters C, R, for example,

and declare once and for all that they stand for “the set of

all complex numbers” and “the set of all real numbers”.

For example, if they are working with a circle, they want

to have the freedom to call the circle “C”, and to say “let

R be the radius of C”, and this would not be allowed if
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the symbols “C”, “R” already stood for something else.

So they invented the special symbols C, IR to stand for

the set of complex numbers and the set of real numbers,

so that the ordinary letters C, R, will be available to be

used as variables.)

Please do not say “IN is the natural numbers”, or

“Z is the integers”. When we group things to-

gether to create a set, that set is one thing, not

many things. So IN cannot be “the natural num-

bers”. What you can, and should, say is: “IN is

the set of all natural numbers.”

3.1.2 The symbol “∈”

If S is a set and a is an object, we write

a ∈ S

to indicate that a is a member of S.

And we write

a /∈ S
to indicate that a is not a member of S.
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How to read the “∈” symbol

The expression “a ∈ S” is read in any of the following
ways:

- a belongs to S,

- a is a member of S,

- a is in S.

The expression “a /∈ S” is read in any of the following
ways:

- a does not belong to S,

- a is not a member of S,

- a is not in S.

Remark 2. Sometimes, “a ∈ S” is read as “a belonging

to S”, or “a in S”, rather than “a belongs to S”, or “a

is in S.” For example, if we write

Pick an a ∈ S,

then it would be bad English grammar to say “pick an a

belongs to S”. But “pick an a belonging to S”, “pick an

a in S”, or “pick an a that belongs to S”, are fine. �
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Never read “∈” as “is contained in”, or ”is

included in”. The words “contained” and “in-

cluded” have different meanings, that will be dis-

cussed later.

3.1.3 The natural numbers

The symbol IN stands for the set of all natural numbers.

(Natural numbers are also called “positive integers”, or—

sometimes—”whole numbers”, or “counting numbers”.)

The members of this set are the numbers 1, 2, 3 . . ..

More precisely:

The natural numbers are the numbers ob-

tained from the number 1 by adding 1 any number

of times. So, for example, the numbers 1, 1 + 1

(i.e., 2), 1+1+1 (i.e., 3), 1+1+1+1 (i.e., 4), are

natural numbers. And so are the numbers 4, 503,

46, 902, 444, 531, 322 and 1010
1010

10

.

The symbol IN stands for the set of all natural

numbers.

3.1.4 The integers

The symbol Z stands for the set of all integers.
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The members of Z (i.e., the integers) are the natural

numbers as well as 0 and the negatives of natural num-

bers, i.e., the numbers −1, −2, −3, etc. So, to say that a

number n is an integer, we can write “n ∈ Z”, which we

read as “n belongs to the set of integers” or, even better,

as “n is an integer”.

So, for example, the following statements are true:

35 ∈ IN

35 ∈ Z

∼ −35 ∈ IN

−35 ∈ Z

35 /∈ Z

0 ∈ Z

∼ 0 ∈ IN

0 /∈ IN

0.37 /∈ Z

π /∈ Z .

3.1.5 The real numbers

The symbol IR stands for the set of all real numbers.

The real numbers are those numbers that you have

used in Calculus. They can be positive, negative, or zero.

The positive real numbers have an “integer part”, and
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then a “decimal expansion” that may terminate after a

finite number of steps or may continue forever. (So, for

example, the number 4.23 is a real number, and so is

the number π. The decimal expansion of the number

4.23 terminates after two decimal figures, but the decimal

expansion of π goes on forever. Here, for example, is the

decimal expansion of π with 30 decimal digits:

3.141592653589793238462643383279 .

Using Google you can find π with one million digits. As

of 2011, 10 trillion digits of π had been computed, and no-

body has found any pattern! Even simple questions, such

as whether every one of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

appears infinitely many times, are unresolved.)

And the negative real numbers are the negatives of the

positive real numbers. So, for example, −4.23 and −π

are negative real numbers.

3.1.6 Positive, negative, nonnegative, and nonpositive numbers

In this course, “positive” means “> 0” (i.e., “greater than

zero”), and “nonnegative” means “≥ 0” (“greater than

or equal to zero”). So, for example, 3 and 0.7 are positive

(and nonnegative), and 0 is nonnegative but not positive.

Similarly, “negative” means “< 0”, and “nonpositive”

means “≤ 0”. So, for example, −3 and −0.7 are negative
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(and nonpositive), 0 is nonpositive but not negative.

3.1.7 Subsets

A set A is a subset of a set B if every member of A is

a member of B. We write A ⊆ B to indicate that A is

a subset of B.

For example,

a. If S is the set of all people in the world. and T is the

set of all people who live in the United States, then

T is a subset of S. So the sentence “T ⊆ S” is true.

b. If A is the set of all animals, and G is the set of

all giraffes, then G is a subset of A, so the sentence

“G ⊆ A” is true.

c. Let S be the set of all people who live in the United

States, and let C be the set of all U.S. citizens. Is

C a subset of S? The answer is “no”, because there

are U.S. citizens who do not live in the U.S., so these

people are members of C but not of S, so it’s not

true that every member of C belongs to S.

And here are some mathematical examples:
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I. The following sentences are true:

IN ⊆ Z ,

IN ⊆ IR ,

Z ⊆ IR ,

because every natural number is an integer, every

natural number is a real number, and every integer

is a real number.

II. And the following sentences are false:

Z ⊆ IN ,

IR ⊆ IN ,

IR ⊆ Z .

(For example, it is not true that Z ⊆ IN, because not

every integer is a natural number since, for example, 0 ∈
Z but 0 /∈ IN.)

3.1.8 The word “number”, in isolation, is too vague

As we have seen, there are different kinds of numbers. So,

if you just say that something is a “number”, without

specifying what kind of number it is, then this is too

vague. In other words,
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Never say that something is a “number”, unless you have

made it clear in some way what kind of “number” you

are talking about.

