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1 Introduction

These notes are about mathematical proofs. We are going to get started
by presenting some examples of proofs. Later, after we have seen several
proofs, we will discuss in general, in great detail,

• What proofs are.

• How to read proofs.

• How to write and how not to write proofs.

• What proofs are for.

• Why proofs they are important.

But first, in Sections 2 and 3, I am going to show you several examples of
proofs.

In each of these examples, we are going to prove a theorem. Theorems
have statements. Each statement expresses a proposition, and the fact
that the statement has been proved implies that the proposition is true, in
which case we say that the statement is true.

So maybe it is a good idea to start by clarifying the meanings of the
words “theorem”, “statement”, “proof”, and of other related words such as
“proposition”, “fact”, and “conclusion”.

1.1 Propositions, theorems and proofs

Basically, a proposition is something that can be true or false and can be
the object of belief.

In other words: a proposition is an expression P such

that it makes sense to ask the questions:

• Is P true?

• Is P false?

• Do you believe that P?

A fact is a true proposition.
For example,
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• the following are true propositions:

– George Washington was the first president of the United States,
– Paris is the capital of France,
– electrons are negatively charged particles,
– two plus two equals four,
– if a, b are real numbers then (a+ b)2 = a2 + 2ab+ b2;

• the following are false propositions:

– John Adams was the first president of the United States,
– Paris is the capital of Spain,
– electrons are positively charged particles,
– two plus two equals five,
– if a, b are real numbers then (a+ b)2 = a2 + b2;

• the following are propositions that I don’t know if they are true or false:

– Lee Harvey Oswald was part of a conspiracy to kill President
Kennedy,

– there is intelligent extraterrestrial life,
– every even natural number n such that n ≥ 4 is the sum of two

prime numbers1;

• and the following are not propositions:

– John Adams,
– is the capital of Spain,
– Mount Everest,
– the book that I bought yesterday,
– two plus two,
– if a, b are real numbers.

A proof of a proposition P is a logical argument2 that establishes the
truth of P by moving step by step from proposition to proposition until
P is reached. The proof ends with the proposition P , which is called the
conclusion.

For example, let us consider the proof, given on page 18, of Euclid’s
theorem, that the set of prime numbers is infinite: this proof consists of

1This proposition is called “the Goldbach conjecture”; it is an unsolved problem in
Mathematics.

2If you are worried because it is not clear to you what a “logical argument” is, do
not worry. We are going to spend the whole semester discussing logical arguments and
explaining what they are and how to read them and write them, so by the end of the
semester you will know.
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several steps, and the very last of these steps, i.e. the conclusion, says
precisely what we were trying to prove, i.e., that the set of prime nunbers is
infinite.

Proofs can by written in a language, such as English, French, Chinese,
Japanese, Spanish, etc. But in addition, there is a particular language which
is prefectly suited for writing mathematical proofs: formal mathematical
language.

Formal mathematical language involves formulas, rather than words.
For example, “ 2+2 = 4 ” is an expression in formal language, i.e., a formula.

Most of our proofs will be written in a mixture of formal mathematical
language and English. For example, we will write expressions such as

(#) If a and b are real numbers then a2 − b2 = (a+ b)(a− b).

But we will also explain how to write proofs in purely formal mathematical
language. (And we will discuss why having a purely mathematical language
is important: one of the main reasons is that formal mathematical lan-
guage is a universal language, that is, a language understandable by all
the mathematicallu educated people in the world3. Another reason is that
formal mathematical language is completely precise: you cannot say
vague things such as “the distance between A and B is small”, and this is
fine, because nobody knows what “small” means, so it is better if we are not
allowed to say it.)

In order to write proofs in formal language, we will have to learn formal
language, i.e., we will have to learn to say in formal language everthing
that we now say in English or in a mixture of English and formal language.
For example, the sentence (#) that we wrote above will become, in formal
language,

(#) (∀a ∈ IR)(∀b ∈ IR) a2 − b2 = (a+ b)(a− b).

Why are proofs important? Again, this is an issue that will be taken up
later, but let me sketch the answer right away:

A mathematical proof of a proposition P abso-
lutely guarantees, with complete certainty, that
P is true.

3For example, the formula “ 2+2 = 4 ” is the same in English, French, Chinese, or any
other language.
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This is so for a simple reason:

The rules of logic are designed in such a way

that one can only prove, using them, proposi-

tions that are true.

Therefore, if you write a correct proof of a

proposition P , that is, a proof that obeys the

rules of logic, then you can be sure that P is

true.
On the other hand, if you produce a pur-

ported proof of a proposition P that is not true,
then we can all be sure that your proof is incor-
rect, in the sense that in at least one step you
violeted the rules of logic.

And, in case you ask what are those “rules of logic” that you are talking
about? The answer is: I am about to tell you! But it is going to take me a
few weeks to tell you. And, once I have told you, you will see that the rules
are very simple. But you have to be patient and allow me to get you there
step by step4.

Furthermore, there is no other way to know for sure that a math-
ematical statement is true.

For example, consider the statement of the first theorem in this course,
that the set of prime numbers is infinite. There is no way to know for sure
that this is true, other than by proving it. Computing lots of prime numbers
will not do, because no matter how many millions or billions or trillions of
primes you may compute, you will only have computed a finite number of
them, and you will never never know whether these are all the primes, or
whether there are more. The proof given below shows you that, no matter
how long a list of primes numbers may be, there is always at least one prime
that is not on the list. And this guarantees that there are infinitely mamy
primes.

4It’s like swimming. Once you have learned to swim, it seems simple to you. But most
people need to learn to swim gradually, by first practicing floating, then exhaling under
water, then kicking, then maybe doing a backstroke, treading water, and so on. And, once
you have learned all that, it all looks very simple.
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2 An example of a proof: Euclid’s proof of

the infinitude of the set of prime numbers

Our first example of a proof will be Euclid’s proof that there are infinitely
many prime numbers. This proof is found in Euclid’s Elements (Book IX,
Proposition 20). Euclid (who was probably born in 325 BCE and died in 270
BCE) was the first mathematician to write a large treatise where mathemat-
ics is presented as a collection of definitions, postulates, propositions (i.e.,
theorems and constructions) and mathematical proofs of the propositions.

2.1 What Euclid’s proof is about

You probably know what a “prime number” is. (If you do not know, do not
worry; I will explain it to you pretty soon.) Here are the first few prime
numbers:

2, 3, 5, 7, 11, 13, 17, 19 . . .

Does the list of primes stop there? Of course not. It goes on:

23, 29, 31, 37, 41, 43, 47, 53, 59, 61 . . .

And it doesn’t stop there either. It goes on:

67, 71, 73, 79, 83, 89, 97, 101, 103 . . . .

Does the list go on forever? If you go on computing primes, you would find
more and more of them. And mathematicians have actually done this, and
found an incredibly large number of primes.

The largest known prime

As of January, 2019, the largest known prime was

282,589,933 − 1 .

(That is, 2 multiplied by itself 82, 589, 933 times, minus one.) This
is a huge number! It has 24, 862, 048 decimal digits.

Is it possible that the list of primes stops here, that is, that there are no
primes larger than 282,589,933 − 1?
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Before we answer this, just ask yourself: suppose it was indeed true that the
list stops with this prime number. How would you know that? If you think
about it for a minute, you will see that there is no way to know. You could
go on looking at natural numbers larger than 282,589,933− 1, and see if among
these numbers you find one that is prime. But if you don’t find any it doesn’t
mean there aren’t any. It could just be that you haven’t gone far enough in
your computation, and if you went farther you would find one.

In fact, no matter how many primes you may compute, you will never
know whether the largest prime you have found is indeed the largest prime
there is, or there is a larger one.

Can we know in some way, other than by computing lots of primes,
whether the list of primes goes on forever or there is a prime number which
is the largest one?

It turns out that this question can be answered by means of reasoning.
And, amazingly, the answer is “yes, the list of primes goes on forever”! This
was discovered, in the year 300 B.C., approximately, by the great Greek
mathematician Euclid. Euclid’s 3,000-year old proof is a truly remarkable
achievement, the first result of what we would now call “number theory”,
one of the most important areas of Mathematics.

Euclid’s theorem says the following:

Theorem. The set of prime numbers
is infinite.

In order to prove the theorem, we need to understand the precise meaning
of the terms that occur in the statement. So I will begin by explaining the
meaning of “prime number” and “infinite set”.

And, in order to explain what a prime number is, we will have to explain
first what we mean by “divisibility”, and “factors”.

2.2 Divisibility of integers; factors

If you have two integers a and b, you would like to “divide a by b”, and
obtain a “quotient” q, i.e., an integer q that multiplied by b gives you back
a. For example, we can divide 6 by 2, and get the quotient 3. And we can
divide 6 by 3, and get the quotient 2.
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But it is not always possible to divide a by b. For example, if a = 4 and
b = 3, then an integer q such that 3q = 4 does not exist5.

Since dividing a by b is sometimes possible and sometimes not, we will
introduce some new words to describe those situations when division is pos-
sible.

Definition 1. Let a, b be integers.

1. We say that b divides a if there exists an integer k such that

a = bk .

2. We say that a is a multiple of b if b is a factor of a.

3. We say that b is a factor of a if b divides a.

4. We say that a is divisible by b if b divides a.

5. We write
b|a

to indicate that b divides a. �

Remark 1. As the previous definition indicates,

The following are five different ways of saying exactly
the same thing:

• m divides n,
• m is a factor of n,
• n is a multiple of m,
• n is divisible by m,
• m|n. �

5You may say that “the result of dividing 4 by 3 is the fraction 4

3
”. That is indeed true,

but 4

3
is not an integer, and so far we are working in a world in which there are integers

and nothing else. If we want 4

3
to exist, we have to invent new numbers—the fractions,

or “rational numbers”. We are going to do that pretty soon, but for the moment, since
we are working with integers only, it is not possible to divide 4 by 3 and get a quotient
which is an integer.
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Reading statements with the “divides” symbol “|”

The symbol “|” is read as “divides”, or “is a factor of”.
For example, the statement “3|6” is read as “3 divides 6”, or “3 is
a factor of 6”. And the statement “3|5” is read as “3 divides 5”, or
“3 is a factor of 5”. (Naturally, “3|6” is true, but “3|5” is false.)
The vertical bar of “divides” has nothing to do with the
bar used to write fractions. For example, “3|6” is the
statementa “3 divides 6’, which is true. And “3

6
” is a

noun phrase: it is one of the names of the number also
known as “1

2
”, or “0.5”.

aA statement is something we can say that is true or false. A noun phrase is
something we can say that stands for a thing or person. For example, “Mount
Everest”, “New York City”, “My friend Alice”, “The movie I saw on Sunday”,
are noun phrases. “Mount Everest is very tall”, “I live in New York City”,
“My friend Alice studied mathematics at Rutgers”, and “The movie I saw on
Sunday was very boring”, are statements.

Example 1. Here are some examples illustrating the use of the word “di-
vides” and the symbol “|”:

• The following statements are true:

1. 6 divides 6,

2. 6|6,
3. 6 divides 12,

4. 6|12,
5. 1 divides 5,

6. 1|5,
7. 13 divides 91,

8. 13|91,
9. 6 divides 0,

10. 6|0,
11. 6 divides −6,

12. 6| − 6,
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13. −6 divides 6,

14. −6|6,
15. 6 divides −12,

16. −6|12,
17. 6 divides 0,

18. 6|0,
19. 0 divides 0,

20. 0|0,

• and the following statements are false:

1. 6 divides 7,

2. 6|7,
3. 0 divides 1,

4. 0|1,
5. 12 divides 6,

6. 12|6,
7. −5 divides 6,

8. −5|6,
9. 0|6.

2.3 What is a “prime number”

Definition 2. A prime number is a natural number p such that

I. p > 1,

II. p is not divisible by any natural numbers other than 1 and p. �

And here is another way of saying the same thing, in case you do not want
to talk about “divisibility”.

Definition 3. A prime number is a natural number p such that

I. p > 1,

II. There do not exist natural numbers j, k such that j > 1, k > 1, and
p = jk. �
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2.3.1 Why isn’t 1 prime?

If you look at the definition of “prime number”, you will notice that, for a
natural number p to qualify as a prime number, it has to satisfy

p > 1. In other words, the number 1 is not prime. Isn’t

that weird? After all, the only natural number factor of 1 is 1, so the only
factors of 1 are 1 and itself, and this seems to suggest that 1 is prime.

Well, if we had defined a number p to be prime if p has no natural number
factors other than 1 and itself, then 1 would be prime. But we were very
careful not to do that. Why?

The reason is, simply, that there is a very nice theorem called the “unique
factorization theorem”, that says that every natural number greater than 1
either is prime or can be written as a product of primes in a unique way.
(For example: 6 = 2 · 3, 84 = 2 · 2 · 3 · 7, etc.)

If 1 was a prime, then the result would not be true as stated. (For
example, here are two different ways to write 6 as a product of primes:
6 = 2 · 3 and 6 = 1 · 2 · 3.) And mathematicians like the theorem to be true
as stated, so we have decided not to call 1 a prime6.

If you do not like this, just keep in mind that we can use words any way
we like, as long as we all agree on what they are going to mean. If we decide
that 1 is not prime, then 1 is not prime, and that’s it. If you think that for
you 1 is really prime, just ask yourself why and you will see that you do not
have a proof that 1 is prime.

2.3.2 The prime factorization theorem

In our proof of Euclid’s theorem, we are going to use the fact that every
natural number (except 1) can be written as a product of prime numbers.
This is a very important result in arithmetic7, and we are going to prove it
later.

The precise statement is as follows:

Theorem. (The prime factorization theorem.) Every natural number n such
that n ≥ 2 is a product of primes. �

6This is exactly the same kind of reason why Pluto is not a planet. Pluto is not a planet
because astronomers have decided not to call Pluto a planet. Similarly, mathematicians
have decided not to call 1 prime, and that’s why 1 is not prime.

7Actually, many mathematicians call “The Fundamental Theorem of Arithmetic”.
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2.3.3 Clarification: What is a “product of primes”?

Like all mathematical ideas, even something as simple as “product of primes”
requires a precise definition. Without a precise definition, it would not be
clear, for example, whether a single prime such as 2 or 3 or 5 is a “product
of primes”.

Definition 4. A natural number n is a product of primes if there exist

1. a natural number k,

and

2. a finite list8

p = (p1, . . . , pk)

of prime numbers,

such that
n = p1 · p2 · · · · · pk . (2.1)

(If you are familiar with the product “
∏

” notation, formula (2.1) says that
n =

∏k

i=1
pi .)

Notice that k can be equal to one. That is, a single prime, such as 2,
or 3, or 23, is a product of primes in the sense of our definition.
�

Definition 5. If n is a natural number, then a list p = (p1, . . . , pk) of prime
numbers such that (2.1) holds is called a prime factorization of n. �

Example 2. The following natural numbers are products of primes:

• 7 (because 7 is prime); the list (7) is a prime factorization of 7,

• 24; (the list (2, 2, 2, 3) is a prime factorization of 24, because 24 =
2× 2× 2× 3),

• 309; (the list (3, 103) is a prime factorization of 309);

• 3, 895, 207, 331, 689 . Here it would really take a lot of work to find
the natural number k and the prime numbers p1, p2, . . . , pk such that

3, 895, 207, 331, 689 = p1 · p2 · · · · · pk .
But the prime factorization theorem guarantees to us that 3, 895, 207, 331, 689
is a product of primes. �

8Finite lists will be defined and discussed in great detail later in these notes.
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2.4 Proofs by contradiction

Our proof if Euclid’s theorem is going to be a proof by contradiction

Proof by contradiction is probably the most impor-
tant and most widely used of all proof strategies. So you
should not only learn what proofs by contradiction are,
but acquire the habit of alwaysa seriously consid-
ering the possibility of using the proof by con-
tradiction strategy when you are trying to figure
out how to do a proof.

aSure, I am exaggerating a little bit. There are quite a few direct proofs
(that is, proofs that are not by contradiction). But the number of proofs by
contradiction is huge.

Let me first explain what proofs by contradiction are, and then I will tell you
why they are so important.

And the first thing I need to explain is what a contradiction is.
And, ir order to explain that, I have to discuss how to negate a sentence.

2.4.1 Negation

To negate (or deny) a statement A is to assert that A is false. (Any such
statement is called a denial of A)

So, for example, a denial of “7 is a prime number” is “7 is not a prime
number”. (But there are many other ways to write a denial of “7 is a prime
number.” For example, we could write “it is not true that 7 is a prime
number”, or “it is not the case that 7 is a prime number”.)

The symbol “∼” (“it’s not true that”)

The symbol “∼”, put in front of a statement, is used to
assert that the statement is false.
So “∼” stands for “it is not the case that”, or “it is not
true that”.
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Example 3. The following sentences are true:

• ∼ 6 is a prime number (that is, “6 is not a prime number”),

• ∼ 2 is an odd integer (that is, “2 is not an odd integer”),

• ∼(6 is even and 7 is even) (that is, “it’s not true that 6 and 7 are both
even”).

The following sentences are false:

• ∼ 7 is a prime number (that is, “7 is not a prime number”),

• ∼ 3 is an odd integer (that is, “3 is not an odd integer”),

• ∼(6 is even or 7 is even) (that is, “it’s not true that 6 is even or 7 is
even”),

• ∼ 6 is even and 7 is even (that is, “6 is not even and 7 is even”).

2.4.2 When is a negation true?

If A is a sentence, then

• ∼ A is true if A is false;

• ∼ A is false if A is true.

2.4.3 What is a contradiction?

The precise definition of “contradiction” is complicated, and requires some
knowledge of logic. So let me give you a simplified definition that is easy to
understand and is good enough for our purposes.

Temporary, simplified definition of “contradiction”: A contradiction
is a statement of the form “A and ∼ A”, that is, “A is true and A is not
true”. �

Example 4.

• The sentence “2+2 = 7” is not a contradiction. It is a false statement,
of course, but not every false statement is a contradiction.
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• The sentence “2 + 2 = 7 and 2 + 2 = 4” is not a contradiction either.
It is a false statement (because it is the conjunction of two sentences
one of which is false), but that does not make it a contradiction.

• The sentence “2 + 2 = 7 and 2 + 2 6= 7” is a contradiction. because it
is of the form “A and no A”, with the sentence “2 + 2 = 7” in the role
of A.

• The sentence “n = 1 and n 6= 1” is a contradiction.