For example, suppose you are asked to define “divisible”,

and you write:

A number a is divisible by a number b if

we can write a = bc for some number c.

This is too vague! What kind of “numbers” are we

talking about? Could they be real numbers?. If this was

the case, then 3 would be divisible by 5, because 3 = 5.z,

if we take z = 3/5. But we do not want 3 to be divisible

by 5. And we want the “numbers: we are talking about

to be integers.

So here is a correct definition of “divisible”:

Divisibility of integers: We say that an integer a is

divisible by an integer b (or that a is a multiple of b, or

that b is a factor of a, or that b divides a), if we can write

a = bc

for some integer c. �

For example, the following sentences are true:

3 divides 6 ,

−3 divides 6 ,
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6 is divisible by 3 ,

6 is a multiple of 3 ,

3 is a factor of 6 .

3.2 Existential statements

In the definition of divisibility given above, we have used

the words “we can write”. This language makes it sound

as though, in order to decide whether, say, 3 divides 6,

we need to have somebody there who “can write” things.

This should not be necessary: “3 divides 6” would be a

true sentence even if there was nobody around to do any

writing. So it is much better to use a more impersonal

language:

Divisibility of integers

DEFINITION. An integer a is divisible by
an integer b (or a is a multiple of b, or b is a
factor of a, or b divides a), if there exists an
integer c such that

a = bc .

The sentence “there exists an integer c such that a =

bc” is an example of nn existential sentence, i.e., a

sentence that asserts that an object of a certain kind
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exists. Later, when we learn to write mathematics in

formal language (that is, using only formulas), we will

see that this sentence can be written as follows:

(∃c ∈ Z)a = bc . (3.12)

The symbol “∃” is the existential quantifier sym-

bol, and the expression “(∃c ∈ Z)” is an existential

quantifier, and is read as “there exists an integer c such

that”.

So Sentence (3.12) is read as “there exists an integer c

such that a = bc”. And it can also be read as “a = bc

for some integer c”, or “it is possible to pick an integer c

such that a = bc”. (I recommend the “it is possible to

pick ...” reading.)

3.2.1 The rule for using existential statements (Rule ∃use)

Suppose you know that cows exist, that is that

(∃x)x is a cow . (3.13)

Then the rule for using existential statements says that

we can introduce into our conversation a cow, and give

her name, by saying something like “pick a cow and call

her Suzy”.

In general,
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• For a sentence (∃x)P (x), a witness is an object a

such that P (a). (For example: for the sentence

(3.13), a witness is any a such that a is a cow, that

is, any cow.)

• For a sentence (∃x ∈ S)P (x), a witness is an object

a which belongs to S and is suchthat P (a). (For

example, if C is the set of all cows, then a witness

for the sentence (∃x ∈ C)x is brown is any brown

cow.)

The rule for using existential statements (Rule

∃use) says that, if you know that an existential

statement is true, then you can “pick a wit-

ness and give it a name”.

For example: suppose you know that a natural number

n is not prime and is > 1. Then you know that the

following is true: (∃m ∈ IN)(m|n and m 6= 1 and m 6=
n). (That is, n has a factor which is a natural number

and is not equal to 1 or n.) Then Rule ∃use says that we
can pick a witness and call it a, that is, we can pick a

natural number a such that a|n, a 6= 1 and a 6= n.
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Rule ∃use

• From

(∃x)P (x)

you can go to “Let w be a witness for

(∃x)P (x), so P (w),” or “Pick a witness for

(∃x)P (x) and call it w”, or “Pick a w such

that P (w).”

• From

(∃x ∈ S)P (x)

you can go to “Let w be a witness for (∃x ∈
S)P (x), so w ∈ S and P (w),” or “Pick a

witness for (∃x ∈ S)P (x) and call it w”, or

“Pick a w such that w ∈ S and P (w).”

For example:

i. If you know that Polonius has been killed, but you

do not know who did it, then you can talk about the

person who killed Polonius and give a name to that

person, for example, call him (or her) “the killer”.

ii. if you know that an equation (say, the equation 3x2+

5x = 8) has a solution (that is, you know that the

existential statement “there exists a real number x
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such that 3x2+5x = 8” is true) then you are allowed

to pick a solution and call it, for example9, “a”.

3.3 Pythagoras’ Theorem and two of its proofs

Pythagoras’ Theorem is one of the oldest and most im-

portant theorems in Mathematics. It is named after the

Greek mathematician and philosopher Pythagoras, who

lived approximately from 570 to 495 BCE, although there

is a lot of evidence that the theorem (but probably not

the proof) was known before, by the ancient Babylonians.

The statement of the theorem is as follows:

Theorem 3. (Pythagoras’ Theorem) If T is a right tri-

angle10, c is the length of the hypothenuse11 of T , and

a, b are the lengths of the other two sides, then

a2 + b2 = c2 . (3.14)

There are many different proofs of Pythagoras’ Theo-

rem. I am going to give you two proofs.
9Can you call this solution x? This is a complicated issue. Think of this as follows:

the letter x is really a slot where you can put in a number. A number that can be put in
the slot so as to make the formula true is called a “solution”. The solution and the slot
are two different things. So it is not a good idea to use the same name for both. If you
do things very carefully, it turns out that it is O.K. to call both the slot and a solution
with the same name, but I strongly recommend that you do not do it. For example the
equation 3x2 + 5x = 8 has are two solutions, namely, 1 and − 8

3
. Which one is “x”? You

cannot call both of them “x”, because they are different. So I think it is better to call one
of the solutions a (or A, or u, or U , or p, or P , or α, or ♥) and then call the other one a
different name (say b, or B, or v, or V , or q, or Q, or β, or ♣).