• The sentence “John Adams was the first U.S. president” is false, but it
not a contradiction.

• The sentence “John Adams was the first U.S. president and was the
second U.S. president” is false, but it not a contradiction.

• The sentence “John Adams was the first U.S. president and was not
the first U.S. president” is a contradiction. �

2.4.4 What is a proof by contradiction?

A proof by contradiction is a proof in which you start by assuming that
the statement you want to prove is false, and you prove a contradiction. Once
you have done that, you are allowed to conclude that the statement you are
trying to prove is true.

To do a proof by contradiction, you would write something like this:

We want to prove A.

Assume that A is false....
2 = 1 and 2 6= 1.
And “2 = 1 and 2 6= 1” is a contradiction.

So assuming that A is false has led us to a contradiction.

Therefore A is true. Q.E.D.
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WARNING

Having explained very precisely what a contradiction is, I have to warn
you that mathematicians will often say things like “ ‘2 + 2 = 7’ is a
contradiction”.
This is not quite true, but when a mathematician says that every math-
ematician will understand what is really intended.
What the person who said “ ‘2 + 2 = 7’ is a contradiction” really meant
is something like this:

Now that I have proved that 2 + 2 = 7, I can easily get a
contradiction from that, because we all know how to prove
that 2 + 2 6= 7, and then we can deduce from these two
formulas the sentence “2 + 2 = 7 and 2 + 2 6= 7”, which is
truly a contradiction.
In other words, once I get to “2 + 2 = 7”, it is clear to me,
and to every mathematician, how to get to a contradiction
from there, so there is no need to go ahead and do it, so I
can stop here.

This is something mathematicians do very oftena: once we get to a
point where it is clear how to go on and finish the proof, we
just stop there.

For a beginning student I would recommend that you actually write your

proof until you get a real contradiction, because this is the only way to

make it clear to the person reading (and grading) your work that you

do understand what a contradiction is.

aAnd not only mathematicians! In chess, once you get to a position from
which it is clear that you can take your rival’s King and win, you say “check-
mate” and the game stops there.
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WHAT DOES “ASSUME” MEAN?

“Assume” means “imagine”. In order to prove that some
statement S is true, we imagine that it is not true, that is, we
explore an imaginary world W in which S is not true, and we
prove that in this imaginary world something impossible (such as a
contradiction, “A is true and A is not true”) would have to happen.
And from this we draw the conclusion that a world in which S is
not true is impossible, so in the real world S must be true.

2.5 What is a finite set? What is an infinite set?

We now explain what a “finite set” is.

Definition 6. Let S be a set,

1. We say that S is finite if there exist a natural number n and a finite
list9

a = (a1, a2, . . . , an)

with n entries which is a list of all the members of S. (This means:
every member of S occurs in the list; that is, for every member x of S
there exists a natural number j such that j ≤ n and x = pj.)

2. We say that S is infinite if it is not finite. �

2.5.1 A simple lemma

A lemma is a statement that one proves in order to use it in the proof of a
theorem. In our proof of Euclid’s Theorem we are going to need the following
lemma:

Lemma 1. If a, b, c are integers, and c divides both a and b, then c divides
a+ b and a− b.

Proof. Since c|a and c|b, we may write

a = cj and b = ck , (2.2)

9If you are wondering “what is a finite list?”, then I can tell you two things: (1) you
are asking a good question, (2) I will give you more information about “finite lists” later,
on page 19.
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where j and k are integers.
But then

a+ b = c(j + k) and a− b = c(j − k) , (2.3)

and j + k and j − k are integers. So c|a+ b and c|a− b. Q.E.D.

2.6 The proof of Euclid’s Theorem

The proof I am going to present here is not exactly Euclid’s, but is based
essentially on the same idea.

First, here is Euclid’s result, again:

Theorem 1. The set of prime numbers

is infinite.

And here is the proof.

Let S be the set of all prime numbers.
We want to prove that S is an infinite set.
We will prove this by contradiction.

Suppose S is not infinite.

Then S is a finite set.

Since S is finite, we may write a finite list

p = (p1, p2, . . . , pn)

of all the members of S, i.e., of all the prime numbers.

Let N = p1.p2. · · · .pn. (That is, N is the product of all the entries of
the list p.)

Let M = N + 1.

Then M ≥ 2, so by the prime factorization theorem (in section 2.3.2)
M is a product q1.q2. · · · .qk of prime numbers.

Then q1 is a prime number10, and q1 divides M (because M = q1u, if

u = q2.q3. · · · .qk).
10All we need here is to have a prime number that divides M . We choose q1, but we

could equally well have chosen q2, or any of the other qj .
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On the other hand, since p is a list of all the prime numbers, and
q1 is a prime number, we can conclude that q1 is one of the entries
p1, p2, . . . , pn of the list p.

So we may write
q1 = pj ,

where j is one of the nmbers 1, 2, . . . , n.

It follows that q1 divides N (because pj divides N and q1 = pj).

Since q1 divides M and q1 divides N , it follows that q1 divides M −N ,
by Lemma 1.

But M −N = 1. So q1 divides 1 .

On the other hand, q1 is prime. It then follows from the definition of
“prime number” (Definition 2, on page 10) that q1 > 1.

Hence q1 6= 1.

But then q1 does not divide 1 , because the only natural number that
divides 1 is 1.

So q1 divides 1 and q1 does not divide 1 , which is a contradiction.

Hence the assumption that S is not an infinite set has led us to a contradic-
tion.
Therefore S is an infinite set . Q.E.D.

2.6.1 What is “Q.E.D.”?

What does “Q.E.D.” mean?

“Q.E.D.” stands for the Latin phrase quod erat
demonstrandum, meaning “which is what was to be
proved”. It is used to indicate the end of a proof.

Appendix: Finite lists
Finite lists have entries. Sets have members.
We can write11 finite lists as follows:

1. First we write a left parenthesis, i.e., the symbol “(”.
11I am saying “we can write” rather than “we write” because there are other ways to

write lists and sets. We will discuss those ways later.
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2. Then we write the names of the entries of the list, in order, beginning
with entry number 1, then entry number 2, and so on. The entries
must be separated by commas.

3. Then, finally, write a right parenthesis, i.e., the symbol “)”.

And we can write finite sets as follows:

1. First we write a left brace, i.e., the symbol “{”.
2. Then we write the names of the members of the set, in some order,

separated by commas.

3. Then, finally, we write a right brace, i.e., the symbol “}”.

WARNING

Be careful with the distinction between sets, written with braces
(“{” and “}”) and lists, written with parentheses ( “(“ and “)”).
For example, the sentence

(1, 2, 3) = (3, 1, 2)

is false, but the sentence

{1, 2, 3} = {3, 1, 2}

is true.

Example 5.

• Here is the list a of the first ten natural numbers, in increasing order:

a = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) . (2.4)

• Here is the list b of the first ten natural numbers, in decreasing order:

b = (10, 0, 8, 7, 6, 5, 4, 3, 2, 1) . (2.5)

And here is a list c of the first ten natural numbers, in a different order:

c = (10, 1, 5, 8, 3, 2, 4, 9, 6, 7) . (2.6)
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These three lists are different. For example, the second entry of a is 2,
whereas the second entry of b is 9 and that of c is 1.

Now let S be the set whose members are the first ten natural numbers.
Then we can write

S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} , (2.7)

or
S = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1} , (2.8)

or, for example,
S = {1, 3, 5, 7, 9, 2, 4, 6, 8, 10} , (2.9)

or
S = {4, 2, 7, 8, 10, 1, 9, 3, 5, 6} , (2.10)

or even
S = {4, 4, 2, 7, 7, 7, 5, 5, 5, 8, 10, 1, 9, 4, 3, 5, 6} . (2.11)

The sets S given by equations (2.7), (2.8), (2.9), (2.10), (2.11),
are all the same set, even though the formulas describing them are dif-
ferent. What the formulas do is tell us who the members of the set are. So,
for example, according to formula (2.7), 1 is a member of S, and 23 is not.
And the other formulas also say that 1 is a member of S, and 23 is not.

The key facts are these:

• Two sets S, T are the same set if they have the same members, that
is, if every member of S is a member of T and every member of T is
member of S.

• Two lists a, b are the same if the first entry of a is the same as the
first entry of b, the second entry of a is the same as the second entry
of b, and so on. That is, a = b if the j-th entry of a is the same as the
j-th entry of b for every j.

Example 6. Let S be the set whose members are all the presidents of the
United States, from George Washington to Donald Trump.

Let a be the list of all the presidents of the United States, from George
Washington to Donald Trump, in chronological order, so

a = (a1, a2, . . . , a45) ,
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where, for j = 1, 2, . . . , 45, aj is the j-th U.S. president.
Then a has 45 entries. How many members does S have?
If you think that the answer is 45, think again!
It turns out that Grover Cleveland served two nonconsecutive terms as

president, from 1885 to 1889 and from 1893 to 1897, and Congress decided
that Cleveland would count as both the 22nd and the 24th president of the
United States. So in the list a, the 22nd entry a22 and the 24th entry a24
are equal. So the set S has in fact 44 members, even though the list a has 5
entries. �

2.7 An analogy: twin primes

Let me tell you about another problem, very similar to the one we have just
discussed, for which the situation is completely different.

Definition 7. A twin prime is a prime number p such that p + 2 is also
prime. �

Example 7. Here are the first few twin primes:

3, 5, 11, 17, 29, 41, 59, 71, 101, 107 . �

Now we can ask the same question that we asked for primes: does the list go
on forever, or does it stop at some largest pair of twin primes?

In other words,

Are there infinitely many twin primes?

This looks very similar to the question whether there are infinitely many
primes. And yet, the situation in this case is completely different:

Nobody knows whether there are infinitely
twin primes. Mathematicians have been try-
ing for more than 2,000 years to solve this
problem, by proving that there are infinitely
many twin primes, or that that there aren’t,
and so far they haven’t been successful.
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The twin prime conjecture is the statement that there are infinitely many
pairs of twin primes. It was formulated by Euclid, about 2,300 years ago,
and it is still an open problem.

THE LARGEST KNOWN TWIN
PRIME

According to Wikipedia, as of September 2018, the cur-
rent largest twin prime known was 2996863034895 ×
21290000 − 1, with 388, 342 decimal digits. It was dis-
covered in September 2016. (The fact that the number
2996863034895× 21290000− 1 is a twin prime means that
it is prime, and the number 2996863034895×21290000+1
is also prime.)

2.8 A surprising fact: non-twin primes

How about primes that are not twin?

Definition 8. A non-twin prime is a prime number p such that p+2 is not
prime. �

Example 8. Here are the first few non-twin primes:

2, 7, 13, 19, 23, 31, 37, 43, 47, 53,

61, 67, 73, 79, 83, 89, 97, 103 . �

And now we can ask, again, the same question that we asked for primes and
for twin primes: does the list go on forever, or does it stop at some largest
pair of twin primes?

In other words,

Are there infinitely many non-twin primes?

This looks very similar to the question whether there are infinitely many twin
primes. And yet, the situation in this case is completely different: it is very
easy to prove the following:

Theorem 2. The set of non-twin primes is infinite.

(I am asking you to do this proof. See Problem 8 below.)
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2.9 Problems

Problem 1. Using the definition of “divides” (Definition 1), explain pre-
cisely why the statements “1 divides 5”, “6 divides −6”, “6 divides 0”, and
“0 divides 0” are true, and the statements “5|6” and “0|6” are false. �

Problem 2. Indicate which of the statements in the following list are true
and which ones are false, and explain why. (That is, prove that the true
statements are true and the false ones are false.)

1. Every integer is divisible by 1.

2. Every integer is divisible by 2.

3. Every integer is divisible by 0.

4. Every integer divides 1.

5. Every integer divides 2.

6. Every integer divides 0.

Problem 3. Express each of the following numbers

• 37,

• 28,

• 236,

• 2247,

as a product of prime numbers. �

Problem 4. Give a precise mathematical definition of “prime number”. �

Problem 5. Give a precise mathematical definition of “twin prime”. �

Problem 6. Give a precise mathematical definition of “finite set” and “in-
finite set”. �

Problem 7. Give precise mathematical definitions of each of the following
concepts:

• divides,

• is divisible by,

• factor (as in “is a factor of”),
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• multiple (as in “is a multiple of”). �

Problem 8. Prove Theorem 2 (on page 23). �

Problem 9. Prove that if a, b, c are integers, a|b and b|c, then a|c. �

Problem 10. Prove that if a, b are integers, a|b and b|a, then a = b or
a = −b. �

Problem 11. The proof that was given in Section 2.6 of Euclid’s Theorem
uses the definition of “prime number” given on page 10. In this problem,
we change the definition of “prime number” and use the following definition:
A prime number is a natural number p such that p is not divisible by any
natural numbers other than 1 and p. That is, we do not require p to be > 1.
So according to this new definition 1 is now prime

Rewrite the proof of Euclid’s Theorem given in Section 2.6 using the new
definition of “prime number”. (What you have to do is basically copy the
proof, but making a few changes. For example, one of the steps of the proof
given in Section 2.6 says “It follows from the definition of ‘prime number’
that q1 > 1”. This step is not valid now, because 1 is prime, so q1 could be
1. You have to make some slight changes in the proof to adapt it to this new
situation.) �

Problem 12. Prove that if p is a prime number and p 6= 2 then p is odd.

In the following problems, you may want to use the division theorem: If a, b
are integers and b 6= 0, then it is possible to write a = bq+ r, where
q, r are integers such that 0 ≤ r < |b|. (For example: if a is an integer
then we can write a = 3q + r where r = 0 or r = 1 or r = 2.)

Problem 13. Prove that if p is a prime number such that p+ 2 and p+ 4
are also prime, then p = 3.
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Problem 14.

1. Find at least ten different prime numbers p such that p + 4 is also
prime.

2. Prove that the only prime number p such that p+4 and p+8 are also
prime is p = 3.

3. Prove that there does not exist a prime number p such that p + 4,
p+ 8 and p+ 12 are also prime.

Problem 15.

1. Find at least ten different prime numbers p such that p + 6 is also
prime.

2. Find at least ten different prime numbers p such that p+6 and p+12
are also prime.

3. Find at least four12 different prime numbers p such that p+ 6, p+ 12
and p+ 18 are also prime.

4. Prove that there exists a unique prime number p such that p + 6,
p+ 12, p+ 18 and p+ 24 are also prime.

5. Prove that there does not exist a prime number p such that p + 6,
p+ 12, p+ 18, p+ 24 and p+ 30 are also prime.

Problem 16.

1. Express the integer 28 as a difference of two squares of integers. (That
is, find two integers m,n such that m2 − n2 = 28.)

2. Express the integer 29 as a difference of two squares of integers. (That
is, find two integers m,n such that m2 − n2 = 29.)

3. Prove that it is not possible to express the integer 30 as a difference
of two squares of integers. (That is, prove that there do not exist two
integers m,n such that m2 − n2 = 30.) �

12There are many more. I am just asking you to find four because I don’t want to make
you work too hard.
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3 More examples of proofs: irrationality of√
2 and of other numbers

3.1 Numbers and number systems

There are several different kinds of numbers, i.e., several different number
systems. It is convenient to give the number systems names, and to introduce
mathematical symbols to represent them.

3.1.1 The most common types of numbers

Here are some examples of number systems:

• the symbol IN stands for the set of natural numbers,
• the symbol Z stands for the set of integers,
• the symbol Q stands for the set of rational numbers,
• the symbol IR stands for the set of real numbers,
• the symbol C stands for the set of complex numbers,
• there are sets Z2, Z3, Z4, Z5, Z6, and, more generally, Zn—the set of
integers modulo n—for every natural number n such that n ≥ 2. (So,
for example, there are the systems Z2, Z3, Z10, Z11, Z5403.)

Some of the above kinds of numbers should be familiar to you, and others
may be less so or not at all. Do not worry if you find on our list things that
you have never heard of before: we will be coming back to the list later, and
discussing all the items in much greater detail.

A number can belong to different number systems, in the same way as,
say, a person can belong to different associations. (For example, somebody
could be a member, say, of the American Association of University Professors,
the Rutgers Alumni Association, and the Sierra Club. Similarly, the number
3 belongs to lots of different number systems, such as, for example, IN, Z, Q,
and IR.)

At this point, we will just discuss IN, Z, Q, and IR, and we will do so very
briefly. We will talk much more about these systems later, and we will also
discuss later other number systems such as C, and the Zn.

The symbols IN, Z, Q, IR, C, are special
mathematical symbols. They are not the
capital letters N, Z, Q, R, C.
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(Why do we use these special symbols? It’s because mathematicians need to
use lots of letters in their proofs, so they do not want to take the letters C,
R, for example, and declare once and for all that they stand for “the set of
all complex numbers” and “the set of all real numbers”. For example, if they
are working with a circle, they want to have the freedom to call the circle
“C”, and to say “let R be the radius of C”, and this would not be allowed
if the symbols “C”, “R” already stood for something else. So they invented
the special symbols C, IR to stand for the set of complex numbers and the
set of real numbers, so that the ordinary letters C, R, will be available to be
used as variables.)

Please do not say “IN is the natural numbers”, or “Z is the in-
tegers”. When we group things together to create a set, that set
is one thing, not many things. So IN cannot be “the natural num-
bers”. What you can, and should, say is: “IN is the set of all natural
numbers.”

3.1.2 The symbol “∈”

If S is a set and a is an object, we write

a ∈ S
to indicate that a is a member of S.

And we write

a /∈ S
to indicate that a is not a member of S.
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How to read the “∈” symbol

The expression “a ∈ S” is read in any of the following
ways:

- a belongs to S,

- a is a member of S,

- a is in S.

The expression “a /∈ S” is read in any of the following
ways:

- a does not belong to S,

- a is not a member of S,

- a is not in S.

Remark 2. Sometimes, “a ∈ S” is read as “a belonging to S”, or “a in S”,
rather than “a belongs to S”, or “a is in S.” For example, if we write

Pick an a ∈ S,

then it would be bad English grammar to say “pick an a belongs to S”. But
“pick an a belonging to S”, “pick an a in S”, or “pick an a that belongs to
S”, are fine. �

Never read “∈” as “is contained in”, or ”is
included in”. The words “contained” and “in-
cluded” have different meanings, that will be dis-
cussed later.