10A right triangle is a triangle having one right angle
11The hypothenuse of a right triangle T is the side opposite to the right angle of T .
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Pythagoras’ proof. We draw a c× c square PQRS, and

then attach at each side a copy12 of T as shown in the

picture.

c

c

c c

a

a

a

a

b

b

b

b

    P Q

RS

C

C

C

C

1

2

4

3

The point P lies on the straight line segment from C1

to C2, because

1. If α1 is the angle at S of the triangle SC1P , and α2 is

the angle at P of the triangle PC2Q, then α1 = α2,
12For those who have studied Euclidean Geometry in high school: a copy of a figure F is

a figure F ′ congruent to F . “Congruent to F” means: “obtainable from F by combining
displacements and rotations. For example, the triangles QC3R, RC4S, and SC1P are all
congruent to PC2Q.
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because the triangles SC1P and PC2Q re congruent.

2. Similarly, if β1 is the angle at P of the triangle SC1P ,

and β2 is the angle at Q of the triangle PC2Q, then

β1 = β2, because the triangles SC1P and PC2Q are

congruent.

3. Since SC1P and PC2Q are both right triangles, and

the sum of the angles of every triangle is 180o, we

have

α1 + β1 + 90o = 180o and α2 + β2 + 90o = 180o ,

so

α1 + β1 = 90o and α2 + β2 = 90o .

4. Since α1 = α2, it follows that α2 + β1 = 90o,

5. Hence the angle θ between the segments PC1 and

PC2 is equal to α2 + 90o + β1, i.e., to 180o. This

proves that the segments PC1 and PC2 lie on the

same straight line, so P lies on the segment C1C2.

A similar argument shows that Q lies on the segment

C2C3, R lies on the segment C3C4, and S lies on the

segment C4C1.

So the polygonal C1PC2QC3RC4SC1 is a square.

Let d = a+b. Then the sides of the square C1C2C3C4

have length d.
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Therefore the area of the square C1C2C3C4 is d
2.

On the other hand, the smaller square PQRS has side

of length c, so its area is c2. Each of the four triangles has

area ab
2 . So the area of C1C2C3C4 is equal to c

2+4× ab
2 ,

i.e., to c2 + 2ab.

It follows that

(a + b)2 = d2

= c2 + 4× ab

2
= c2 + 2ab .

On the other hand, (a+ b)2 = a2+ b2+2ab. It follows

that

a2 + b2 + 2ab = c2 + 2ab .

Subtracting 2ab from both sides, we get

a2 + b2 = c2 ,

which is the desired result. Q.E.D.

Proof using similar triangles. Let C be the vertex of

T where the right angle is located, and let A, B be the

other two vertices.

Draw a line through C perpendicular to the line AB,

and let H be the point where this line intersects the line

AB.
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A

H

β

α

C
B      

Let α, β be the angles of T at A, B, so α + β = 90o.

The angle of ACH at H is also 90o, and the angle at A

is α. Hence the angle of ACH at C is β. So the triangles

ABC and ACH are similar. Hence the sides opposites

to equal angles are proportional. That is:

|AC|
|AH| =

|AB|
|AC| ,

from which it follows that

|AC|2 = |AH| · |AB| .
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A similar argument shows that

|BC|2 = |BH| · |AB| .
Adding both equalities we get

a2 + b2 = |AH| · |AB| + |HB| · |AB|
=

(

|AH| + |HB|) · |AB|
= |AB| · |AB|
= |AB|2
= c2 .

So a2 + b2 = c2, as desired. Q.E.D.

3.4 Irrational numbers

In this section we will prove a very important fact, namely,

that “the number
√
2 is irrational”. This means, roughly,

the same thing as “there does not exist a rational num-

ber r such that r2 = 2.” (The two statements do not

say exactly the same thing. I will discuss how they differ

later.)

But first I want to explain what this means and why

this result is so important. And to do this we need a small

philosophical digression into the question: what is a

“number”?. (If you are not interested in philosophical

questions, you may skip this discussion and move on to

subsection 3.4.4.)
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3.4.1 What are “numbers”?

We have already been talking quite a bot about “num-

bers”, but I never told you what a “number” is. The

question “what is a number?” is not an easy one to an-

swer, and I will not even try. But there are some tings

that can be said.

1. Numbers are, basically, tags (or labels) that we use

to specify the amount or quantity of something, i.e.,

to answer the questions “how much ...?” or “how

many ...?”

2. Since ancient times, it was understood that there are

at least two kinds of “numbers”:

(a) The counting numbers, that we use to spec-

ify amounts of discrete quantities, such as coins,

people, animals, stones, books, etc.

• counting numbers are used to count: 1, 2, 3,

4, 5, and so on,

• they are the ones that answer questions

of the form “how many ... are there?”;

• they vary in discrete steps: they start

with the number 1, then they “jump” from 1

to 2, and there is no other counting number

between 1 and 2, then they “jump” from 2
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to 3, and there is no other counting number

between 2 and 3, and so on.

(b) Themeasuring numbers, that we use to spec-

ify amounts that can vary continuously, such as

lengths, areas, volumes, weights.

• measuring numbers are used tomeasure con-

tinuously varying quantities;

• they are the ones that answer questions

of the form “how much ... is there?”;

• they vary continuously, so that, for exam-

ple, when you pour water into a cup, if at some

time point there are 10 ounces in the cup, and

later there are 12 ounces, it does not occur to

us that the amount of water in the cup may

have jumped directly from 10 to 12 ounces:

we understand that at some intermediate time

there must have been 11 ounces, and at some

time before that there must have been 10.5

ounces, and at some time before that there

must have been 10.25 ounces, and at some

time before the amount of water in the cup

was 10.15309834183218950482 ounces; and so

on13. At no time did the amount of water
13WARNING: The words “and so on” here are very imprecixse. It’s not at all what

they mean. When I talk about the counting numbers and I write “1, 2, 4, 5, and so
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“jump”14 from some value u to some larger

value v.

• they can be subdivided indefinitely: for

example

– You can take a segment of length 1 (assum-

ing we have fixed a unit of length), and di-

vide it into seven equal segments, each one

of which has length 1
7. And then you can

draw segments whose lengths are 3
7, or

4
7,

or 9
7, or

23
7 , thus getting fractional lengths.

– And, instead of 7, you can use any denom-

inator you want, and get lengths such as 5
2,

12
5 ,

29
17,

236,907
189,276, and so on.

– Hence, if n and m are any natural num-

bers, then we can (at least in principle)

construct segments of length m
n . That is,

we can construct segments of length f , for

any fraction f .

on”, you know exacrtly what comes next: it’s 6. But when I write “11, 10.5, 10.25,
10.15309834183218950482, and so on”, I haven’t the faintest idea what comes next! So
the “and so on” for counting numbers is acceptable, but the “and so on” for measuring
numbers is not, and when we do things rigorusly and precisely we must get rid of it.

14To make this precise, one needs to use tha language of Calculus: if w(t) is the amount
of water at time t, then w is a continuous function of t. The trouble with this is: at this
point you only have a nonrigorous, not very precise idea of what a “continuous function”
is. You will learn to define the notion of “continuous function”, and work with it, and
prove things about it, in your next “Advanced Calculus” or “Real Analysis” course.
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The measuring numbers such as 5
2,

12
5 ,

29
17, or

236,907
189,276,

that can obtained by dividing a counting number m into

n equal parts, where n is another counting number, are

called fractions.

And this suggests an idea:

Idea 1: Perhaps the measuring numbers are exactly

the same as the fractions.

In other words: suppose we use the length u of some

straight-line segment U as the unit for measuring length.

(That is, we call the lenght of this segment “meter”, or

“yard”, or “foot”, or “mile”, and then we try to express

every length in meters, or yards, or feet, or miles.) When

we do that, we will of course need fractions to expres some

lenghts because, for example, if we measure distances in

miles, not every distance will be 1 mile, or 2 miles, or

n miles for some counting number n. Some distances

will be, say, half a mile, or three quarters of a mile, on

thirteen hundredths of a mile, or forty-seven thousandths

of a mile15.
15Here is another important difference between counting and measuring numbers: to

count things using counting numbers you do not need units, but to measure amounts using
measuring numbers you do. If you are asked how many pills there are in a bottle, then
you answer “six”, or “twenty-five’, or whatever, and nobody is going to ask “six what?”.
But if you are asked how much water there are in the bottle, and you answer “six”, then
somebody is going to ask “six what?”, expecting that you will say something like “six
ounces”, or “six liters”, because if you do not specify the units of your measurement the
number you gave is meaningless.
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Then Idea 1 suggests that the length of every segment

V should be equal to a fraction m
n times u (wnerem,n are

natural numbers, i.e., counting numbers). That means

that if we divide the segment U into n equal segments

of length w = u
n, then the length of U is n times w,

and the length of V is m times w. So U and V are

commensurable. Since we can take U and V to be any

two segments we want, we find that If Idea 1 i true,

then any two segments are commensurable.

COMMENSURABLE LENGTHS

“Commensurable” means “measurable together”.

Precisely:

Definition 9.

• Two segments U , V , are commensurable if

you can use a ruler of the same length w to

“measure u and v together”, that is, to ex-

press both lengths u and v as integer multi-

ples mw, nw of the unit of length w.

• Two segments U , V , are incommensurable if

they are not commensurable.

But then a momentous discovery of far-reaching conse-

quences was made:
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There are incommensurable lenghts.

That is, it is not true that any two lengths are

commensurable.

Precisely: it is possible to construct geometricallly16 a

segment whose length r satisfies r2 = 2. For example,

if we draw a square whose sides have length 1, then the

length r of the diagonal of the square will satisfy r2 = 2,

by Pythagoras’ theorem.

16What does “constructing geometrically” mean? This is tricky. For Euclid (who lived
about 23 centuries ago), “constructing geometrically” meant “constructing with a ruler
and compass”. (See the Wikipedia article ”Compass and straightedge consrtuctions”.)
Using ruler and compass, one can construct lines and circles, but there are lots of other
curves—for example, ellipses—that cannot be constructed that way. On the other hand,
there are other equally “geometric” methods that can be used to construct some of those
curves. For example, ellipses can be constructed using pins and strings. (See the Wikipedia
article “Ellipses”.)
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r

1

1

=1 +1   = 2
22

r
2

And it was discovered that there is no fraction r

such that r2 = 2. This means that

I. If you believe that “number” means “fraction”, then

there is no number that measures the length of the

diagonal of a square whose sides have lengt 1.

II. If you are willing to accept that there could be “num-

bers” that are not fractions, then maybe there is a

number r that measures the length of the diagonal of

a square whose sides have lengt 1, but that number

r, that we could call “
√
2”, is not a fraction.
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Today we would say that

• Those numbers that are not fractions, such as
√
2,

do indeed exist, and we call them “real numbers”.

• The fractions, called “rational17 numbers”, are real

numbers, but many real numbers are “irrational”

numbers, that is, numbers that are not rational.

• Actually, most18 real numbers are not rational.

• It took mathematicians more than 2,000 years after

the discovery of the irrationaly of
√
2 to come up

with a truly rigorous definition of the concept of “real

number”. (The name “real number” was introduced

by Descartes in the 17th century. The first rigorous

definition was given by George Cantor in 1871, and

the most widely used definitions were proposed by

Karl Weierstrass and Richard Dedekind.
17The word “rational” here has nothing to do with “rationality” in the sense of “in

accordance withb reason or logic”. It comes from the word “ratio”, which means “quo-
tient”. An “irrational number” is a number that is not the quotient (“‘ratio”) of two
integers. If you hear somebody say something like “scientists have shown that nature is
irrational: mathematicians have shown that irrationality is everywhere present, because
most numbers are irrational”, then you shoud realize that thit is an ignorant statement by
somebody who does not understand what “irratioanl numbers” are. The “irrationality” of
irrational numbers has nothing to do with their being unreasonable, absurd, or illogical;
it just means that they are not quotients of two integers.