3.1.3 The natural numbers

The symbol IN stands for the set of all natural numbers. (Natural num-
bers are also called “positive integers”, or—sometimes—”whole numbers”,
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or “counting numbers”.) The members of this set are the numbers 1, 2, 3 . . ..
More precisely:

The natural numbers are the numbers obtained from the number
1 by adding 1 any number of times. So, for example, the numbers
1, 1+1 (i.e., 2), 1+1+1 (i.e., 3), 1+1+1+1 (i.e., 4), are natural
numbers. And so are the numbers 4, 503, 46, 902, 444, 531, 322 and

1010
10

10
10

.
The symbol IN stands for the set of all natural numbers.

3.1.4 The integers

The symbol Z stands for the set of all integers.
The members of Z (i.e., the integers) are the natural numbers as well as 0

and the negatives of natural numbers, i.e., the numbers −1, −2, −3, etc. So,
to say that a number n is an integer, we can write “n ∈ Z”, which we read
as “n belongs to the set of integers” or, even better, as “n is an integer”.

So, for example, the following statements are true:

35 ∈ IN

35 ∈ Z

∼ −35 ∈ IN

−35 ∈ Z

35 /∈ Z

0 ∈ Z

∼ 0 ∈ IN

0 /∈ IN

0.37 /∈ Z

π /∈ Z .

3.1.5 The real numbers

The symbol IR stands for the set of all real numbers.
The real numbers are those numbers that you have used in Calculus.

They can be positive, negative, or zero.
The positive real numbers have an “integer part”, and then a “decimal

expansion” that may terminate after a finite number of steps or may continue
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forever. (So, for example, the number 4.23 is a real number, and so is the
number π. The decimal expansion of the number 4.23 terminates after two
decimal figures, but the decimal expansion of π goes on forever. Here, for
example, is the decimal expansion of π with 30 decimal digits:

3.141592653589793238462643383279 .

Using Google you can find π with one million digits. As of 2011, 10 trillion
digits of π had been computed, and nobody has found any pattern! Even
simple questions, such as whether every one of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
appears infinitely many times, are unresolved.)

And the negative real numbers are the negatives of the positive real num-
bers. So, for example, −4.23 and −π are negative real numbers.

3.1.6 Positive, negative, nonnegative, and nonpositive numbers

In this course, “positive” means “> 0” (i.e., “greater than zero”), and “non-
negative” means “≥ 0” (“greater than or equal to zero”). So, for example, 3
and 0.7 are positive (and nonnegative), and 0 is nonnegative but not positive.

Similarly, “negative” means “< 0”, and “nonpositive” means “≤ 0”. So,
for example, −3 and −0.7 are negative (and nonpositive), 0 is nonpositive
but not negative.

3.1.7 Subsets

Definition 9. A set A is a subset of a set B if every member of
A is a member of B.
We write “A ⊆ B” to indicate that A is a subset of B.

For example,

a. If, for example, S is the set of all people in the world, and T is the set
of all people who live in the United States, then T is a subset of S. So
the sentence “T ⊆ S” is true.

b. If A is the set of all animals, and G is the set of all giraffes, then G is
a subset of A, so the sentence “G ⊆ A” is true.

c. Let S be the set of all people who live in the United States, and let
C be the set of all U.S. citizens. Is C a subset of S? The answer is
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“no”, because there are U.S. citizens who do not live in the U.S., so
these people are members of C but not of S, so it’s not true that every
member of C belongs to S.

And here are some mathematical examples:

I. The following sentences are true:

IN ⊆ Z ,

IN ⊆ IR ,

Z ⊆ IR ,

because every natural number is an integer, every natural number is a
real number, and every integer is a real number.

II. And the following sentences are false:

Z ⊆ IN ,

IR ⊆ IN ,

IR ⊆ Z .

(For example, it is not true that Z ⊆ IN, because not every integer is a
natural number since, for example, 0 ∈ Z but 0 /∈ IN.)

3.1.8 The word “number”, in isolation, is too vague

As we have seen, there are different kinds of numbers. So, if you just say
that something is a “number”, without specifying what kind of number it is,
then this is too vague. In other words,

Never say that something is a “number”, unless you have
made it clear in some way what kind of “number” you
are talking about.

For example, suppose you are asked to define “divisible”, and you write:

A number a is divisible by a number b if we can write
a = bc for some number c.
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This is too vague! What kind of “numbers” are we talking about? Could
they be real numbers?. If this was the case, then 3 would be divisible by 5,
because 3 = 5.z, if we take z = 3/5. But we do not want 3 to be divisible by
5. And we want the “numbers: we are talking about to be integers.

So here is a correct definition of “divisible”:

Divisibility of integers: We say that an integer a is divisible by an integer
b (or that a is a multiple of b, or that b is a factor of a, or that b divides a),
if we can write

a = bc

for some integer c. �

For example, the following sentences are true:

3 divides 6 ,
−3 divides 6 ,

6 is divisible by 3 ,
6 is a multiple of 3 ,
3 is a factor of 6 .

3.2 Existential statements

In the definition of divisibility given above, we have used the words “we can
write”. This language makes it sound as though, in order to decide whether,
say, 3 divides 6, we need to have somebody there who “can write” things.
This should not be necessary: “3 divides 6” would be a true sentence even
if there was nobody around to do any writing. So it is much better to use a
more impersonal language:

Divisibility of integers

DEFINITION. An integer a is divisible by
an integer b (or a is a multiple of b, or b is a
factor of a, or b divides a), if there exists an
integer c such that

a = bc .
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The sentence “there exists an integer c such that a = bc” is an example
of nn existential sentence, i.e., a sentence that asserts that an object of
a certain kind exists. Later, when we learn to write mathematics in formal
language (that is, using only formulas), we will see that this sentence can be
written as follows:

(∃c ∈ Z)a = bc . (3.12)

The symbol “∃” is the existential quantifier symbol, and the expression
“(∃c ∈ Z)” is an existential quantifier, and is read as “there exists an
integer c such that”.

So Sentence (3.12) is read as “there exists an integer c such that a = bc”.
And it can also be read as “a = bc for some integer c”, or “it is possible to
pick an integer c such that a = bc”. (I recommend the “it is possible to pick
...” reading.)

3.2.1 The rule for using existential statements (Rule ∃use)

Suppose you know that cows exist, that is that

(∃x)x is a cow . (3.13)

Then the rule for using existential statements says that we can introduce into
our conversation a cow, and give her name, by saying something like “pick a
cow and call her Suzy”.

In general,

• For a sentence (∃x)P (x), a witness is an object a such that P (a). (For
example: for the sentence (3.13), a witness is any a such that a is a
cow, that is, any cow.)

• For a sentence (∃x ∈ S)P (x), a witness is an object a which belongs to
S and is suchthat P (a). (For example, if C is the set of all cows, then
a witness for the sentence (∃x ∈ C)x is brown is any brown cow.)

The rule for using existential statements (Rule ∃use) says that,
if you know that an existential statement is true, then you can
“pick a witness and give it a name”.

For example: suppose you know that a natural number n is not prime and
is > 1. Then you know that the following is true: (∃m ∈ IN)(m|n and m 6=
1 and m 6= n). (That is, n has a factor which is a natural number and is not
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equal to 1 or n.) Then Rule ∃use says that we can pick a witness and call it
a, that is, we can pick a natural number a such that a|n, a 6= 1 and a 6= n.

Rule ∃use

• From

(∃x)P (x)
you can go to “Let w be a witness for

(∃x)P (x), so P (w),” or “Pick a witness for

(∃x)P (x) and call it w”, or “Pick a w such

that P (w).”

• From

(∃x ∈ S)P (x)

you can go to “Let w be a witness for (∃x ∈
S)P (x), so w ∈ S and P (w),” or “Pick a

witness for (∃x ∈ S)P (x) and call it w”, or

“Pick a w such that w ∈ S and P (w).”

For example:

i. If you know that Polonius has been killed, but you do not know who
did it, then you can talk about the person who killed Polonius and give
a name to that person, for example, call him (or her) “the killer”.

ii. if you know that an equation (say, the equation 3x2 + 5x = 8) has a
solution (that is, you know that the existential statement “there exists
a real number x such that 3x2 + 5x = 8” is true) then you are allowed
to pick a solution and call it, for example13, “a”.

13Can you call this solution x? This is a complicated issue. Think of this as follows:
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3.3 Pythagoras’ Theorem and two of its proofs

Pythagoras’ Theorem is one of the oldest and most important theorems in
Mathematics. It is named after the Greek mathematician and philosopher
Pythagoras, who lived approximately from 570 to 495 BCE, although there
is a lot of evidence that the theorem (but probably not the proof) was known
before, by the ancient Babylonians.

The statement of the theorem is as follows:

Theorem 3. (Pythagoras’ Theorem) If T is a right triangle14, c is the length
of the hypothenuse15 of T , and a, b are the lengths of the other two sides,
then

a2 + b2 = c2 . (3.14)

There are many different proofs of Pythagoras’ Theorem. I am going to
give you two proofs.

Pythagoras’ proof. We draw a c× c square PQRS, and then attach at each
side a copy16 of T as shown in the picture.

the letter x is really a slot where you can put in a number. A number that can be put in
the slot so as to make the formula true is called a “solution”. The solution and the slot
are two different things. So it is not a good idea to use the same name for both. If you
do things very carefully, it turns out that it is O.K. to call both the slot and a solution
with the same name, but I strongly recommend that you do not do it. For example the
equation 3x2 + 5x = 8 has are two solutions, namely, 1 and − 8

3
. Which one is “x”? You

cannot call both of them “x”, because they are different. So I think it is better to call one
of the solutions a (or A, or u, or U , or p, or P , or α, or ♥) and then call the other one a
different name (say b, or B, or v, or V , or q, or Q, or β, or ♣).

14A right triangle is a triangle having one right angle
15The hypothenuse of a right triangle T is the side opposite to the right angle of T .
16For those who have studied Euclidean Geometry in high school: a copy of a figure F is

a figure F ′ congruent to F . “Congruent to F” means: “obtainable from F by combining
displacements and rotations. For example, the triangles QC3R, RC4S, and SC1P are all
congruent to PC2Q.



Math 300, Fall 2019 37

c

c

c c

a

a

a

a

b

b

b

b

    P Q

RS

C

C

C

C

1

2

4

3

The point P lies on the straight line segment from C1 to C2, because

1. If α1 is the angle at S of the triangle SC1P , and α2 is the angle at P
of the triangle PC2Q, then α1 = α2, because the triangles SC1P and
PC2Q re congruent.

2. Similarly, if β1 is the angle at P of the triangle SC1P , and β2 is the
angle at Q of the triangle PC2Q, then β1 = β2, because the triangles
SC1P and PC2Q are congruent.

3. Since SC1P and PC2Q are both right triangles, and the sum of the
angles of every triangle is 180o, we have

α1 + β1 + 90o = 180o and α2 + β2 + 90o = 180o ,

so
α1 + β1 = 90o and α2 + β2 = 90o .

4. Since α1 = α2, it follows that α2 + β1 = 90o,
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5. Hence the angle θ between the segments PC1 and PC2 is equal to
α2 + 90o + β1, i.e., to 180o. This proves that the segments PC1 and
PC2 lie on the same straight line, so P lies on the segment C1C2.

A similar argument shows that Q lies on the segment C2C3, R lies on the
segment C3C4, and S lies on the segment C4C1.

So the polygonal C1PC2QC3RC4SC1 is a square.
Let d = a+ b. Then the sides of the square C1C2C3C4 have length d.
Therefore the area of the square C1C2C3C4 is d2.
On the other hand, the smaller square PQRS has side of length c, so its

area is c2. Each of the four triangles has area ab
2
. So the area of C1C2C3C4

is equal to c2 + 4× ab
2
, i.e., to c2 + 2ab.

It follows that

(a+ b)2 = d2

= c2 + 4× ab

2
= c2 + 2ab .

On the other hand, (a+ b)2 = a2 + b2 + 2ab. It follows that

a2 + b2 + 2ab = c2 + 2ab .

Subtracting 2ab from both sides, we get

a2 + b2 = c2 ,

which is the desired result. Q.E.D.

Proof using similar triangles. Let C be the vertex of T where the right angle
is located, and let A, B be the other two vertices.

Draw a line through C perpendicular to the line AB, and let H be the
point where this line intersects the line AB.
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Let α, β be the angles of T at A, B, so α+ β = 90o. The angle of ACH
at H is also 90o, and the angle at A is α. Hence the angle of ACH at C is
β. So the triangles ABC and ACH are similar. Hence the sides opposites to
equal angles are proportional. That is:

|AC|
|AH| =

|AB|
|AC| ,

from which it follows that

|AC|2 = |AH| · |AB| .

A similar argument shows that

|BC|2 = |BH| · |AB| .
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Adding both equalities we get

a2 + b2 = |AH| · |AB|+ |HB| · |AB|
=

(

|AH|+ |HB|) · |AB|
= |AB| · |AB|
= |AB|2
= c2 .

So a2 + b2 = c2, as desired. Q.E.D.

3.4 Rational and irrational numbers

In this section we will prove a very important fact, namely, that “the number√
2 is irrational”. This means, roughly, the same thing as “there does not

exist a rational number r such that r2 = 2.” (The two statements do not say
exactly the same thing. I will discuss how they differ later.)

But first I want to explain what this means and why this result is so
important. And to do this we need a small philosophical digression into the
question: what is a “number”?. (If you are not interested in philosophical
questions, you may skip this discussion and move on to subsection 3.4.4.)

3.4.1 What are “numbers”?

We have already been talking quite a bot about “numbers”, but I never told
you what a “number” is. The question “what is a number?” is not an easy
one to answer, and I will not even try. But there are some tings that can be
said.

1. Numbers are, basically, tags (or labels) that we use to specify the
amount or quantity of something, i.e., to answer the questions “how
much ...?” or “how many ...?”

2. Since ancient times, it was understood that there are at least two kinds
of “numbers”:

(a) The counting numbers, that we use to specify amounts of dis-
crete quantities, such as coins, people, animals, stones, books, etc.

• counting numbers are used to count: 1, 2, 3, 4, 5, and so on,
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• they are the ones that answer questions of the form
“how many ... are there?”;

• they vary in discrete steps: they start with the number 1,
then they “jump” from 1 to 2, and there is no other counting
number between 1 and 2, then they “jump” from 2 to 3, and
there is no other counting number between 2 and 3, and so
on.

(b) The measuring numbers, that we use to specify amounts that
can vary continuously, such as lengths, areas, volumes, weights.

• measuring numbers are used to measure continuously vary-
ing quantities;

• they are the ones that answer questions of the form
“how much ... is there?”;

• they vary continuously, so that, for example, when you
pour water into a cup, if at some time point there are 10
ounces in the cup, and later there are 12 ounces, it does not
occur to us that the amount of water in the cup may have
jumped directly from 10 to 12 ounces: we understand that at
some intermediate time there must have been 11 ounces, and
at some time before that there must have been 10.5 ounces,
and at some time before that there must have been 10.25
ounces, and at some time before the amount of water in the
cup was 10.15309834183218950482 ounces; and so on17. At
no time did the amount of water “jump”18 from some value u
to some larger value v.

• they can be subdivided indefinitely: for example

17WARNING: The words “and so on” here are very imprecixse. It’s not at all what
they mean. When I talk about the counting numbers and I write “1, 2, 4, 5, and so
on”, you know exacrtly what comes next: it’s 6. But when I write “11, 10.5, 10.25,
10.15309834183218950482, and so on”, I haven’t the faintest idea what comes next! So
the “and so on” for counting numbers is acceptable, but the “and so on” for measuring
numbers is not, and when we do things rigorously and precisely we must get rid of it.

18To make this precise, one needs to use tha language of Calculus: if w(t) is the amount
of water at time t, then w is a continuous function of t. The trouble with this is: at this
point you only have a nonrigorous, not very precise idea of what a “continuous function”
is. You will learn to define the notion of “continuous function”, and work with it, and
prove things about it, in your next “Advanced Calculus” or “Real Analysis” course.
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– You can take a segment of length 1 (assuming we have
fixed a unit of length), and divide it into seven equal seg-
ments, each one of which has length 1

7
. And then you can

draw segments whose lengths are 3

7
, or 4

7
, or 9

7
, or 23

7
, thus

getting fractional lengths.

– And, instead of 7, you can use any denominator you want,
and get lengths such as 5

2
, 12

5
, 29

17
, 236,907

189,276
, and so on.

– Hence, if n and m are any natural numbers, then we can
(at least in principle) construct segments of length m

n
.

That is, we can construct segments of length f , for any
fraction f .

The measuring numbers such as 5

2
, 12

5
, 29

17
, or 236,907

189,276
, that can obtained

by dividing a counting number m into n equal parts, where n is another
counting number, are called fractions.

And this suggests an idea:

Idea 1: Perhaps the measuring numbers are exactly the same as the frac-
tions.

In other words: suppose we use the length u of some straight-line segment U
as the unit for measuring length. (That is, we call the lenght of this segment
“meter”, or “yard”, or “foot”, or “mile”, and then we try to express every
length in meters, or yards, or feet, or miles.) When we do that, we will
of course need fractions to expres some lenghts because, for example, if we
measure distances in miles, not every distance will be 1 mile, or 2 miles, or n
miles for some counting number n. Some distances will be, say, half a mile,
or three quarters of a mile, on thirteen hundredths of a mile, or forty-seven
thousandths of a mile19.

Then Idea 1 suggests that the length of every segment V should be equal
to a fraction m

n
times u (wnere m,n are natural numbers, i.e., counting

numbers). That means that if we divide the segment U into n equal segments

19Here is another important difference between counting and measuring numbers: to
count things using counting numbers you do not need units, but to measure amounts using
measuring numbers you do. If you are asked how many pills there are in a bottle, then
you answer “six”, or “twenty-five’, or whatever, and nobody is going to ask “six what?”.
But if you are asked how much water there are in the bottle, and you answer “six”, then
somebody is going to ask “six what?”, expecting that you will say something like “six
ounces”, or “six liters”, because if you do not specify the units of your measurement the
number you gave is meaningless.
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of length w = u
n
, then the length of U is n times w, and the length of V is m

times w. So U and V are commensurable. Since we can take U and V to be
any two segments we want, we find that If Idea 1 i true, then any two
segments are commensurable.

COMMENSURABLE LENGTHS

“Commensurable” means “measurable together”. Precisely:

Definition 10.

• Two segments U , V , are commensurable if you can use a ruler
of the same length w to “measure u and v together”, that is,
to express both lengths u and v as integer multiples mw, nw
of the unit of length w.

• Two segments U , V , are incommensurable if they are not
commensurable.