18If this statement does not strike you as incomprehensible because you don’t know
what it means, you should think again, and ask yourself “what could it possibly mean to
say that most real numbers are irrational”? It turns out that this can be made precise,
but making it precise is hard.
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3.4.2 Why was the irrationality of
√
2 so important?

The discovery of the inconmensurability of
√
2 was made,

according to legend, by Hippasus of Metapontum,

who lived in the 5th century B.C.E and was a member of

the religious sect of the Pythagoreans, i.e., the followers of

the philosopher and mathematician Pythagoras19. And

the legend also says that the discovery was so shocking

to the Pythagoreans that Hippasus was drowned at sea,

as punishment for having divulged the secret. (But this

is a legend, and there is no evidence that it is true.)

Why was the existence of inconmensurable magnitudes

so upsetting to the Pythagoreans? The reason is this: the

Pythagoreans were a mystical-religious cult.

19Yes, that’s the same Pythagoras of Pythagoras’s theorem.
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The Pythagoreans honored the effort put into

mathematics, and coordinated it with the ob-

servation of the cosmos in various ways, for

example: by including number in their reason-

ing from the revolutions and their difference

between them, by theorizing what is possi-

ble and impossible in the organization of the

cosmos from what is mathematically possible

and impossible, by conceiving the heavenly

cycles according to commensurate numbers

with a cause, and by determining measures of

the heaven according to certain mathematical

ratios, as well as putting together the natu-

ral science which is predictive on the basis of

mathematics, and putting the mathematical

objects before the other observable objects in

the cosmos, as their principles.

From the Wikipedia article on Pythagore-

anism, which quotes the Protrepticus, by

D. S. Hutchinson and M. R. Johnson, a

2015 reconstruction of a lost dialogue of

Aristotle.

In other words, for the Pythagoreans everything in the

world was determined by ratios (i.e. quotients) of “num-

bers”, and for them “number” meant “natural number”
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(i.e., counting number). The discovery that some lengths

were not ratios of “numbers” undermined the Pythagorean

system to such an extent that the members of the sect felt

it necessary to conceal this fact from the general public.

But it is important to put all this in proper perspective:

there is no real proof that Hippasus truly was the discov-

erer of the irrationality of
√
2, or that he was drowned at

sea for that discovery.

3.4.3 What is a “real number”, really?

The discovery that there are lengths that are inconmensu-

rable with one another naturally forced mathematicians

to ask a fundamental question: what is a “number”,

really?

And, as we have explained, it took more than 2,000

years until mathematicians found a satisfactory answer.

3.4.4 The most important number systems: real numbers vs. in-
tegers and natural numbers; definition of “rational number”

Now let us look at the main number systems20 that math-

ematicians use today.

1. The measuring numbers, together with their nega-

tives, and zero, are called real numbers.
20There are many number systems. What we will do here is barely scratch the surface

of a very rich theory.



Math 300, Fall 2019 68

2. The set of all real numbers is called IR. (It is also

called “the set of all real numbers”, or “the real

line”.)

3. The counting numbers are called natural num-

bers. (They are also called “positive integers”.)

4. The set of all natural numbers is called IN.

5. The natural numbers, together with their negatives

and zero, are called integers.

6. The set of all integers called Z.

7. The real numbers that are quotients of two integers

are called rational numbers. That is, we have

the following key definition:
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Definition 10.

• A rational number is a real number r such

that there exist integers m,n for which:

(a) n 6= 0

(b) r = m
n .

• The set of all rational numbers is called Q.

(So “x ∈ Q” is a way of saying “x is a rational

number”.)

• In formal language: If r ∈ IR, then r ∈ Q ifa

(∃m∈Z)(∃n∈Z)
(

n 6=0 and r=
m

n

)

. (3.15)

• An irrational number is a real number r which

is not rational.
aFormula (3.15) is not yet completely formal, because it contains the word

“and”. Soon we are going to leanr the symbol “∧” for “and”, and then we will

be able to rewrite (3.15) as (∃m ∈ Z)(∃n ∈ Z)
(

n 6= 0 ∧ r = m
n

)

.

3.4.5 A remark about sets

We will spend a lot of time in this course studying sets.

At this point, all you need to know is that

• sets have members.
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• If S is a set and x is an object (for example, a number

or a person or a giraffe or a set) then “x ∈ S” is a

way of saying that x is a member of S.

• “x ∈ S” is read as “x belongs to S”, or “x is in S”,

or “x is a member of S”.

• We write “x /∈ S” to indicate that x is not a member

of S.

• So, for example,

– If C is the set of all cows, then to say that Suzy

is a cow we can equally well say “Suzy∈ C”.

– You can read “Suzy∈ C in any of the following

ways:

1. Suzy belongs to C,

2. Suzy is in C,

3. Suzy belongs to the set of all cows,

4. Suzy is a cow.

But the third reading, although correct, is very

stupid, because there is no reason to say “Suzy

is a member of the set of all cows” when you can

say the same thing in a much shorter and simpler

way by saying “Suzy is a cow”.

– Similarly, you can read “Suzy/∈ C in any of the

following ways:



Math 300, Fall 2019 71

1. Suzy does not belong to C,

2. Suzy is not in C,

3. Suzy does not belong to the set of all cows,

4. Suzy is not a cow.

And the third reading, though correct, sounds

silly, so you would never say it that way.

• Here is another example.

– “IN”, as we know, is the set of all natural num-

bers. So, to say that 3 is a natural number we

can equally well say “3 ∈ IN”.

– You can read “3 ∈ IN in any of the following

ways:

1. 3 belongs to IN,

2. 3 is in IN,

3. 3 belongs to the set of all natural numbers,

4. 3 is a natural number.

But the third reading, althogh correct, is very

stupid, because there is no reason to say “3 is a

member of the set of all natural number” when

you can say the same thing in a much shorter and

simpler way by saying “3 is a natural number”.