But then a momentous discovery of far-reaching consequences was made:

There are incommensurable lenghts.

That is, it is not true that any two lengths are commensurable.
Precisely: it is possible to construct geometrically20 a segment whose

length r satisfies r2 = 2. For example, if we draw a square whose sides have
length 1, then the length r of the diagonal of the square will satisfy r2 = 2,
by Pythagoras’ theorem.

20What does “constructing geometrically” mean? This is tricky. For Euclid (who lived
about 23 centuries ago), “constructing geometrically” meant “constructing with a ruler
and compass”. (See the Wikipedia article ”Compass and straightedge consrtuctions”.)
Using ruler and compass, one can construct lines and circles, but there are lots of other
curves—for example, ellipses—that cannot be constructed that way. On the other hand,
there are other equally “geometric” methods that can be used to construct some of those
curves. For example, ellipses can be constructed using pins and strings. (See the Wikipedia
article “Ellipses”.)
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r
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And it was discovered that there is no fraction r such that r2 = 2. This
means that

I. If you believe that “number” means “fraction”, then there is no number
that measures the length of the diagonal of a square whose sides have
lengt 1.

II. If you are willing to accept that there could be “numbers” that are not
fractions, then maybe there is a number r that measures the length of
the diagonal of a square whose sides have lengt 1, but that number r,
that we could call “

√
2”, is not a fraction.

Today we would say that

• Those numbers that are not fractions, such as
√
2, do indeed exist, and

we call them “real numbers”.



Math 300, Fall 2019 45

• The fractions, called “rational21 numbers”, are real numbers, but many
real numbers are “irrational” numbers, that is, numbers that are not
rational.

• Actually, most22 real numbers are not rational.

• It took mathematicians more than 2,000 years after the discovery of
the irrationaly of

√
2 to come up with a truly rigorous definition of the

concept of “real number”. (The name “real number” was introduced by
Descartes in the 17th century. The first rigorous definition was given
by George Cantor in 1871, and the most widely used definitions were
proposed by Karl Weierstrass and Richard Dedekind.

3.4.2 Why was the irrationality of
√
2 so important?

The discovery of the inconmensurability of
√
2 was made, according to legend,

by Hippasus of Metapontum, who lived in the 5th century B.C.E and
was a member of the religious sect of the Pythagoreans, i.e., the followers of
the philosopher and mathematician Pythagoras23. And the legend also says
that the discovery was so shocking to the Pythagoreans that Hippasus was
drowned at sea, as punishment for having divulged the secret. (But this is a
legend, and there is no evidence that it is true.)

Why was the existence of inconmensurable magnitudes so upsetting to
the Pythagoreans? The reason is this: the Pythagoreans were a mystical-
religious cult.

21The word “rational” here has nothing to do with “rationality” in the sense of “in
accordance withb reason or logic”. It comes from the word “ratio”, which means “quo-
tient”. An “irrational number” is a number that is not the quotient (“‘ratio”) of two
integers. If you hear somebody say something like “scientists have shown that nature is
irrational: mathematicians have shown that irrationality is everywhere present, because
most numbers are irrational”, then you shoud realize that thit is an ignorant statement by
somebody who does not understand what “irratioanl numbers” are. The “irrationality” of
irrational numbers has nothing to do with their being unreasonable, absurd, or illogical;
it just means that they are not quotients of two integers.

22If this statement does not strike you as incomprehensible because you don’t know
what it means, you should think again, and ask yourself “what could it possibly mean to
say that most real numbers are irrational”? It turns out that this can be made precise,
but making it precise is hard.

23Yes, that’s the same Pythagoras of Pythagoras’s theorem.
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The Pythagoreans honored the effort put into mathematics,
and coordinated it with the observation of the cosmos in var-
ious ways, for example: by including number in their reason-
ing from the revolutions and their difference between them,
by theorizing what is possible and impossible in the organi-
zation of the cosmos from what is mathematically possible
and impossible, by conceiving the heavenly cycles according
to commensurate numbers with a cause, and by determining
measures of the heaven according to certain mathematical ra-
tios, as well as putting together the natural science which
is predictive on the basis of mathematics, and putting the
mathematical objects before the other observable objects in
the cosmos, as their principles.

From the Wikipedia article on Pythagore-

anism, which quotes the Protrepticus, by

D. S. Hutchinson and M. R. Johnson, a

2015 reconstruction of a lost dialogue of

Aristotle.

In other words, for the Pythagoreans everything in the world was determined
by ratios (i.e. quotients) of “numbers”, and for them “number” meant “nat-
ural number” (i.e., counting number). The discovery that some lengths were
not ratios of “numbers” undermined the Pythagorean system to such an ex-
tent that the members of the sect felt it necessary to conceal this fact from
the general public.

But it is important to put all this in proper perspective: there is no real
proof that Hippasus truly was the discoverer of the irrationality of

√
2, or

that he was drowned at sea for that discovery.

3.4.3 What is a “real number”, really?

The discovery that there are lengths that are inconmensurable with one an-
other naturally forced mathematicians to ask a fundamental question: what
is a “number”, really?

And, as we have explained, it took more than 2,000 years until mathe-
maticians found a satisfactory answer.
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3.4.4 The most important number systems: real numbers vs. in-
tegers and natural numbers; definition of “rational number”

Now let us look at the main number systems24 that mathematicians use
today.

1. The measuring numbers, together with their negatives, and zero, are
called real numbers.

2. The set of all real numbers is called IR. (It is also called “the set of all
real numbers”, or “the real line”.)

3. The counting numbers are called natural numbers. (They are also
called “positive integers”.)

4. The set of all natural numbers is called IN.

5. The natural numbers, together with their negatives and zero, are called
integers.

6. The set of all integers called Z.

7. The real numbers that are quotients of two integers are called rational
numbers. That is, we have the following key definition:

24There are many number systems. What we will do here is barely scratch the surface
of a very rich theory.
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Definition 11.

• A rational number is a real number r such

that there exist integers m,n for which:

(a) n 6= 0

(b) r = m
n .

• The set of all rational numbers is called Q.

(So “x ∈ Q” is a way of saying “x is a rational

number”.)

• In formal language: If r ∈ IR, then r ∈ Q ifa

(∃m∈Z)(∃n∈Z)
(

n 6=0 and r=
m

n

)

. (3.15)

• An irrational number is a real number r which

is not rational.
aFormula (3.15) is not yet completely formal, because it contains the word

“and”. Soon we are going to leanr the symbol “∧” for “and”, and then we will

be able to rewrite (3.15) as (∃m ∈ Z)(∃n ∈ Z)
(

n 6= 0 ∧ r = m
n

)

.

3.4.5 A remark about sets

We will spend a lot of time in this course studying sets. At this point, all
you need to know is that

• sets have members.

• If S is a set and x is an object (for example, a number or a person or
a giraffe or a set) then “x ∈ S” is a way of saying that x is a member
of S.
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• “x ∈ S” is read as “x belongs to S”, or “x is in S”, or “x is a member
of S”.

• We write “x /∈ S” to indicate that x is not a member of S.

• So, for example,

– If C is the set of all cows, then to say that Suzy is a cow we can
equally well say “Suzy∈ C”.

– You can read “Suzy∈ C in any of the following ways:

1. Suzy belongs to C,

2. Suzy is in C,

3. Suzy belongs to the set of all cows,

4. Suzy is a cow.

But the third reading, although correct, is very stupid, because
there is no reason to say “Suzy is a member of the set of all cows”
when you can say the same thing in a much shorter and simpler
way by saying “Suzy is a cow”.

– Similarly, you can read “Suzy/∈ C in any of the following ways:

1. Suzy does not belong to C,

2. Suzy is not in C,

3. Suzy does not belong to the set of all cows,

4. Suzy is not a cow.

And the third reading, though correct, sounds silly, so you would
never say it that way.

• Here is another example.

– “IN”, as we know, is the set of all natural numbers. So, to say
that 3 is a natural number we can equally well say “3 ∈ IN”.

– You can read “3 ∈ IN in any of the following ways:

1. 3 belongs to IN,

2. 3 is in IN,

3. 3 belongs to the set of all natural numbers,

4. 3 is a natural number.
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But the third reading, although correct, is very stupid, because
there is no reason to say “3 is a member of the set of all natural
number” when you can say the same thing in a much shorter and
simpler way by saying “3 is a natural number”.

Problem 17. For each of the following formulas,

(a) translate the formula into English,

(b) indicate whether it is true or false.

Give the best, most natural English translation. For example, the formula
“1 ∈ IN” could be translated as “1 belongs to the set of natural numbers”,
but this sounds very awkward. A much better way to say the same thing in
English is “1 is a natural number”, so this translation is to be preferred.

1. −3 ∈ IN,

2. 0 ∈ IN,

3. 0 /∈ Z,

4. 0 ∈ Z,

5. −3 ∈ IR,

6. 0 ∈ IR,

7. 0 /∈ IR,

8. 0 ∈ IR,

9. 0 ∈ Q,

10. 3 ∈ Q,

11. −3 ∈ Q,

12. 237

42
∈ Q,

13.
√
2 ∈ Q,

14.
√
2 /∈ Q,

15. π ∈ Q.
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3.4.6 Proof of the irrationality of
√
2

As explained before, we could state the theorem on the irrationality of
√
2

by saying that “
√
2 is irrational”. This, however, would mean that there is

a “number
√
2”, i.e., a number whose square is 2. But the issue whether

such a number exists is different from the one that concerns us here, namely,
whether there exists a rational number r such that r2 = 2. So I prefer to
state the theorem in a way that does not imply any a priori commitment to
the existence of a “number” r such that r2 = 2.

And, before we give the proof, we introduce a few concepts and state
some facts that will be used in the proof, (These facts will be proved later in
the course.)

THE DEFINITION OF “EVEN” AND “ODD”
INTEGERS

Definition 12. Let a be an integer. We say that a is even if it is
divisible by 2. And we say that a is odd if it is not even.

The integers 1 are −1 are factors of every integer, because if n ∈ Z then
n = n× 1 and n = (−n)× (−1), so n is divisible by 1 and by −1. So 1 and
−1 are not very interesting factors, because they are always there. So we
refer to 1 and −1 as the trivial factors of an integer.

THE DEFINITION OF “COPRIME INTEGERS”

Definition 13.

• Let a, b be integers. We say that a and b are coprime if they do
no have any nontrivial common factors.

• We write “a ⊥ b” to indicate that a and b are coprime.

• In formal language, if a ∈ Z and b ∈ Z, then a ⊥ b if

∼ (∃k ∈ Z)(k|a and k|b and k 6= 1 and k 6= −1) .

Example 9. The integers 12 and 35 are coprime. Indeed:

• The factors of 12 are 1, −1, 2, −2, 3, −3, 4, −4, 6, −6, 12 and −12.



Math 300, Fall 2019 52

• The factors of 35 are 1, −1, 5, −5, 7, −7, 35 and −35.

So the only common factors are 1 and −1, i.e., the trivial factors. Hence 12
and 35 are coprime. �

3.5 The proof of the irrationality of
√
2

Now, finally, we are ready to prove that
√
2 is irrational.

We are going to use two facts:

Fact 1. Every rational number is equal to a quotient m
n
of two co-

prime integers.

Fact 2. The product of two odd integers is odd.

Example 10. Here are some examples to illustrate what Fact 1 means:

• let a = −36

22
. The integers −36 and 22 are not coprime, because they

are both divisible by 2. But we can factor out the 2, and get a = −18

11
.

Now the numerator −18 and the denominator 11 are coprime.

• let a = 630

840
. The natural numbers 630 and 840 are not coprime, because

they are both divisible, for example, by 2. We can factor out the 2,
and get a = 315

420
. The numerator 315 and the denominator 420 are not

yet coprime, because they are both divisible, for example, by 3. We
can factor out the 3, and get a = 105

140
. The numerator 105 and the

denominator 140 are not yet coprime, because they are both divisible,
for example, by 5. We can factor out the 5, and get a = 21

28
. The

numerator 21 and the denominator 28 are not yet coprime, because
they are both divisible by 7. We can factor the common factor 7 and
we get, finally, a = 3

4
. And now the numerator 3 and the denominator

4 are coprime. �

Theorem 4. There does not exist a rational number r such that r2 = 2.

Proof. We give a proof by contradiction .

Assume that there exists a rational number r such that r2 = 2.

Pick one such number and call it r. (Here we are using Rule ∃use.)
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Using the fact that r ∈ Q, we may pick integers m,n such that

(1) n 6= 0,

(2) r = m
n
,

(Here we are using again Rule ∃use.)

Using Fact 1, we may actually choose m,n such that

(3) m and n are coprime.

Since r2 = 2, we have m2

n2 = 2.

Therefore m2 = 2n2.

So m2 is even.

But then m is even. (Reason: Assume25 that m is not even. Then m
is odd. So by Fact 2, m2 is odd. But we have proved that m2 is even.
So m2 is not odd. Therefore m2 is odd and m2 is not odd, which is a
contradiction.)

Since m is even, m is divisible by 2, that is, (∃k ∈ Z)m = 2k.

So we may pick an integer k such that m = 2k.

Then m2 = 4k2.

But m2 = 2n2.

Hence 2n2 = m2 = (2k)2 = 4k2.

Therefore n2 = 2k2.

So n2 is even.

But then n is even. (Reason: Assume26 that n is not even. Then n
is odd. So n2 is odd by Fact 2. But we have proved that n2 is even.
So n2 is not odd. Therefore n2 is odd and n2 is not odd, which is a
contradiction.)

25Notice that we have a proof by contradiction within our main proof by contradiction.
26Another proof by contradiction !
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So m is even and n is even.

Therefore m and n are divisible by 2.

So m and n have a nontrivial common factor.

Hence m and n are not coprime .

But m and n are coprime

So m and n are coprime and m and n are not coprime , which is a con-
tradiction.

So the assumption that there exists a rational number r such that r2 = 2 has
led us to a contradiction,

Therefore there does not exist a rational number r such that r2 = 2 .Q.E.D.

3.6 More irrationality proofs

We now use the same technique to prove that
√
3 is irrational. The key point

here is to realize that “even vs. odd” now has to be replaced by “divisible by
3 vs. not divisible by 3”. And, in order to do the crucial step (the analogue
of “if m2 is divisible by 2 then m is divisible by 2”) we need a generalization
of Fact 2:

Fact 3. If p is a prime number, then the product of two integers that are not
divisible by p is not divisible by p either.

(We will prove Fact 3 later.)

Theorem 5. There does not exist a rational number r such that r2 = 3.

Proof. We want to prove that ∼ (∃r ∈ Q)r2 = 2. We will do a proof by
contradiction .

Assume that (∃r ∈ Q)r2 = 2, i.e., there exists a rational number r such
that r2 = 3.

Pick one such number and call it r.
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Using the fact that r ∈ Q, we may pick integers m,n such that

(1) n 6= 0,

(2) r = m
n
,

Then, using Fact 1, we can actually choose m,n so that

(3) m and n are coprime.

Since r2 = 3, we have m2

n2 = 3.

Therefore m2 = 3n2.

So m2 is divisible by 3.

But then m is divisible by 3. (Reason: By Fact 3, if m was not divisible
by 3, it would follow that m2 is not divisible by 3 either. But m2 is
divisible by 3, and we got a contradicition.)

Since m is divisible by 3, we may pick an integer k such that m = 3k.

Then m2 = 9k2.

But m2 = 3n2.

Hence 3n2 = 9k2, so
n2 = 3k2 . (3.16)

So n2 is divisible by 3.

But then n is divisible by 3. (Reason: By Fact 3, if n was not divisible
by 3, it would follow that n2 is not divisible by 3 either. But n2 is
divisible by 3, and we got a contradicition.)

So 3 is a factor of m and 3 is a factor of n.

Hence m and n have a nontrivial common factor.

So m and n are not coprime.

But m and n are coprime.
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Therefore m and n are coprime and m and n are not coprime , which
is a contradiction,

So the assumption that there exists a rational number r such that r2 = 3 has
led us to a contradiction,

Therefore there does not exist a rational number r such that r2 = 3 .Q.E.D.

3.6.1 What happens when you make a mistake in a proof

Can we do the same that we did before to prove the following theorem?

THEOREM: There does not exist a rational number r such that r2 = 4.
Proof. We will do a proof by contradiction .

Assume that there exists a rational number r such that r2 = 4.

Pick one such number and call it r.

Using Fact 1, we may pick integers m,n such that

(1) n 6= 0,

(2) r = m
n
,

(3) m and n have no nontrivial common factors.

Since r2 = 4, we have m2

n2 = 4.

Therefore m2 = 4n2.

So m2 is divisible by 4.

But then m is divisible by 4. (Reason: By Fact 3, if m was not divisible
by 4, it would follow that m2 is not divisible by 4 either. But m2 is
divisible by 4, and we got a contradicition.)

Since m is divisible by 4, we may pick an integer k such that m = 4k.

Then m2 = 16k2.

But m2 = 4n2.

Hence n2 = 4k2, so
n2 = 3k2 . (3.17)
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So n2 is divisible by 4.

But then n is divisible by 4. (Reason: By Fact 3, if n was not divisible
by 4, it would follow that n2 is not divisible by 3 either. But n2 is
divisible by 4, and we got a contradicition.)

So 3 is a factor of m and 4 is a factor of n.

Hence m and n have a nontrivial common factor.

So m and n are not coprime.

But m and n are coprime.

Therefore m and n are coprime and m and n are not coprime , which
is a contradiction,

So the assumption that there exists a rational number r such that r2 = 4 has
led us to a contradiction,

Therefore there does not exist a rational number r such that r2 = 4 .Q.E.D.

Same proof, right?

WRONG!!!!!

What is wrong here?

1. The result is false. It is not true that there does not exist a rational
number r such that r2 = 4. Indeed, if we take r = 2 then r is ratinal
and r2 = 4.

2. Since the conclusion of the proof is false, the proof itself must be wrong.
That is, whoever wrote this proof must have cheated27 in some step.

In our case, Fact 3 explicitly says that “if p is prime then if a is not
divisible by p it follows that a2 is not divisible by p”. So we are allowed
to apply Fact 3 if p is prime, but we are not allowed to apply it if p is
not prime.

27Nothing personal here. “Cheat” means “violate the rules.” Of course, I haven’t told
you yet what the rules are, but let me anticipate one of them. You are allowed to use
a result that has been proved, but you are now allowed to make up a statement
that has not been proved and use it as if it was true.
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So the two steps where we applied Fact 3 are wrong. In those steps,
we cheated, by violating the rules.