Math 300, Fall 2019 72

Problem 17. For each of the following formulas,

(a) translate the formula into English,

(b) indicate whether it is true or false.

Give the best, most natural English translation. For

example, the formula “1 ∈ IN” could be translated as

“1 belongs to the set of natural numbers”, but this

sounds very awkward. A much better way to say the

same thing in English is “1 is a natural number”, so

this translation is to be preferred.

1. −3 ∈ IN,

2. 0 ∈ IN,

3. 0 /∈ Z,

4. 0 ∈ Z,

5. −3 ∈ IR,

6. 0 ∈ IR,

7. 0 /∈ IR,

8. 0 ∈ IR,

9. 0 ∈ Q,

10. 3 ∈ Q,

11. −3 ∈ Q,

12. 237
42 ∈ Q,

13.
√
2 ∈ Q,

14.
√
2 /∈ Q,

15. π ∈ Q.
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3.4.6 Proof of the irrationality of
√
2

As explained before, we could state the theorem on the ir-

rationality of
√
2 by saying that “

√
2 is irrational”. This,

however, would mean that there is a “number
√
2”, i.e.,

a number whose square is 2. But the issue whether such

a number exists is different from the one that concerns

us here, namely, whether there exists a rational number

r such that r2 = 2. So I prefer to state the theorem in

a way that does not imply any a priori commitment to

the existence of a “number” r such that r2 = 2.

And, before we give the proof, we introduce a few con-

cepts and state some facts that will be used in the proof,

(These facts will be proved later in the course.)

THE DEFINITION OF “EVEN” AND

“ODD” INTEGERS

Definition 11. Let a be an integer. We say that

a is even if it is divisible by 2. And we say that a

is odd if it is not even.

The integers 1 are −1 are factors of every integer, be-

cause if n ∈ Z then n = n× 1 and n = (−n)× (−1), so

n is divisible by 1 and by −1. So 1 and −1 are not very

interesting factors, because they are always there. So we

refer to 1 and −1 as the trivial factors of an integer.
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THE DEFINITION OF “COPRIME”

INTEGERS

Definition 12.

• Let a, b be integers. We say that a and b are

coprime if they do no have any nontrivial com-

mon factors.

• We write “a ⊥ b” to indicate that a and b are

coprime.

• In formal language, if a ∈ Z and b ∈ Z, then

a ⊥ b if

∼ (∃k ∈ Z)(k|a and k|b and k 6= 1 and k 6= −1) .

Example 9. The integers 12 and 35 are coprime. In-

deed:

• The factors of 12 are 1, −1, 2, −2, 3, −3, 4, −4, 6,

−6, 12 and −12.

• The factors of 35 are 1, −1, 5, −5, 7, −7, 35 and

−35.

So the only common factors are 1 and −1, i.e., the trivial

factors. Hence 12 and 35 are coprime. �
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3.5 The proof of the irrationality of
√
2

Now, finally, we are ready to prove that
√
2 is irrational.

We are going to use two facts:

Fact 1. Every rational number is equal to a

quotient m
n of two coprime integers.

Fact 2. The product of two odd integers is odd.

Theorem 4. There does not exist a rational number

r such that r2 = 2.

Proof. We give a proof by contradiction .

Assume that there exists a rational number r such

that r2 = 2.

Pick one such number and call it r. (Here we are

using Rule ∃use.)
Using the fact that r ∈ Q, we may pick integersm,n

such that

(1) n 6= 0,

(2) r = m
n ,

(Here we are using again Rule ∃use.)
Using Fact 1, we may actually choose m,n such that
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(3) m and n are coprime.

Since r2 = 2, we have m2

n2
= 2.

Therefore m2 = 2n2.

So m2 is even.

But then m is even. (Reason: Assume21 that m is

not even. Then m is odd. So by Fact 2, m2 is odd.

But we have proved that m2 is even. So m2 is not

odd. Therefore m2 is odd and m2 is not odd, which

is a contradiction.)

Since m is even, m is divisible by 2, that is, (∃k ∈
Z)m = 2k.

So we may pick an integer k such that m = 2k.

Then m2 = 4k2.

But m2 = 2n2.

Hence 2n2 = m2 = (2k)2 = 4k2.

Therefore n2 = 2k2.

So n2 is even.
21Notice that we have a proof by contradiction within our main proof by contradiction.
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But then n is even. (Reason: Assume22 that n is not

even. Then n is odd. So n2 is odd by Fact 2. But

we have proved that n2 is even. So n2 is not odd.

Therefore n2 is odd and n2 is not odd, which is a

contradiction.)

So m is even and n is even.

Therefore m and n are divisible by 2.

So m and n have a nontrivial common factor.

Hence m and n are not coprime .

But m and n are coprime

So m and n are coprime and m and n are not coprime ,

which is a contradiction.

So the assumption that there exists a rational number r

such that r2 = 2 has led us to a contradiction,

Therefore there does not exist a rational number r such that r2 = 2 .

Q.E.D.

3.6 More irrationality proofs

We now use the same technique to prove that
√
3 is ir-

rational. The key point here is to realize that “even vs.
22Another proof by contradiction !
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odd” now has to be replaced by “divisible by 3 vs. not

divisible by 3”. And, in order to do the crucial step (the

analogue of “if m2 is divisible by 2 then m is divisible by

2”) we need a generalization of Fact 2:

Fact 3. If p is a prime number, then the product of

two integers that are not divisible by p is not divisible

by p either.

(We will prove Fact 3 later.)

Theorem 5. There does not exist a rational number

r such that r2 = 3.

Proof. We want to prove that ∼ (∃r ∈ Q)r2 = 2. We

will do a proof by contradiction .

Assume that (∃r ∈ Q)r2 = 2, i.e., there exists a

rational number r such that r2 = 3.

Pick one such number and call it r.