The general principle is this: If a proof is correct then you
can be sure that the conclusion is true.

And another way to say that is this: if the conclusion of a proof is
false, then the proof must be wrong. There has to be a mistake
in the proof itself.

So, if I give you a proof of a conclusion that is false, you have to be able
to find where in the proof the author cheated. I will not be satisfied with a
statement such as “the proof is wrong because the conclusion is false.” I will
want to know where in the proof a mistake was made.

Consider the following analogy: If I am trying to drive to Boston and end
up in New York, then of course I can conclude thta I did something worng.
But I will want to know what I did wrong, where I made a wrong turn. The
same happens with proofs.

3.6.2 More complicated irrationality proofs

I hope it is clear to you that the same method, exactly, will apply to prove
that

√
5,

√
7,

√
11, and, more generally,

√
p for any prime number, is irra-

tional.
Now let us try a more complicated case. Let us prove that

Theorem 6. There does not exist a rational number r such that r2 = 12.

Remark 3. The number 12 is not prime. (Actually, 12 = 4 × 3.) So we
cannot apply Fact 3 with 12 in the role of p.

Proof. We will do a proof by contradiction .

Assume that there exists a rational number r such that r2 = 12.

Pick one such number and call it r, so r2 = 12..

Using the fact that r ∈ Q, we may pick integers m,n such that

(1) n 6= 0,

(2) r = m
n
,
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Then, using Fact 1, we may pick m,n such that

(3) m and n are coprime.

Since r2 = 12, we have m2

n2 = 12.

Therefore m2 = 12n2.

Hence m2 = 3× 4n2.

So m2 is divisible by 3.

But then m is divisible by 3. (Reason: By Fact 3, if m was not divisible
by 3, it would follow that m2 is not divisible by 3 either. But m2 is
divisible by 3, and we got a contradicition.)

Since m is divisible by 3, we may pick an integer k such that m = 3k.

Then m2 = 9k2.

But m2 = 12n2.

Hence 12n2 = 9k2, so
4n2 = 3k2 . (3.18)

So 4n2 is divisible by 3.

But then n is divisible by 3. (Reason: By Fact 3, assume n is not
divisible by 3; then by Fact 3 n2 is not divisible by 3; since 4 is not
divisible by 3, another application of Fact 3 tells us that 4n2 is not
divisible by 3. But 4n2 is divisible by 3, so we got a contradiction.)

So 3 is a factor of m and 3 is a factor of n.

Hence m and n have a nontrivial common factor.

So m and n are not coprime.

But m and n are coprime.

Therefore m and n are coprime and m and n are not coprime , which
is a contradiction,

So the assumption that there exists a rational number r such that r2 = 12
has led us to a contradiction,
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Therefore there does not exist a rational number r such that r2 = 12 .Q.E.D.

Problem 18. Prove that each of the following numbers is irrational:

1.
√
5,

2. 3
√
5,

3. 3
√
9,

4.
√
28,

5.
√

2 +
√
2,

6.
√

2

3
,

7.
√

27

31
. �

Problem 19. Prove or disprove28 each of the following statements:

1. The sum of two rational numbers is a rational number.

2. The product of two rational numbers is a rational number.

3. The sum of two irrational numbers is an irrational number.

4. The product of two irrational numbers is an irrational number.

5. The sum of two irrational numbers is a rational number.

6. The product of two irrational numbers is a rational number.

7. The sum of a rational number and an irrational number is an irrational
number.

8. The product of a rational number and an irrational number is an irra-
tional number. �

Problem 20.

I. Explain why the following “proofs” that
√
2+

√
3 and

√
6 are irrational

(in which we are allowed to use the facts that
√
2 and

√
3 are irrational)

are wrong:

28To disprove a stetement means “to prove that the statement is false”. For example,
when we proved that 1 is not even we disproved the statement ‘1 is even”.
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1. Proof that
√
2 +

√
3 is irrational:

We know that
√
2 is irrational.

We know that
√
3 is irrational.

Hence the sum
√
2 +

√
3 is irrational. Q.E.D.

2. Proof that
√
6 is irrational:

We know that
√
2 is irrational.

We know that
√
3 is irrational.

Hence the product
√
2.
√
3 is irrational.

So
√
6 is irrational. Q.E.D.

II. Give correct proofs that
√
2 +

√
3 and

√
6 are irrational. �

Problem 21. Prove that
√
2 + 3

√
2 is irrational. �

Problem 22. Prove that
√
2+

√
3+

√
5 is irrational. (NOTE: This requires

some hard thinking on your part.) �

Problem 23. Prove that
√
2 +

√
3 +

√
5 +

√
7 is irrational. (NOTE: This

requires quite a lot of thinking on your part.) �

Problem 24. Prove that, if n ∈ IN, and p1, p2, . . . , pn are n distinct primes,
then

√
p1 +

√
p2 + · · ·+√

pn is irrational. (NOTE: This is very difficult.) �

3.7 A general theorem on irrationality of square roots

After having proved that various numbers such as
√
2,

√
3,

√
5,

√
28,

√

2

3
,

√

27

31
are irrational, can we prove once and for all a general theorem that will

include all these cases? The answer is “yes”, and here is the theorem. Notice
that all the irrationality results about square roots that we have proved
before follow easily from this theorem. (For example: if r = 2, then r = 2

1

and 2 ⊥ 1, so Theorem 7 tells us that
√
r is irrational, because 2 is not the

square of an integer; similarly, if r = 2

3
, then Theorem 7 tells us that

√
r is

irrational, because 2 ⊥ 3 and 2 and 3 are not squarea of integers.)

Theorem 7. Let r be a rational number written as a quotient m
n
, where m

and n are coprime integers and n > 0. Then either
√
r is irrational or both

m, n are squares of integers.

The key fact that will be used in this proof is the following
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Fact 4. If a, b, c are integers such that c|ab and c ⊥ b, then c|a. (That is, if
c divides ab and is coprime with b, then c divides a.

Rough idea of the proof of Fact 4. We can write a, b, c as products of primes:
a = p1.p2. · · · .pn, b = q1.q2. · · · .qm, c = r1.r2. · · · .rk. Then the expression of
ab as a product of primes is

ab = p1.p2. · · · .pn.q1.q2. · · · .qm . (3.19)

Since c|ab, all the primes rj occur in the right-hand side of (3.19). But c ⊥ b,
so none of the rj is a qj. It follows that all the rj are p’s i.e., factors of a, so
c|a.

This argument is not completely rigorous. I will give you a rigorous—and
much more elegant—proof later.

Proof of Theorem 7:

We will prove that if
√
r is rational then both m, n are squares of integers.

Assume
√
r ∈ Q.

Then we can write
√
r = p

q
, where p, q are integers, and q 6= 0.

Furthermore, in view of Fact 1, we can actually choose p and q to be
coprime.

We then have
p2

q2
=
m

n
,

so
p2n = mq2 .

So n|mq2. But n ⊥ m, so by Fact 7 n|q2.

Also, q2|p2n.

But q2 ⊥ p2. (Reason: Suppose q2 and p2 were not coprime. Then they
would have a common factor k such that k > 1. And k would have a
prime factor u. Then u is prime and divides both q2 and p2. By Fact
3, u divides q and u divides p, so p and q are not coprime. But p and
q are coprime, so we get a contradiction.)

Since q2|p2n and q2 ⊥ p2, it follows that q2|n.
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So q2 divides n, n divides n are natural numbers.

Therefore n = q2.

Since n = q2 and p2n = mq2, it follows that p2n = mn.

So p2 = m.

We have shown that m = p2 and n = q2. Hence both m and n are
squares of integers.

We have shown that if
√
r is rational then m and n must be squares of

integers. So either m and n are squares of integers or r is irrational.Q.E.D.
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4 What is a proof, really?

THIS SECTION IS STILL BEING WRITTEN. WHEN

IT IS FINISHED IT WILL BE INCLUDED IN THESE

NOTES.

4.1 Analysis of the proof of Theorem 1

THIS SECTION IS STILL BEING WRITTEN. WHEN

IT IS FINISHED IT WILL BE INCLUDED IN THESE

NOTES.
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5 The languages of mathematics: formal, nat-

ural, and semiformal

In these notes, we will be talking mostly about math-

ematical objects, that is, numbers of various kinds

(natural numbers, integers, rational numbers, real num-

bers, complex numbers, integers modulo n, etc.), sets,

functions, relations, graphs, geometric objects (such as

points, lines, segments, angles, circles, planes, curves and

surfaces of various kinds, etc.), and many other kinds of

objects (such as groups, rings, fields, algebras, modules,

vector spaces, manifolds, bundles, Lie groups, etc.) that

mathematicians have invented and you will learn about

in more advanced courses.

And we will talk about these mathematical objects us-

ing mathematical language. But mathematical lan-

guage is a special kind of language, in many ways similar

to other languages such as English, and in many ways

different. So, in order to talk about mathematical lan-

guage we will want to say a few words about language in

general, so that we can explain what makes mathematical

language special.

Mathematical language, as commonly used, is semi-

formal language, that is, a mixture of formal lan-

guage and the natural language (English, Chinese,
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French, whatever) that one uses in a particular country.

(Formal lamguage is a language consisting entirely of for-

mulas. For example, the statement “A = πR2” is an

expression in formal language.)

For example, when we say

from the facts that 2+2 = 4 and 4+2 = 6 we deduce that (2+2)+2 = 6

(5.20)

this is a mixture of formal mathematical language and

English. (The formal language part consists of the for-

mulas “2 + 2 = 4”, “4 + 2 = 6”, and “4 + 2 = 6”. The

English part is the rest.)

If we wanted to say the same thing in French, we would

say

des faits que 2+2 = 4 et 4+2 = 6 on deduit que (2+2)+2 = 6 .

(5.21)

Notice that the formal language part does not

change. That’s because formal language is uni-

versal. The formula “2 + 2 = 4” is exactly the same in

English, French, Chinese, or any other language.

As we will see in the course, it is possible to for-

malize mathematics fully, that is, to develop a for-

mal language into which we can translate every mathe-

matical statement.

For example, statement (5.20) would become, in purely
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formal language:

(2 + 2 = 4 ∧ 4 + 2 = 6) =⇒ (2 + 2) + 2 = 6 . (5.22)

And, once you get to this level, the texts you get are no

longer in English or Franch or Chinese, because formal

language is the same everywhere, exactly as the

formula “1 + 1 = 2’ is the same everywhere and can be

understood by all people, no matter what language they

speak.

This means that if we could write all of mathemat-

ics in formal language, we would have a language that

permits people of all nationalities, speaking all kinds of

lamguages, to communicate easily: if a mathematician

who speaks Chinese says something, and a mathemati-

cian who speaks English does not understand, then all

these two mathematicians have to do is switch to formal

language, and then they would have no problem commu-

nicating.

Formal language has other advantages that we will talk

about soon. So you would think that mathematicians

must use formal language all the time. But in fact we do

not. We use a semiformal language which is a mixture of

formal language and our own natural languages, because

formal language is too dry and to hard to read. But

formal language remains the means of communication of
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last resort: if I don’t understand something you wrote,

then I would ask you to say it in formal language. I you

cannot say it in formal language, then what you wrote is

meaningless. If you can say it in formal language, then

I will understand what you said, and I will be able to

decide if it is right or wrong.

Example 11. Suppose you are trying to define “prime

number”, and write “a prime number is a number that is

only divisible by 1 and itself”. Then I do not understand

what you are saying, so I cannot tell if it is right or wrong.

Why do I not understand?

• Fisrt of all, I do not understand what “number”

means. There are lots of different kinds of num-

bers: natural numbers, integers, rational numbers,

real numbers, complex numbers, integers modulo n,

etc. When you say “number”, which one do you

mean?

• Also: what does “only divisible” mean? You may

say that when yoy write “p is only divisible by 1 and

itself”, what you mean is that “the only factors of p

are 1 and p”. But then I would reply: “so 3 is not

prime, because the factors of 3 are 3, 1, −1 and −3,

so it’s not true that the only factors are 1 and 3; so

3 is not prime.” Then you would probably reply: “I
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did not mean to count negative factors as factors”,

And I would aswer: “why didn’t you say that?”

If I ask you to write your statement in formal language,

then that will force you to make your meanings precise.

For example, you will write something like29

if p ∈ IN , then p is prime if (∀k ∈ IN)
(

k|p =⇒ (k = 1∨k = p)
)

.

(5.23)

This is now completely clear, so at this point I will finally

have understood what you are saying. And then I will be

able to tell if this is right or wrong.

The answer is: as a definition of “prime number”, this

is wrong, because 1 is not prime, but according to (5.23)

1 is prime.

But we can make it right by writing:

if p ∈ IN , then p is prime if p > 1∧(∀k ∈ IN)
(

k|p =⇒ (k = 1∨k = p)
)

.

(5.24)

5.1 Things and their names

In any language, whether it is English, French, Russian,

Spanish, Chinese, or formal or semiformal mathematical
29This is not yet a fully formal definition. To make it fully formal we need to introduce a

symbolic way to say “p is prime”. We can do this by using “P (x)” for “x is prime”, and then

your statement would become: (∀p ∈ IN)

(

P (p) ⇐⇒ (∀k ∈ IN)
(

k|p =⇒ (k = 1∨k = p)
)

)

.

This is not yet a correct definition of “prime number” but at least it is pefectly clear.
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language, we talk about things (objects, entities), and

in order to do that we give them names.
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THINGS

In these notes, the word thing refers to an ob-

ject of any kind: a concrete inanimate material

object such as a table or a molecule or a planet,

a “living thing” such as a plant, an animal, a per-

son, or an amoeba, or an abstract thing such as a

mathematical object.

So, in these notes, Mount Everest is a thing, and

the chair on which you are sitting is a thing, and a

book is a thing, but so are a giraffe, a spider, and

you, and I, and my uncle Jim, and the number

four, and the set IN of all natural numbers.

Some students don’t like using the word “thing” to

refer to people, perhaps because they are thinking

that “people are not things”. My answers to that

are:

1. We can use words in any way we like, as long

as we do it consistently. So in this course we

can decide how to use the word “thing”, and

there should be no problem as long as what

we mean is clear to everybody.

2. We often do talk about “living things”, and

that includes people.

3. If you don’t like using the word “thing” in this

way, there is a word that’s perfect for you: you

can talk about “entities” instead. An entity is

anything that exists. It can be a table, a river,

a planet, an atom, a cell, a plant, a giraffe, a

person, a number, a triangle, a matrix, a set,
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5.1.1 Giving things individual names

The simplest way to give names to things is to give each

thing an individual name, as when you call people with

names such as “Mary”, “John”, or “George Washing-

ton”, you give cities names such as “New York City”,

“Paris”, or “London”, or you give mountains names such

as “Mount Everest” or “Mount Aconcagua”.

But this way of naming things is not very convenient,

because in our daily life we have to talk about an enor-

mous number of things of many different kinds, and it

would be truly impossible to give an individual name to

each one.

Just imagine if every fork, every knife, every spoon,

every plate, every glass, every cup, every napkin, every

table, every pencil, every pen, every cell phone, every

toothbrush, every animal, every plant, every cell in ev-

ery person’s or animal’s or plant’s body, every molecule

and every atom in the Universe, every electron and ev-

ery proton and every neutron and every particle of every

kind, had to have its own individual name, and you had

to know the name of each of those things before you can

talk about it! Imagine how difficult life would be if every

time you want to ask a waiter for a spoon you had to find

out first the name of that particular spoon!
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5.1.2 Variable noun phrases

So languages have developed a special device for naming

things without having to give each individual thing its

own name. We do this by using variables, that is, noun

phrases that can be temporarily designated to stand for

a particular thing but can then be re-used, as needed,

to stand for a different thing.

NOUN PHRASES

A noun phrase is a word or phrase that stands

for or is the name of something or somebody.

For example: “he”, “she”, “the giraffe”, “my un-

cle Jimmy’, “Mount Everest”, “the pencil”, “the

Math 300 final exam”, “the table that I bought

yesterday”, “the President of the United States”,

“Mary”, “New York City”, “the most expensive

restaurant in New York City”, “the owner of the

most expensive restaurant in New York City”, are

all noun phrases.

Example 12.When I say “I am going to open the door

and let you in”, the noun phrases “I”, “the door”, and

“you” stand, respectively, for the speaker, a door, and

the person that the speaker is talking to. But later, if

somebody else says the same thing to somebody else,
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the words “I”, “the door”, and “you” will stand for two

different people and a different door.

These noun phrases are variables: at each particular

time they are used they stand for some definite thing or

person, called the referent, or the value of the variable.

In each particular instance, it must be clear what the

value is. (For example, if you and I are on a beach, and

there is no door in sight, then when I say “I am going to

open the door and let you in” you will not understand

what I am talking about30.). �

Variable noun phrases are re-usable: after I

have used “the door” to refer to one particular door, I

may use “the door” again later to refer to a different

door.

Example 13. In a court of law, the noun phrase “the

defendant” is used as a variable. When a trial begins,

someone announces in some way that, for the duration of

this trial, the words “the defendant” will refer to a certain

specific person. Then, during the trial, everybody refers

to that person as “the defendant”. When the trial is over,

the variable “the defendant” becomes free, that is, not

attached to any particular person, and is free to be used
30Unless my statement is part of some larger context that makes the value of the noun

phrase “the door” clear. For example, I could be telling you that later, when we get home,
I will open the door and let you in. In that context, the value of “the door” is clear.
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to refer to a new defendant when a new trial begins. �

Example 14. When you buy a house, the contract will

probably contain a clause at the beginning declaring the

words “the buyer” to stand for you for that particular

contract. This means that the phrase “the buyer” is a

variable, whose value is you for this contract. Later, for

a new house sale, where the buyer is a different person,

a new contract will be signed, in which the phrase “the

buyer” has a totally different value. So the value of the

phrase “the buyer” is fixed only within a specific contract,

and changes when you go to another contract. �

5.1.3 Declaring the value of a variable

When we communicate our thoughts by speaking or writ-

ing, we use variable noun phrases all the time. But in

order to be understood we also have to communicate to

the reader or listener what each variable stands for each

time we use it. That is, we have to declare the values

of the variables we use. How is that done?

In English, values of variables are declared in dozens

of different ways. For example,

• Often, we first mention a person by his or her name,

and then when we use the pronouns “he”, “him”,

“his”, “she”, “her”, it is understood that the pronoun
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stands for that person. For example, suppose I write

George Washington was the first presi-

dent of the United States, and he served

as president for two terms. He was suc-

ceeded by John Adams, who served only

one term. When Adams ran for reelection

to a second term, he was the object of

malicious attacks by his opponents, and

eventually lost the election to Thomas

Jefferson.

In this text, the pronoun “he” appears three times.

The first two times, it clearly refers to George Wash-

ington, but the third time it refers to John Adams.

The mention of John Adams undoes the declaration

that “he” stands for George Washington, and assigns

the new value “John Adams” to the pronoun.

• The pronoun “I” is understood to stand for whoever

is speaking or writing.

• The pronoun “you” is understood to stand for who-

ever the speakers or writers are addressing themselves

to.

• Values of variables are often declared by pointing.

For example, if I say “please give me that book”,
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and I point to a book, then that book is the value of

the variable “the book”.

• Sometimes, the value of a variable is clearly deter-

mined by the fact that there is only one thing within

sight that the variable can stand for. For example,

if I say “please give me the book”, and there is only

one book within sight, then that book is the value.

• Often, the value of a variable is announced explicitly,

as in the examples we gave above of the variable “the

defendant” in a trial, and “the buyer” in a contract.

5.1.4 Using variables to name things in mathematical language

In mathematical language, it is customary to use letters

as variables. The most commonly used letters are

• lower case letters such as x, y, r, p, q, a, b, atc.,

• capital letters such as X , Y , P , Q, A, B, etc.,

• lower case Greek letters (α, β, ϕ, ψ, σ, etc.),

• capital Greek letters31 (Φ, Ψ, Σ, etc.).

But it is perfectly possible to use as variables other sym-

bols such as
31Some capital Greek letters are not used, because they are identical to their Latin

counterparts. For example, A (capital alpha) and B (capital beta) are identical to the
Latin A and B.
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• longer strings such as “abb” or “the number I have

been talking about”,

• other symbols, such as ⋄, or ♣.

Actually, you can use as a variable any symbol

or string of symbols you want (except only for

symbols such as =, <, ≤, >, ≥, +, ×, →, ⇒, ∧, ∨, ⇔,

etc., that already stand for something else), provided

that you declare its value (i.e. tell the reader clearly

what the symbol or string of symbols stands for).

Remark 4. The symbols π and e stand for the well

known real numbers 3.141592653589793238 . . . and 2.718281828459045235

respectively. But even those symbols can be (and some-

times are) used as variables with other values, provided

that the reader is told clearly what these symbols stand

for32. �

5.1.5 Free (i.e. open) vs. bound (i.e. closed) variables

A free variable (or “open variable”) in a text is a letter

(or string of symbols) that is “unattached”, in the sense

that it has not been assigned a value, and is therefore free

to be assigned any value we want.
32For example: the symbol π is sometimes used to stand for a permutation; the expres-

sion πk(S) stands for the k-th homotopy group of a space S; the letter e is sometimes used
for the charge of an electron.
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A bound variable (or “closed variable”) is a variable

that has been assigned a value.

For instance, suppose a student starts a proof by writ-

ing:

(*)
x2 = 1 + x .

or

(**) I am going to prove that x2 = 1 + x .

In these texts, the letter x is a free variable. The formula

says that “x-squared is equal to x + 1”, but it does not

tell us who x is. So we have no way to know whether the

formula is true or false. Therefore texts such as (*) or

(**) are unacceptable, because they are meaningless.

On the other hand, suppose a student writes

(***)
Let x = 1+

√
5

2 .

Then

x2 = 1 + x .

In this text, the phrase “let x = 1+
√
5

2 ” effectively

declares the variable x to have the value 1+
√
5

2 .

So, after this value declaration, “x” stands for the num-

ber 1+
√
5

2 .

Then the meaning of (***) is perfectly clear, so (***)

is acceptable, because in it the variable x is

used correctly: before it is used, a value for
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it is declared.

And then the meaning of (***) is perfectly clear: (***)

is just a roundabout way to say that

(1 +
√
5

2

)2

= 1 +
1 +

√
5

2
.

Once this particular use of the variable x is over, you

could, if you want to, use the same letter to represent

some other number or object of any kind. But in that

case it would have to be very clear that the old declaration

that x = 1+
√
5

2 no longer applies.

You could do this, for example, by saying something

like

(****)
Let x = 1+

√
5

2 . Then x2 = 1 + x.

Now suppose, instead, that x = 1−
√
5

2 . Then

it is also true that x2 = 1 + x.

In (****), the word “now” serves the purpose of telling

the reader that “we are starting all over again, and the

old declared value of x no longer applies.” (And the

word “instead”, which is unnecessary, strictly speaking,

reinforces that.)

5.1.6 Arbitrary things

There is another way to assign a value to a variable: we

can declare the value to be an arbitrary object of a
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certain kind.
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ARBITRARY THINGS

An arbitrary thing of a certain kind is a fixed thing

about which we know nothing, except that it is of that

kind. For example, an “arbitrary integer” is an integer

about which you know nothing other than that it is

an integer.

The way you should think about “arbitrary things ”

is as follows.

• Imagine that you are playing a game against some-

body (a friend, or a computer, or an alien from an-

other planet) that we will call the CAT (“creator

of arbitrary things”).

• The CAT’s job is as follows: every time you say

or write “let a be an arbitrary thing of such and

such kind,” the CAT picks one such thing, writes

down what that thing is on a piece of paper, puts

the paper in an envelope, and seals the envelope.

So, for example, if you say “let a be an arbitrary

natural number” then the CAT will pick a natural

number and write down what it is on a piece of

paper that will go inside the envelope.

• Later. after you have finished talking or writing,

you or the CAT will open the envelope, and you

will know who a really was.

• At that point,

– if what you said about a turns out to be true,

then you win, and the CAT loses.
– if what you said about a is not true, then the

CAT wins, and you lose.
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Example 15. Suppose you say:

Let n be an arbitrary integer.

What can you say after that, being sure that it is true?

Certainly, you cannot say that n = 2, because n could

be 1, or −7, or 25.

And you cannot say that n is even, because n could be

odd.

But here are a few things you can say:

• n = n.

• |n| ≥ 0.

• n is either a natural number, or the negative of a

natural number, or zero.

• n + n2 is even. (Reason: n is either even or odd. If

n is even, then n2 is also even, so the sum n + n2 is

even. If n is odd, then n2 is also odd, and the sum

of two odd integers is even, so n+ n2 is even. So, no

matter who n is, whether it is even, or odd, positive

or negative, yuuo can be sure that n + n2 is even.)

• n2 ≥ 0. (Reason: the square of every real number,

and in particular of every integer, is ≥ 0.)

• If n is even then n2 is divisible by 4. (This sentence

is true for every natural number n. Indeed, the sen-

tence is an implication: n is even=⇒ n2 is divisible
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by 4. The integer n could be even or odd, and you

have no control over that, because the CAT chooses

n, and the CAT can choose n any way he or she

wamts to. But: if n is odd, then the implication “n

is even=⇒ n2 is divisible by 4” is true, because the

premise “n is even” is false; and if n even then we

may pick an integer k such that n = 2k, and then

n2 = 4k2, so n2 is divisible; by 4, so the conclusion

“‘n2 is divisible by 4” is true. So the sentence is true

for every n.)

• n(n + 1)(n + 2) is divisible by 6.

• If n > 4 then n2 > n + 11. (Reason: as we will

see later, an implication “If A then B” is true if A

is false or if B is true. Using this: if n ≤ 4 then

the implication “if n > 4 then n2 > n + 11” is true

because “‘n > 4” is false. And if n > 4 then the

implication “if n > 4 then n2 > n + 11” is true

because n2 > n + 11’ is true.)

On the other hand, you cannot say “n2 > 0”, because if

you say that then the CAT will pick n to be 0, and you

lose. �

Example 16. Suppose you say:

Let m, n be arbitrary natural numbers.

What can you say after that, being sure that it is true?



Math 300, Fall 2019 85

Certainly, you cannot say that m = n, because m and n

could be different.

And you cannot say that m 6= n, because m and n could

be equal.

And you cannot say that m > n, because m could be

smaller than n.

But here are a few things you can say:

• m+n ≥ 2. (Reason: m ≥ 1 and n ≥ 1, so m+n ≥
2.)

• m.n is a natural number.

• (m + n)2 = m2 + 2m + n2.

• (m + n)3 = m3 + 3m2n + 3mn2 + n3.

• m2 − n2 = (m− n)(m + n).

• n + n2 and m +m2 are even.

• Either m > n or m = n or m < n. �

5.1.7 Universal quantifiers and arbitrary things

Suppose you want to make sure (that is, prove) that

something is true for all the members of some set S. For

example, you may want to make sure that every student

in a class knows that there is an exam next Tuesday.

You could do this in two ways:
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1. You can use the exhaustive search method:

chack, one by one, all the memers of S, and verify

that they all know about the exam.

2. You can use general reasoning: you try to come

up with an argument that shows that every stu-

dent knows about the exam. (For example: maybe

you have sent an e-mail to a mailing list of all the

students, telling them about the exam. And yyou

are sure that all the students get the messages to

this mailing list, and that they all read them. Then

you can be sure that they all know about the exam.)

If the set S is very large then it may be very difficult

to use the exhaustive search method. And if the set is

infinite then using exhaustive search is impossible. And

this is the situation we encounter most of the time in

Mathematics: the sets S about we want to make sure that

statements of the form “P (x) is true for every member x

of S” are usually infinite, or finite but very large. So the

only way to prove that something is true for all members

of some set S is to use reasoning:

This is why, in order to prove universal sentences (∀x ∈
S)P (x), we use the following method:

• we imagine that we have an arbitrary member x of

S,
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• we reason about x, prove facts about x,

• and, maybe, eventually, we prove that P (x), the fact

about x that we wanted to make sure is true, is in-

deed true.

If we can do that for an arbitrarymember of S, then we

have established that P (x) is true for every x ∈ S, that is,

that (∀x ∈ S)P (x). (“(∀x ∈ S)P (x)” is a “universally

quantified sentence”. We will study such sentences in

great detail in Section 7, on page 95.)

The method for proving universally quantified sentences

(∀x ∈ S)P (x) by proving that P (x) is true for an arbi-

trary member x of S is the Rule for proving uni-

versal sentences, that we will call Rule ∀prove , This
rule will be discussed in section 7.5, on page 115 below.

Problem 25. Indicate whether each of the following

statements about n is true for an arbitrary integer n. If

the answer is “yes”, prove it. If the answer is “no”, prove

it by giving a counterxample, that is, a particular value

of n for which the statement is false.

1. n is even.

2. n is even or n is odd.

3. n is even and n is odd.
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4. n is even or n + 1 is even.

5. n(n + 1) is even.

6. n(n + 1)(n + 2) is divisible by 3.

7. n(n + 1)(n + 2) is divisible by 6.

8. n2 > 0.

9. n2 ≥ 0.

10. n(n + 1) ≥ 0.

11. (∀m ∈ Z)(n < m =⇒ n2 < m2).

12. (∀m ∈ Z)(n > m =⇒ n2 > m2).

13. (∀m ∈ Z)(n = m =⇒ n2 = m2).

14. (∀m ∈ Z)(n2 = m2 =⇒ n = m).
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6 Dealing with equality

Throughout these notes, the symbols “=” and “ 6=” will

be used.

• The symbol “=” is read as “is equal to”.

• The symbol “ 6=” is read as “is not equal to”.

The meaning of “=” in mathematics is quite simple: if

a and b are any two things, then “a = b” (read as “a is

equal to b”, or “a equals b”) means that a and b are the

same thing.

Example 17.

• The sentence “3 = 2 + 1” is read as “three is equal

to two plus one”.

• The sentence “3 = 2 + 2” is read as “three is equal

to two plus two”.

• The sentence “3 6= 2 + 1” is read as “three is not

equal to two plus one”.

• The sentence “3 6= 2 + 2” is read as “three is not

equal to two plus two”.

• The sentences “3 = 2+ 1” and “3 6= 2+ 2” are true.

• The sentences “3 = 2+ 2” and “3 6= 2+1” are false.

�
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6.1 The substitution rule (Rule SEE, a.k.a. Rule =use)
and the axiom (∀x)x = x

There are two basic facts you need to know about equal-

ity.

THE TWO BASIC FACTS ABOUT EQUALITY

First, there is the substitution rule, which tells you

that in a proof you can always “substitute equals for

equals”:

RULE SEE (substitution of equals for

equals): If in a step of a proof you have an equality

s = t or t = s, and in another step you have a sen-

tence P , then you can write as a step any statement

obtained by substituting t for s in one or several of

the occurrences of s in P .

The second thing you need to know is the following

axiom:

EQUALITY AXIOM (The “everything is equal

to itself” axiom):

x = x for every x .

Example 18. In the sentence “2 + 2 = 4”, the symbol

“2” occurs twice. Suppose you have “2 + 2 = 4” as one
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of the steps in a proof. And suppose that in another

step you have “1 + 1 = 2”. Then you can substitute

“1+1” for “2” in the first occurrence of “2” in the sentence

“2 + 2 = 4”, thus getting “(1 + 1) + 2 = 4”. Or you can

substitute “1+1” for “2” in the second occurrence of “2”

in “2 + 2 = 4”, thus getting “2 + (1 + 1) = 4”. Or you

can substitute “1 + 1” for “2” in both occurrences of “2”

in “2 + 2 = 4”, thus getting “(1 + 1) + (1 + 1) = 4”. Or

you can substitute “1+1” for “2” in none of occurrences,

in which case you get back “2 + 2 = 4”. �

Example 19.The following are true thanks to the equal-

ity axiom:

1. 3 = 3,

2. (345 + 1, 031)× 27 = (345 + 1, 031)× 27,

3. Jupiter=Jupiter33

4. π = π.

5. My uncle Billy=My uncle Billy. �

33But you have to be very careful here! There are at least three different things
named “Jupiter”: a planet, a Roman god, and a Mozart symphony. When you write
“Jupiter=Jupiter”, you have to make sure that the two “Jupiter” in the equation have
the same meaning. It would be false if you said that the planet Jupiter is the same as the
Roman god Jupiter!
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6.2 Equality is reflexive, symmetric, and transitive

Most textbooks will tell you that equality has the follow-

ing three properties:

I. Equality is a reflexive relation. That is:

for every x , x = x . (6.25)

II. Equality is a symmetric relation. That is:

for every x , y , if x = y then y = x . (6.26)

III. Equality is a transitive relation. That is:

for every x , y , z , if x = y and y = z then x = z

(6.27)

And, in addition, they will also tell you that the following

important property holds:

IV. If two things are equal to a third thing

then they are equal to each other. That is,

for every x , y , z , if x = z and y = z then x = y .

(6.28)

We could have put these properties as axioms, but we

are not doing that because all these facts can easily be

proved from our two basic facts about equality.
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Theorem 8. Facts I, II, III, and IV above follow from

the two basic facts about equality described in the box

on page 90 above.

Proof. Fact I is exactly our Equality Axiom, so you

don’t need to prove it.

And now I am doing to do the proof of Fact II for you.

So what you have to do is prove III and IV.

Proof of Fact II.

Let x, y be arbitrary.

Assume x = y.

We want to prove that y = x.

By the Equality Axiom, x = x.

Since we have “x = y”, Rule SEE tells us that,

in the sentence “x = x”, we can substitute “y”

for any of the two occurrences of x in “x = x”.

So we choose to substitute “y” for the first of the

two xs that occur in “x = x”.

This yields y = x .

Since we have proved that y = x assuming that x =

y, we have shown that

if x = y then y = x . (6.29)
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(This is because of Rule =⇒prove, discussed later in

these notes.)

Since we have proved (6.29) for arbitrary x, y, it follows

that

For all x, y, if x = y then y = x . (6.30)

(This is because of Rule ∀prove, discussed later in these

notes in section 7.5 on page 115.) This completes our

proof. Q.E.D.

Proof of Facts III and IV. YOU DO THEM.

Problem 26. Write proofs of Fact III and Fact IV,

following the model of the proof given here for Fact II.�
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7 Universal sentences and how to prove and

use them

A universal sentence is a sentence that says that

something is true for every object x of a certain kind.

For example, the sentence

every natural number is either even or odd (7.31)

says that every natural number has the property of being

even or odd.

So this is a universal sentence.

Other examples of universal sentences are:

• Every natural number is an integer.

• Every real number has a square root34.

• Every real number has a cube root35.

• If n is any natural number then n is even or odd. �

• Every cow has four legs.

• Every cow has nine legs36.

• All humans are thinking beings.

• All giraffes have a long neck.
34False!
35True!
36Sure, this one is false. But it is a universal sentence.
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• Every giraffe has a long neck.

• Every real number is positive37.

• Every natural number can be written as the sum of

three squares of integers38.

• Every natural number can be written as the sum of

four squares of integers39.

• Every integer is even40.

• If a, b, c are integers, then if a divides b and c it

follows that a divides b + c.

Universal sentences can always be rephrased is terms

of “arbitrary things”. For example, sentence (7.31) says

If n is an arbitrary natural number then n is either even or odd .

(7.32)

We can say this in a more formal (and shorter) way by

using the universal quantifier symbol:

∀
(This symbol is an inverted “A”. The symbol is chosen

to remind us that “∀” stand for “for all”.)
37This one is false.
38False again!
39This one, believe it or not, is true. But it is very hard to prove, and precisely for that

reason, if you are interested in mathematics, I recommend that you read the proof. It is
truly beautiful. The result is called “Lagrange’s four squares theorem”.

40Also false.
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Precisely, the symbol is used as follows:

• Using the universal quantifier symbol, we form re-

stricted universal quantifiers, that is, expres-

sions of the form

(∀x ∈ S) ,

where

– x is a variable,

– S is the name of a set.

• It is also possible to form unrestricted universal

quantifiers, that is, expressions of the form

(∀x) ,
where x is a variable,

• A restricted or unrestricted universal quantifier can

be attached to a sentence by writing it before the sen-

tence. This operation is called universal quan-

tification, and the result is a universally quan-

tified sentence.

• So,
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If S is a set, and P (x) is a statement involving
the variable x, then

(∀x ∈ S)P (x)

is a universally quantified sentence, obtained

by universally quantifying the sentence P (x).

If P (x) is a statement involving the variable x,
then

(∀x)P (x)

is a universally quantified sentence, obtained

by universally quantifying the sentence P (x).