Using the fact that r ∈ Q, we may pick integersm,n

such that

(1) n 6= 0,

(2) r = m
n ,

Then, using Fact 1, we can actually choose m,n so

that
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(3) m and n are coprime.

Since r2 = 3, we have m2

n2
= 3.

Therefore m2 = 3n2.

So m2 is divisible by 3.

But then m is divisible by 3. (Reason: By Fact 3,

if m was not divisible by 3, it would follow that m2

is not divisible by 3 either. But m2 is divisible by 3,

and we got a contradicition.)

Since m is divisible by 3, we may pick an integer k

such that m = 3k.

Then m2 = 9k2.

But m2 = 3n2.

Hence 3n2 = 9k2, so

n2 = 3k2 . (3.16)

So n2 is divisible by 3.

But then n is divisible by 3. (Reason: By Fact 3, if n

was not divisible by 3, it would follow that n2 is not

divisible by 3 either. But n2 is divisible by 3, and we

got a contradicition.)

So 3 is a factor of m and 3 is a factor of n.
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Hence m and n have a nontrivial common factor.

So m and n are not coprime.

But m and n are coprime.

Therefore m and n are coprime and m and n are not coprime ,

which is a contradiction,

So the assumption that there exists a rational number r

such that r2 = 3 has led us to a contradiction,

Therefore there does not exist a rational number r such that r2 = 3 .

Q.E.D.

3.6.1 What happens when you make a mistake in a proof

Can we do the same that we did before to prove the

following theorem?

THEOREM: There does not exist a rational number r

such that r2 = 4.

Proof. We will do a proof by contradiction .

Assume that there exists a rational number r such

that r2 = 4.

Pick one such number and call it r.

Using Fact 1, we may pick integers m,n such that

(1) n 6= 0,
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(2) r = m
n ,

(3) m and n have no nontrivial common factors.

Since r2 = 4, we have m2

n2
= 4.

Therefore m2 = 4n2.

So m2 is divisible by 4.

But then m is divisible by 4. (Reason: By Fact 3,

if m was not divisible by 4, it would follow that m2

is not divisible by 4 either. But m2 is divisible by 4,

and we got a contradicition.)

Since m is divisible by 4, we may pick an integer k

such that m = 4k.

Then m2 = 16k2.

But m2 = 4n2.

Hence n2 = 4k2, so

n2 = 3k2 . (3.17)

So n2 is divisible by 4.

But then n is divisible by 4. (Reason: By Fact 3, if n

was not divisible by 4, it would follow that n2 is not

divisible by 3 either. But n2 is divisible by 4, and we

got a contradicition.)
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So 3 is a factor of m and 4 is a factor of n.

Hence m and n have a nontrivial common factor.

So m and n are not coprime.

But m and n are coprime.

Therefore m and n are coprime and m and n are not coprime ,

which is a contradiction,

So the assumption that there exists a rational number r

such that r2 = 4 has led us to a contradiction,

Therefore there does not exist a rational number r such that r2 = 4 .

Q.E.D.

Same proof, right?

WRONG!!!!!

What is wrong here?

1. The result is false. It is not true that there does not

exist a rational number r such that r2 = 4. Indeed,

if we take r = 2 then r is ratinal and r2 = 4.

2. Since the conclusion of the proof is false, the proof

itself must be wrong. That is, whoever wrote this

proof must have cheated23 in some step.
23Nothing personal here. “Cheat” means “violate the rules.” Of course, I haven’t told

you yet what the rules are, but let me anticipate one of them. You are allowed to use
a result that has been proved, but you are now allowed to make up a statement
that has not been proved and use it as if it was true.
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In our case, Fact 3 explicitly says that “if p is prime

then if a is not divisible by p it follows that a2 is not

divisible by p”. So we are allowed to apply Fact 3 if

p is prime, but we are not allowed to apply it if p is

not prime.

So the two steps where we applied Fact 3 are wrong.

In those steps, we cheated, by violating the rules.

The general principle is this: If a proof is correct then

you can be sure that the conclusion is true.

And another way to say that is this: if the conclu-

sion of a proof is false, then the proof must

be wrong. There has to be a mistake in the

proof itself.

So, if I give you a proof of a conclusion that is false,

you have to be able to find where in the proof the author

cheated. I will not be satisfied with a statement such as

“the proof is wrong because the conclusion is false.” I will

want to know where in the proof a mistake was made.

Consider the following analogy: If I am trying to drive

to Boston and end up in New York, then of course I can

conclude thta I did something worng. But I will want to

know what I did wrong, where I made a wrong turn. The

same happens with proofs.
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3.6.2 More complicated irrationality proofs

I hope it is clear to you that the same method, exactly,

will apply to prove that
√
5,

√
7,

√
11, and, more gener-

ally,
√
p for any prime number, is irrational.

Now let us try a more complicated case. Let us prove

that

Theorem 6. There does not exist a rational number

r such that r2 = 12.

Remark 3. The number 12 is not prime. (Actually,

12 = 4 × 3.) So we cannot apply Fact 3 with 12 in

the role of p.

Proof. We will do a proof by contradiction .

Assume that there exists a rational number r such

that r2 = 12.

Pick one such number and call it r, so r2 = 12..

Using the fact that r ∈ Q, we may pick integersm,n

such that

(1) n 6= 0,

(2) r = m
n ,

Then, using Fact 1, we may pick m,n such that
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(3) m and n are coprime.

Since r2 = 12, we have m2

n2
= 12.

Therefore m2 = 12n2.

Hence m2 = 3× 4n2.

So m2 is divisible by 3.

But then m is divisible by 3. (Reason: By Fact 3,

if m was not divisible by 3, it would follow that m2

is not divisible by 3 either. But m2 is divisible by 3,

and we got a contradicition.)

Since m is divisible by 3, we may pick an integer k

such that m = 3k.

Then m2 = 9k2.

But m2 = 12n2.

Hence 12n2 = 9k2, so

4n2 = 3k2 . (3.18)

So 4n2 is divisible by 3.