7.1 How to read universal sentences

7.1.1 Sentences with restricted universal quantifiers

The universal sentence

(∀x ∈ S)P (x)

can be read as follows:

• for every member x of S, P (x) is true41,

or as

• for every member x of S, P (x),

or as
41See Remark 5 below.
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• for all members x of S, P (x) is true,

or as

• for all members x of S, P (x),

or as

• if x is an arbitrary member of S then P (x) is true,

or as

• if x is an arbitrary member of S then P (x) .

7.1.2 Sentences with restricted universal quantifiers

The universal sentence

(∀x)P (x)

can be read as follows:

• for every x, P (x) is true42,

or as

• for every x, P (x),

or as

• for all x, P (x) is true,

or as
42See Remark 5 below.
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• for all x, P (x),

or as

• if x is arbitrary then P (x) is true,

or as

• if x is arbitrary then P (x) .

7.1.3 A recommendation

Of all these ways of reading “(∀x ∈ S)P (x)” and “(∀x)P (x)”,
I strongly recommend the ones involving “ar-

bitrary” x, because once you get used to reading uni-

versal statements that way it becomes very clear how to

go about proving them.

Remark 5. If A is any sentence, then saying “A is true”

is just another way of asserting A. For example, saying

that

“all animals are made of cells′′ is true (7.33)

is just another way of saying

all animals are made of cells . (7.34)

Similarly, saying

P (n) is true (7.35)
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is just another way of saying

P (n) . (7.36)

This is why the sentence “(∀n ∈ Z)P (n)” can be read

either as “if n is an arbitrary integer then P (n) is true”,

or as “if n is an arbitrary integer then P (n)”. �

7.2 Using the universal quantifier symbol to write uni-
versal statements

7.2.1 What is formal language?

As we explained before, formal language is a language

in which you use only formulas, and no words.

For example, you know from your early childhood how

to take the English sentence “two plus two equals four”

and say the same thing in formal language. i.e., with a

formula. You just write

2 + 2 = 4 . (7.37)

We can say more complicated things in formal language

by introducing more symbols. For example, here is the

definition if “divisible” that we saw earlier:

DEFINITION Let a, b be integers. We say that a is

divisible by b (or that b is a factor of a) if there exists an

integer k such that a = bk. �
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Then, we can agree to introduce the new symbol “|”
to stand for “is a factor of”, and write

b|a (7.38)

instead of “b is a factor or a”, or “a is divisible by b”.

In particular, we can now say “x is even” in formal

language, as follows: “2|x”. So, for example the assertion

that “the sum of two even integers is even” becomes, in

formal language:

(∀a ∈ Z)(∀b ∈ Z)
(

(2|a ∧ 2|b) =⇒ 2|a + b
)

. (7.39)

Can you say more complicated things in formal lan-

guage? For example, can you rewrite the English sen-

tence

(#)

If we take any two real numbers and

compute the square of their sum, then

you get the same result as when you

add the squares of the two numbers

plus twice their product.

in formal language?

You know since high school that you can take a big

part of (#) and rewrite it in formal language. The trick

is to give names to the two integers that you want to

talk about. Then you can write



Math 300, Fall 2019 103

(#1)
If we take any two real numbers and

call them a and b, then

(a + b)2 = a2 + b2 + 2ab ,

or

(#2)
If a, b are arbitrary real numbers,

then

(a + b)2 = a2 + b2 + 2ab .

Naturally, you could use any names you want, For exam-

ple, you could equally well have written

(#3)
If x, y are arbitrary real numbers,

then

(x + y)2 = x2 + y2 + 2xy .

or

(#4)
If we take any two real numbers and

call them x and y, then

(x + y)2 = x2 + y2 + 2xy .

Sentences (#1), (#2), (#3), (#4) are statements in semi-

formal language: they are a mixture of formal lan-

guage and ordinary English.
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These statements are universal sentences. And now

you have learned how to formalize43 universal state-

ments. So you can write

(#5) (∀a ∈ IR)(∀b ∈ IR)(a+b)2 = a2+b2+2ab .

or

(#6) (∀x ∈ IR)(∀y ∈ IR)(x+y)2 = x2+y2+2xy .

Statements (#5) and (#6) are formal sentences, that

is, formulas with no words.

7.2.2 The road to full formalization.

What we have done is get started moving towards full

formalization.

You started doing this in your childhood, when you

learned how to formalize “two plus two equals four” by

writing “2 + 2 = 4”.

And now you have learned how to formalize more com-

plicated sentences, Using the universal quantifier symbol,

you are now able to say many more things in formal lan-

guage.
43that is, how to say in formal language
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Example 20. Suppose you wanted to say “every natural

number is positive”. You can write

(∀n ∈ IN)n > 0 . (7.40)

This is a formula, that is, a sentence in formal language.

�

Example 21.Although we do not know yet how to write

something like

(#7)

If we have any two integers, when

say that the first one is divisible by

the second one what we mean is that

there exists an integer that multiplied

by the second one results in the first

one.

in full formal language, we are able, using what we know

so far, to go a long way, and rewrite (#7) in semiformal

language, with very few words, i.e., getting very close to

a fully formal sentence. We can write

(#8)
(∀a ∈ Z)(∀b ∈ Z)(“a|b” means

“there exists k such that k ∈ Z and

b = ak.”)

�

Example 22. Let us say “If a, b, c are integers, then

if a divides b and c it follows that a divides b + c” in

semiformal language.
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We can say:

(∀a ∈ Z)(∀b ∈ Z)(∀c ∈ Z)
(

if a|b and a|c then a|b+c
)

,

(7.41)

which is, again, a sentence in semiformal language. �

Later, when we learn how to say “means”, “there exists”,

“if . . . then” and “and”, we will be able to say (#8) and

(7.41) in fully formal language, as follows:

• We can translate (#8) into fully formal language as

(∀a ∈ Z)(∀b ∈ Z)(a|b⇐⇒ (∃k ∈ Z)b = ak) .

(7.42)

• We can translate (7.41) into fully formal language as

(∀a ∈ Z)(∀b ∈ Z)(∀c ∈ Z)
(

(a|b∧a|c) =⇒ a|b+c
)

,

(7.43)

7.3 Open and closed variables and quantified sentences

Let us recall that
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A free variable is a letter (or string of symbols)

that is “unattached”, in the sense that it has no

particular value, and is free to be assigned any

value we want.

A bound variable is a variable that has been as-

signed a specific value, by means of a value

declaration.

We can turn a free variable into a temporary

constant by declaring its value.

Let me add a couple of points to that:

• Free variables are also called open variables.

• Bound variables are also called closed variables.

(They are called “bound” variables because they are

“bound”, attached to a value, by contrast with free

variables, that are free to be assigned any value be-

cause they do not have a value already assigned to

them. And they are called “closed” because they are

not open to be assigned a value, since they already

have one.)

• A value declaration is valid until it ex-

pires. When the value declaration expires, the vari-

able becomes free again, and you can assign a new

value to it.
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Example 23. Here is an example of declaring a value for

a variable, and of making that declaration expire. You

could write:

1. Let x = 1+
√
5

2 .

2. Then x2 = 1 + x.

3. Now suppose, instead, that x = 1−
√
5

2 .

4. Then it is also true that x2 = 1 + x.

Here, step 1 assigns the value 1+
√
5

2 to the variable, so this

variable, which until then was open, is now attached to

the value 1+
√
5

2 , so x is bound, no longer free.

But then, in step 3, we are ssigning a new value to

x, which means that the previous value declaration has

expired. The fact that the previous value declaration has

expired is signaled by the word “now”’, and reinforced by

the word “instead”.

Notice that if you had written

1. Let x = 1+
√
5

2 .

2. Then x2 = 1 + x.

3. Let x = 1−
√
5

2 .

4. Then it is also true that x2 = 1 + x.

this would have been confusing for many readers, because
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they would have wondered: “wasn’t x equal to 1+
√
5

2 ?

How come suddenly it seems to have a different value?”

The words “now” and “instead” make it crystal clear to

the reader that the first value declaration has just expired

and we are free to assign to x a new value if we so desire.

�

7.4 A general principle: two rules for each symbol

Every time we introduce a new symbol, we need two rules

telling us how to work with it:

• We need a rule that tells us how to use statements

involving that symbol.

and

• We need a rule that tells us how to prove statements

involving that symbol.

Example 24. Let us look at the new symbol “|” (“di-

vides”) that we introduced in Part I of these notes. What

is the “use” rule’? What is the “prove” rule?

The “use” rule is:
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If you get to a point in a proof where you have

a statement

a|b ,
then you can go from this to

We may pick an integer k such that

b = ak .

And the “prove” rule is:

If you get to a point in a proof where you have

integers a, b, c and you know that

b = ak ,

then you can go from this to

a|b .
These rules are just another way of stating the definition

of “divides”. �

7.4.1 Naming sentences

Sentences are also things that we can talk about, so we

can give them names.

One common way mathematicians use to name sen-

tences is to give a sentence a capital letter name, such as

A, or B, or P , or Q, or S.
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So we could talk about the sentence “x eats grass” by

giving it a name, that is, by picking a capital letter and

declaring its value to be this sentence.

We could do this by writing

Let P be the sentence “x eats grass”.

However, there is a much more convenient way to do

this: If a sentence has an open variable, we

include this open variable in the name of the

sentence, thus signaling to the reader that the

sentence contains that open variable.

So, for example, a good name for the sentence “x eats

grass” could be P (x) (or A(x), or S(x), etc.). We could

declare the value of the variable P (x) by saying

(*) Let P (x) be the sentence “x eats

grass”.

An important convention about names of sentences is

this: suppose we want to talk about the sentence obtained

from P (x) by substituting (i.e., “plugging in”) the name

of a particular thing for the open variable x. If we already

have a name for that thing, say “a”, then the name of

the sentence arising from the substitution is P (a).

So, for example, after we make the value declaration

(*), then “P (Suzy)” is the name of the sentence “Suzy

eats grass”.
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What if you have a sentence with, say, two or more

open variables? You do the same thing: if, for example,

you want to give a name to the sentence “x told y that z

does not like w”, you can call that sentence P (x, y, z, w).

You could make the value declaration

Let P (x, y, z, w) be the sentence “x told y

that z does not like w”.”

And then,

• If you want want to talk about the sentence ”Alice

told Jim that Bill does not like Mary”, then that sen-

tence would have the name P (Alice, Jim,Bill,Mary).

• If you want want to talk about the sentence ”Al-

ice told Jim that Bill does not like her” (that is,

does not like Alice), that sentence would be called

P (Alice, Jim,Bill,Alice).

• If you want want to talk about the sentence ”Al-

ice told Jim that Bill does not like him” (that is,

does not like Jim), that sentence would be called

P (Alice, Jim,Bill, Jim).

• And, if, for some reason, you want to talk about

the sentence with two open variables ”x told y that

Bill does not like Mary”, that sentence would be

P (x, y, Jim,Mary).
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7.4.2 Universal sentences bound variables but at the end let them
free

If P (x) is a sentence with the open variable x, and C is

a set, then the sentence

(∀x ∈ C)P (x)

should be read as

Let x be an arbitrary member of C; then P (x) is

true; and now the value declaration of “x” expires,

and x is a free variable again.

Why do we want to do this?

The reason is that the value declaration (“Let x be an

arbitrary member of C”) was made for the sole purpose

of explaining which condition this arbitrary member of

C is supposed to satisfy. Once this has been explained,

there is no need to keep the variable x bound forever. It

is better to let it be free again, so that the next time we

need a variable for something, we can use x.

So, for example, when I explain to you that

(F) If x is an arbitrary integer then

(x + 1)2 = x2 + 2x + 1 ,

the important thing that I want you to remember is that

“if you take an integer, add one to it, and square the re-

sult, then what you get is the sum of the square of your
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integer, plus two times it, plus one”. There is no need

for you to remember, in addition, the name that I used

for that integer for the purpose of explaining Fact (F) to

you. You should not have to waste any time or effort

trying to remember “was that fact that was explained to

me about x? Or was it about y? Or was it about n?”

There is not need for you to remember that, because it

does not matter which variable was used. And,

more importantly: Fact (F) is not really about a

specific integer called x. It is a fact about

an arbitrary integer, and it does not matter

whether you call it x, or y, or z, or n, or

α, or β, or ⋄, or even “Suzy” or “my un-

cle Jimmy”. The letter x is used as a device

within the conversation in which you explain

Fact (F) to me, and once this conversation is

over we can forget about x.

Example 25. Suppose you have written, in a proof:

(∀n ∈ Z)n(n + 1) is even . (7.44)

Can you write, in the next step of your proof:

Since n(n + 1) = n + n2, it follows that n + n2 is

even. ?

The answer is no. Why? Because after the end of the

sentence (7.44), n is a free variable again, so it does not
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have a value, so when you use “n” in the next step, no-

body knows what you are talking about, so what you

wrote is meaningless, so it’s not acceptable.

Suppose you want to go from (7.44) to

(∀n ∈ Z)n + n2 is even . (7.45)

How can you do that? The answer is: you use the rules

for using and proving universal sentences. But you do

it correctly. And for that you need to read the next

section. �

7.5 Proving and using universal sentences (Rules ∀prove
and ∀use)

Now that we know that for every new symbol we intro-

duce we need a “use” rule and a “prove” rule, it is natural

to ask: What are the “use” rule and the “prove” rule

for the universal quantifier symbol ∀ ?”
Both are very simple, very natural rules.
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Here is the “use” rule:

The rule for using universal sentences
(Rule ∀use, also known as

the “universal specialization rule”)

• If you have proved

(∀x)P (x) ,

and you have an object called a, then you can go

to P (a).

• If you have proved

(∀x ∈ S)P (x) ,

and you have an object called a for which you know

that a ∈ S, then you can go to P (a).

The reason Rule ∀use is called called the universal spe-
cialization rule, is that the rule says that if a state-

ment is true in general (that is, for all things that belong

to some set S), then it is true in each special case (that

is, for a particular thing that belongs to S).

Example 26. If you know that (∀x)x = x, then you

can conclude from that, using Rule ∀use, that

3 = 3 ,
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and that

5 + 3 = 5 + 3 .

Example 27. Suppose you know that

(&) All cows eat grass.

and that

(&&) Suzy is a cow.

Then, from (&) amd (&&) you can conclude, thanks to

the specialization rule, that

(&&) Suzy eats grass.

In formal language. you would say this as follows: Let

P (x) be the sentence “x eats grass”, and let C be the

set of all cows. Then P (Suzy) is the sentence “Suzy eats

grass”. And (&) says

(&’) (∀x ∈ C)P (x) ,

whereas (&&) says

(&&’) Suzy ∈ C.

So we are precisely in the situation where we can apply

the rule for using universal sentences, and conclude that

P (Suzy), that is that Suzy eats grass. �.

And here is the “prove” rule:
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The rule for proving universal sentences

• To prove (∀x)P (x), you start by writing

Let x be arbitrary,

and then prove P (x)

If you manage to do that, then you are allowed to
write

(∀x)P (x)

in the next step of your proof.

• To prove (∀x ∈ S)P (x), you start by writing

Let x be an arbitrary member of S,

and then prove P (x)

If you manage to do that, then you are allowed to
write

(∀x ∈ S)P (x)

in the next step of your proof.

This rule is also called the generalization rule, be-

cause it says that if you can prove a statement for an

arbitrary object that belongs to a set S then you can

“generalize”, i.e., conclude that the statement is true in

general, for all members of S.
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7.6 An example: Proof of the inequality x+ 1
x
≥ 2

Let us illustrate the use of the proof rules for universal

quantifiers with an example. We will first present a ver-

sion of the proof with lots of comments. The comments

are explanations to help the reader follow what is going

on, but are not really necessary for the proof. We will

then present another, much shorter version, in which the

comments are omitted.

Theorem 9. If x is a positive44 real number, then

x + 1
x ≥ 2. (In formal language: (∀x ∈ IR)(x > 0 =⇒

x + 1
x ≥ 2).)

PROOF, WITH LOTS OF COMMENTS. (The

comments are in Italics.)

The assertion we want to prove is a universal sen-

tence, so we are going to use Rule ∀prove. For that

purpose, we imagine we have in our hands an ar-

bitrary real number called x, and we work with that

number.

Let x be an arbitrary real number.

Now we want to prove that x > 0 =⇒ x + 1
x ≥

2. This is an implication. So we are going to
44The meaning of the word “positive” was discussed in Lecture 1, in a subsection called

“positive, negative, nonnegative, and nonpositive numbers”. As explained there, “posi-
tive” means “> 0”.



Math 300, Fall 2019 120

apply Rule =⇒prove. For that purpose, we assume

that the premise of our implication is true, i.e.,

that x > 0. The reason for this is as follows:

x is an arbitrary real number, so x could be any

ral number, and in particular x could be positive,

negative, or zero. If x is not positive, then the

implication is true, because an implication whose

premise is false is true. So all we need is to look

at the cases when x > 0, and prove in that case

that x + 1
x ≥ 2.

Assume that x > 0.

We want to prove that

x +
1

x
≥ 2 . (7.46)

We will prove this by contradiction.

Assume that (7.46) is not true.

Then

x +
1

x
< 2 . (7.47)

We now use a fact from real number arith-

metic, namely, that if we multiply both sides

of a true inequality by a positive real num-

ber then the result is a true inequality, that
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is:

(∀a ∈ IR)(∀b ∈ IR)(∀c ∈ IR)
(

(a < b∧c > 0) =⇒ ac < bc
)

.

(7.48)

In our case. we can use Rule ∀use to plug

in x+ 1
x for a, 2 for b, and x for c in (7.48),

and get
(

x +
1

x
< 2 ∧ x > 0

)

=⇒
(

x +
1

x

)

x < 2x .

(7.49)

Since x + 1
x < 2 ∧ x > 0 is true (because

we are assuming that x + 1
x < 2 and that

x > 0), we can apply Rule =⇒use to con-

clude that
(

x+ 1
x

)

x < 2x. But
(

x+ 1
x

)

x =

x2 + 1, so we have shown that x2 + 1 < 2x.

Summarizing:

Since x > 0, we can multiply both sides of

(7.47) by x, getting

x2 + 1 < 2x . (7.50)

Now we use another fact from real number

arithmetic, namely, that if we add a real

number to both sides of a true inequality,

then the result is a true inequality, that is:

(∀a ∈ IR)(∀b ∈ IR)(∀c ∈ IR)(a < b =⇒ a+c < b+c) .