But then n is divisible by 3. (Reason: By Fact 3,

assume n is not divisible by 3; then by Fact 3 n2

is not divisible by 3; since 4 is not divisible by 3,
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another application of Fact 3 tells us that 4n2 is not

divisible by 3. But 4n2 is divisible by 3, so we got a

contradiction.)

So 3 is a factor of m and 3 is a factor of n.

Hence m and n have a nontrivial common factor.

So m and n are not coprime.

But m and n are coprime.

Therefore m and n are coprime and m and n are not coprime ,

which is a contradiction,

So the assumption that there exists a rational number r

such that r2 = 12 has led us to a contradiction,

Therefore there does not exist a rational number r such that r2 = 12 .

Q.E.D.

Problem 18. Prove that each of the following num-

bers is irrational:

1.
√
5,

2. 3
√
5,

3. 3
√
9,

4.
√
28,
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5.
√

2 +
√
2,

6.
√

2
3,

7.
√

27
31. �

Problem 19. Prove or disprove24 each of the fol-

lowing statements:

1. The sum of two rational numbers is a rational num-

ber.

2. The product of two rational numbers is a rational

number.

3. The sum of two irrational numbers is an irrational

number.

4. The product of two irrational numbers is an irrational

number.

5. The sum of two irrational numbers is a rational num-

ber.

6. The product of two irrational numbers is a rational

number.

7. The sum of a rational number and an irrational num-

ber is an irrational number.

8. The product of a rational number and an irrational

number is an irrational number. �
24To disprove a stetement means “to prove that the statement is false”. For example,

when we proved that
√
2 is irrational we disproved the statement ‘

√
2 is rational.
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Problem 20.

I. Explain why the following “proofs” that
√
2 +

√
3

and
√
6 are irrational (in which we are allowed to use

the facts that
√
2 and

√
3 are irrational) are wrong:

1. Proof that
√
2 +

√
3 is irrational:

We know that
√
2 is irrational.

We know that
√
3 is irrational.

Hence the sum
√
2+

√
3 is irrational. Q.E.D.

2. Proof that
√
6 is irrational:

We know that
√
2 is irrational.

We know that
√
3 is irrational.

Hence the product
√
2.
√
3 is irrational.

So
√
6 is irrational. Q.E.D.

II. Give correct proofs that
√
2 +

√
3 and

√
6 are

irrational. �

Problem 21. Prove that
√
2 + 3

√
2 is irrational. �

Problem 22. Prove that
√
2+

√
3+

√
5 is irrational.

(NOTE: This requires some hard thinking on your part.)

�

Problem 23. Prove that
√
2 +

√
3 +

√
5 +

√
7 is

irrational. (NOTE: This requires quite a lot of thinking

on your part.) �
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Problem 24. Prove that, if n ∈ IN, and p1, p2, . . . , pn
are n distinct primes, then

√
p1 +

√
p2 + · · · + √

pn is

irrational. (NOTE: This is very difficult.) �

3.7 A general theorem on irrationality of square roots

After having proved that various numbers such as
√
2,√

3,
√
5,

√
28,

√

2
3,

√

27
31 are irrational, can we prove

once and for all a general theorem that will include all

these cases? The answer is “yes”, and here is the theo-

rem. Notice that all the irrationality results about square

roots that we have proved before follow easily from this

theorem. (For example: if r = 2, then r = 2
1 and 2 ⊥ 1,

so Theorem 7 tells us that
√
r is irrational, because 2

is not the square of an integer; similarly, if r = 2
3, then

Theorem 7 tells us that
√
r is irrational, because 2 ⊥ 3

and 2 and 3 are not squarea of integers.)

Theorem 7. Let r be a rational number written as a

quotient m
n , where m and n are coprime integers and

n > 0. Then either
√
r is irrational or both m, n are

squares of integers.

The key fact that will be used in this proof is the fol-

lowing

Fact 4. If a, b, c are integers such that c|ab and c ⊥ b,
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then c|a. (That is, if c divides ab and is coprime with

b, then c divides a.

Rough idea of the proof of Fact 4. We can write a, b, c

as products of primes: a = p1.p2. · · · .pn, b = q1.q2. · · · .qm,
c = r1.r2. · · · .rk. Then the expression of ab as a product

of primes is

ab = p1.p2. · · · .pn.q1.q2. · · · .qm . (3.19)

Since c|ab, all the primes rj occur in the right-hand side

of (3.19). But c ⊥ b, so none of the rj is a qj. It follows

that all the rj are p’s i.e., factors of a, so c|a.
This argument is not completely rigorous. I will give

you a rigorous—and much more elegant—proof later.

Proof of Theorem 7:

We will prove that if
√
r is rational then both m, n are

squares of integers.

Assume
√
r ∈ Q.

Then we can write
√
r = p

q , where p, q are integers,

and q 6= 0.

Furthermore, in view of Fact 1, we can actually choose

p and q to be coprime.

We then have
p2

q2
=

m

n
,
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so

p2n = mq2 .

So n|mq2. But n ⊥ m, so by Fact 7 n|q2.
Also, q2|p2n.
But q2 ⊥ p2. (Reason: Suppose q2 and p2 were not

coprime. Then they would have a common factor k

such that k > 1. And k would have a prime factor

u. Then u is prime and divides both q2 and p2. By

Fact 3, u divides q and u divides p, so p and q are

not coprime. But p and q are coprime, so we get a

contradiction.)

Since q2|p2n and q2 ⊥ p2, it follows that q2|n.
So q2 divides n, n divides n are natural numbers.

Therefore n = q2.

Since n = q2 and p2n = mq2, it follows that p2n =

mn.

So p2 = m.

We have shown that m = p2 and n = q2. Hence

both m and n are squares of integers.
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We have shown that if
√
r is rational then m and n must

be squares of integers. So either m and n are squares of

integers or r is irrational. Q.E.D.