(7.51)
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In our case. we can use Rule ∀use to plug

in x2 + 1 for a, 2x for b, and −2x for c in

(7.51), and get

x2 + 1− 2x < 2x− 2x, . (7.52)

Since 2x − 2x = 0, we can conclude that

x2 + 1− 2x < 0. Summarizing:

We add −2x to both sides, and get

x2 + 1− 2x < 0 . (7.53)

But x2 + 1− 2x = (x− 1)2.

(This is easy to prove it. Try to do it.)

So

(x− 1)2 < 0 . (7.54)

Now we use a third fact from real number

arithmetic, namely, that the square of every

real number is nonnegative, that is:

(∀u ∈ IR)u2 ≥ 0 . (7.55)

We use Rule ∀use to plug in x− 1 for u, and

get

(x− 1)2 ≥ 0 . (7.56)

Next, we use a fourth fact from real number

arithmetic, namely, that if a real number is
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nonnegative then it it is not negative45, that

is:

(∀u ∈ IR)(u ≥ 0 =⇒∼ u < 0) . (7.57)

It then follows from (7.56) that

∼ (x− 1)2 < 0 . (7.58)

From (7.54) and (7.58), we get

(x− 1)2 < 0 ∧
(

∼ (x− 1)2 < 0
)

. (7.59)

So we have proved a contradiction.

We have proved that a world in which the in-

equality x+ 1
x > 2 is not true is an impossible

world. Hence

x + 1
x > 2.

We have proved that x+ 1
x > 2 assuming that x > 0.

Hence Rule =⇒prove allows us to conclude that

x > 0 =⇒ x +
1

x
≥ 2 . (7.60)

Finally, we have proved (7.60) for an arbitrary real num-

ber x. Hence

(∀x ∈ IR)(x > 0 =⇒ x +
1

x
≥ 2) . (7.61)

Q.E.D.
45Remember that: “positive” means “> 0”, “negative” means “< 0”, “nonnegative”

means “≥ 0”, and “nonpositive” means “≤ 0”.
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THE SAME PROOF, WITHOUT THE COM-

MENTS.

Let x be an arbitrary real number.

Assume that x > 0.

We want to prove that

x +
1

x
≥ 2 . (7.62)

Assume that (7.62) is not true.

Then

x +
1

x
< 2 . (7.63)

Since x > 0, we can multiply both sides of

(7.63) by x, getting

x2 + 1 < 2x . (7.64)

We add −2x to both sides, and get

x2 + 1− 2x < 0 . (7.65)

But x2 + 1− 2x = (x− 1)2. So

(x− 1)2 < 0 . (7.66)

Now we use the fact that the square of every

real number is nonnegative, that is:

(∀u ∈ IR)u2 ≥ 0 . (7.67)
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We use Rule ∀use to plug in x− 1 for u, and

get

(x− 1)2 ≥ 0 . (7.68)

Then

∼ (x− 1)2 < 0 . (7.69)

From (7.66) and (7.69), we get

(x− 1)2 < 0 ∧
(

∼ (x− 1)2 < 0
)

. (7.70)

So we have proved a contradiction.

Hence

x + 1
x > 2.

We have proved that x+ 1
x > 2 assuming that x > 0.

Hence Rule =⇒prove allows us to conclude that

x > 0 =⇒ x +
1

x
≥ 2 . (7.71)

Finally, we have proved (7.69) for an arbitrary real num-

ber x. Hence

(∀x ∈ IR)(x > 0 =⇒ x +
1

x
≥ 2) . (7.72)

Q.E.D.
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THE SAME PROOF, IN A MUCH SHORTER

VERSION.

Let x be an arbitrary real number.

Assume that x > 0. We want to prove that

x +
1

x
≥ 2 . (7.73)

Assume that (7.73) is not true. Then

x +
1

x
< 2 . (7.74)

Since x > 0, (7.74) impliues

x2 + 1 < 2x . (7.75)

Therefore

x2 + 1− 2x < 0 . (7.76)

But x2 + 1− 2x = (x− 1)2. So

(x− 1)2 < 0 . (7.77)

On the other hand.

(x− 1)2 ≥ 0 . (7.78)
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Clearly, (7.77) and (7.78) lead to a contradic-

tion.
Hence
x + 1

x > 2.

Therefore

(∀x ∈ IR)(x > 0 =⇒ x +
1

x
≥ 2) . (7.79)

Q.E.D.

7.6.1 A few more examples of proofs involving universal sentences

Theorem 10. If a, b are real numbers, then

ab ≤ a2 + b2

2
.

(In formal language: (∀a ∈ IR)(∀b ∈ IR)ab ≤ a2+b2

2 .)

PROOF. YOU DO IT

Problem 27. Prove Theorem 10.

Problem 28. Explain what is wrong with the following

proof of Theorem 10.

Take the inequality ab ≤ a2+b2

2 .

Multiplying both sides by 2, we get 2ab ≤ a2 + b2.

Subtracting 2ab from both sides, we get

0 ≤ a2 + b2 − 2ab .
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But a2 + b2 − 2ab = (a− b)2. So we have 0 ≤ (a− b)2 ,

which is true.

So the inequality checks out. Q.E.D.

Theorem 11. If x, α, β are positive real numbers

then

αx +
β

x
≥ 2
√

αβ .

(In formal language: (∀α ∈ IR)(∀β ∈ IR)(∀x ∈ IR)
(

(α >

0 ∧ β > 0 ∧ x > 0) =⇒ αx + β
x ≥ 2

√
αβ
)

.)

I am going to give you two proofs. The first one follows

the same pattern as the proof of Theorem 9. The second

one, much shorter, uses Theorem 9.

FIRST PROOF.

Let α, β, x be arbitrary positive real numbers46.

Let q = 2
√
αβ, so q2

4α = β..

Assume ∼ αx + β
x ≥ q.

Then αx + β
x < q.

Therefore αx2 + β < qx.

Hence αx2 − qx + β < 0.
46In this one step I am conflating six real steps: let α be an arbitrary real number, let

β be an arbitrary real number, let x be an arbitrary real number, assume α > 0, assume
β > 0, assume x > 0.
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But

αx2 − qx + β = αx2 − 2
√
αx

q

2
√
α
+ β

= αx2 − 2
√
αx

q

2
√
α
+
q2

4α
− q2

4α
+ β

=
(√

αx− q

2
√
α

)2

≥ 0 .

So we obtain a contradiction, and then we can con-

clude that αx + β
x ≥ q, i.e. that

αx +
β

x
≥ 2
√

αβ .

Q.E.D.

SECOND PROOF. Let us try to write αx + β
x as

p
(

u+1
u

)

for some positive u, and use the fact that u+1
u ≥

2. Let x = hu, where h and u are to be determined later.

Then αx + β
x = αhu + β

hu. If we could make αh = β
h ,

we would get

αx +
β

x
= αhu +

β

hu

= αhu + αh
1

u

= αh
(

u +
1

u

)

,
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as desired.

So we need to chose h such that αh = β
h , that is, such

that h =
√

β
α.

With this choice of h, we get

αx +
β

x
= αh

(

u +
1

u

)

≥ 2αh

= 2α

√

β

α

= 2
√

αβ .

Q.E.D.

7.6.2 *The inequality xn

n
− ax ≥ −n−1

n
a

n

n−1 : a proof using Calculus

Theorem 12. Let a and b be positive real numbers,

and let n be a positive integer. Then

ab ≤ 1

n

(

an + (n− 1)b
n

n−1

)

. (7.80)

Remark 6. For n = 2, inequality (7.80) says that

ab ≤ a2 + b2

2
,

which is Theorem 10.

So (7.80) is a generalization of Theorem 10. �

Proof of Theorem 12. We will use Calculus.
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Let a, b be arbitrary positive real numbers.

Define a function f by letting

f (x) =
xn

n
− bx for x ∈ IR , x ≥ 0 .

We would like to find the value of x where f has its

minimum value of f for all positive x. That is, we

would like to find a positive real number c such that

f (c) ≤ f (x) for all positive x.

For this purpose, we compute the derivative f ′ of f .

We have

f ′(x) = xn−1 − b for every x ∈ IR .

Let c = b
1

n−1 . Then cn−1 = b, so f ′(c) = cn−1−b = 0.

This means that c is a candidate for our minimum.

That is, it is possible that c is where f has its mini-

mum value, in which case it would follow that

f (x) ≥ f (c) for all x ∈ IR such that x > 0 .

(7.81)

We now prove (7.81) rigorously

If 0 < x < c, then xn−1 < cn−1 = b, so xn−1−b < 0,

so f ′(x) < 0.
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This means that the function f is decreasing for 0 <

x < c. So f (x) ≥ f (c) for 0 < x < c.

If x > c, then xn−1 > cn−1 = b, so xn−1 − b > 0, so

f ′(x) > 0.

This means that the function f is increasing for x >

c. So f (x) ≥ f (c) for x > c.

We have shown that f (x) ≥ f (c) when 0 < x < c

and when x > c. And clearly f (x) = f (c) when

x = c. Hence (7.81) is true.

It follows from (7.81) that for every positive x ∈ IR

we have f (x) ≥ f (c), that is,

xn

n
− bx ≥ cn

n
− bc . (7.82)

Since (7.82) holds for every positive x, we can use it

for x = a, thereby obtaining

an

n
− ab ≥ cn

n
− bc . (7.83)
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Since c = b
1

n−1 and cn−1 = b, we have

cn

n
− bc =

b
n

n−1

n
− b× b

1
n−1

=
b

n
n−1

n
− b1+

1
n−1

=
b

n
n−1

n
− b

n
n−1

=
(1

n
− 1
)

b
n

n−1

= −n− 1

n
b

n
n−1 .

In view of (7.83), we get

an

n
− ab ≥ −n− 1

n
b

n
n−1 , (7.84)

that is,
an

n
− ab +

n− 1

n
b

n
n−1 ≥ 0 , (7.85)

from which it follows that

ab ≤ an

n
+
n− 1

n
b

n
n−1 , (7.86)

that is,

ab ≤ 1

n

(

an + (n− 1)b
n

n−1

)

, (7.87)

which is exactly what we were trying to prove.Q.E.D.
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8 Existential sentences

8.1 Existential quantifiers

• The symbol

∃
is the existential quantifier symbol.

• An existential quantifier is an expression “(∃x)”
or “(∃x ∈ S)” (if S is a set). More precisely,

“(∃x)” is an unrestricted existential quan-

tifier,

and

“(∃x ∈ S)” is a restricted existential quan-

tifier.

• Existential quantifiers are read as follows:

1. “(∃x)” is read as

∗ “there exists x such that”

or

∗ “for some x”

or

∗ “it is possible to pick x such that”.
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2. “(∃x ∈ S)” is read as

∗ “there exists x belonging to S such that”

or

∗ “there exists a member x of S such that”

or

∗ “for some x in S”

or

∗ “it is possible to pick x in S such that”

or

∗ “it is possible to pick a member x of S such

that”

Example 28. The sentence

(∃x ∈ IR)x2 = 2 (8.88)

could be read as

There exists an x belonging to the set of real

numbers such that x2 = 2 .

But this is horrible! A much better way to read it

is:

There exists a real number x such that x2 =

2 .

An even better way is
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There exists a real number whose square is 2.

And the nicest way of all is

2 has a square root.

And you can also read (8.88) as:

It is possible to pick a real number x such that x2 = 2 .

I strongly recommend this reading, because when

you read an existential sentence this way it becomes clear

that the next thing to do is to actually pick an x, that

is, to apply the rule for using an existential sentence, i.e.

Rule ∃use �

8.1.1 How not to read existential quantifiers

Students sometimes read an existential sentence such as

(∃x ∈ IR)x2 = 2) (8.89)

as follows: there exists a real number x and x2 = 2.

This is completely wrong, and should be avoided

at all costs, because if you read an existential sentence

that way you are going to be led to making lots of other

mistakes.

Why is this wrong?

• If you read (8.89) as “there exists a real number x

and x2 = 2”, then you give the impression that (8.89)

makes two assertions:
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1. that there exists a real number,

2. that x2 = 2.

• But (8.89) does not say that at all! What it does is

make one assertion, namely, that there exists a real

number x such that x2 = 2. (“Such that” means “for

which it is true that”.)

If you are asked to prove (8.89) and you read is as

“there exists a real number x and x2 = 2”, then you will

think that you have to prove two things, namely, (1) that

there exists a real number, and (2) that x2 = 2. But

what you have to prove is one thing: that it is possible

to pick a real number whose square is 2.

The word “and” in this bad reading is particularly per-

nicious, because it makes you see two sentences where

there is only one sentence. The quantifier (∃x ∈ IR)

is not a sentence.

You can see this even more clearly if you read (8.89)

as “for some real numbers x, x2 = 2”. It is clear that

“for some real numbers x” is not a sentence. And it’s

nonsense to say “for some real numbers x and x2 = 2”.

Since “for some real numbers x” is another way to read

the quantifier (∃x ∈ IR), it should be clear that there is

no “and” in such a quantifier,
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8.1.2 Witnesses

A witness for an existential sentence (∃x)P (x) is an ob-

ject a such that P (a) is true.

A witness for an existential sentence (∃x ∈ S)P (x), is

an object a such that a ∈ S and P (a) is true.

8.2 How do we work with existential sentences in
proofs?

As you may have guessed, I am going to give you two

rules, one for proving existential sentences, and one for

using them. And the names of these rules are going to

be—yes, you guessed it!—Rule ∃prove and Rule ∃use.

8.2.1 The rule for using existential sentences (Rule ∃use)

Rule ∃use says something very simple and natural: if

you know that an object of a certain kind

exists, then you can pick one and give it a

name.

In other words, if you know that (∃x)P (x) or

that (∃x ∈ S)P (x), then you are allowed to pick

a witness and give it a name.

Example 29. Suppose “P (x)” stands for “x eats grass”,

and C is the set of all cows. Suppose you know that

(∃x ∈ C)P (x) , (8.90)
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that is, you know that there are grass-eating cows.

Then the thing you can do, according to Rule ∃use, is
pick a cow and give her a name.

So, for example, you could write

Pick a cow that eats grass and call her Suzy.

Or you could write

Let Suzy be a witness for the sen-

tence (8.90, so Suzy is a grass-

eating cow.

or

Let Suzy be a grass-eating cow.

Example 30. Suppose you have a real number x and

you know that

(∃y ∈ IR)y5 − y3 = x . (8.91)

Then you can say, in the next step of your proof: :

Pick a witness for (8.91) and call it r, so r ∈ IR

and r5 − r3 = 5.

or you could write

Let r be a real number such that r5− r3 = 5.

And you could even say
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Let y be a real number such that y5−y3 = 5.

�

Remark 7.When you pick a witness, as in the previous

example, you can give it any name you want: you can

call it r, k, m, u, r̂, a, α, ⋄, ♣, Alice, Donald Duck,

whatever.

You can even call it y, if you wish.

The key point is: the name you use cannot be

already in use as the name of something else.

So “y” qualifies as an acceptable name because, within

the sentence “(∃y ∈ IR)y5 − y3 = x”, y is a bound

variable, but as soon as the sentence ends, “y” becomes

a free variable, with no declared value, so you are allowed

to use it.

However, I recommend that you do not use the same

letter that appeared in the existential quantifier. �

There is, however, one thing that is absolutely forbidden:

You cannot give the new object that you

are picking a name that is already in

use as the name of another object.

The reason for this prohibition is very simple: if you could

use the name r to name this new object that you are

introducing, while r is already the name of some other
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object that was introduced before, then you would be

forcing these two objects to be the same. But there is no

reason for them to be the same, so you cannot give them

the same name.

Example 31. Suppose you know that Mr. Winthrop

has been murdered. That means, if we use “P (x)” for

the predicate “x murdered Mr. Winthrop”. that you

know that (∃x)P (x) (that is, somebody murdered Mr.

Winthrop). Then you can introduce a new character into

your discourse, and call this person “the murderer”, or

“the killer”. (This is useful, because you want to be able

to talk about that person, and say things such as “the

murderer must have had a key so as to be able to get

into Mr. Winthrop’s apartment”.) But you cannot call

the murderer “Mrs. Winthrop”, because if you do so you

would be stipulating that it was Mrs. Winthrop that

killed Mr. Winthrop, which could be true but you do not

know that it is. �
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And here is a precise statement47 of Rule ∃use:

Rule ∃use

(I) If

1. P (x) is a sentence,
2. the letter a is not in use as the name of

anything,
3. you have proved (∃x)P (x),
then

* you can introduce a witness and call it a,

so that this new object will satisfy P (a)

(II) In addition, if S is a set, and you have proved

that (∃x ∈ S)P (x), then you can stipulate

that a ∈ S as well.

8.2.2 The rule for proving existential sentences (Rule ∃prove)

This rule is very simple, and very easy to remember:

• to prove that there is money here, show

me the money;

• to prove that cows exist, show me a cow;
47In this statement, we use the same convention explained earlier: P (a) is the sentence

obtained from P (x) by substituting a for x. For example, if P (x) is the sentence “x
eats grass”, then P (Suzy) is the sentence “Suzy eats grass”. If P (x) is the sentence
“x+ 3y = x2”, then P (a) is the sentence “a+ 3y = a2”.
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• to prove that good students exist, show me

a good student,

• to prove that incorruptible politicians ex-

ist, show me an incorruptible politician,

• to prove that prime numbers exist, show

me a prime number,

and so on.

Example 32. Suppose you want to prove that (∃x ∈
Z)x2 + 3x = 10.

You can say “Take x = 2. Then x2+3x = 10, because

x2 = 4 and 3x = 6, so x2 + 3x = 4 + 6 = 10”. So 2 is

a witness for the sentence (∃x ∈ Z)x2 + 3x = 10. Then

Rule ∃prove allows us to go to (∃x)x2 + 3 · x = 10. �

And here is a precise statement of the witness rule:
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Rule ∃prove

If:

1. P (x) is a sentence,

2. a is a witness for (∃x)P (x) (that is, you have

proved that P (a)),

then

* you can go to (∃x)P (x).
In addition, if S is a set, and you have proved that

a ∈ S, then you can go to (∃x ∈ S)P (x).

In other words,Rule ∃prove says that you can prove

the sentences (∃x)P (x) or (∃x ∈ S)P (x) by pro-

ducing a witness.

8.3 Examples of proofs involving existential sentences

8.3.1 Some simple examples

Problem 29. Consider the sentence

(∃x ∈ Z)(∃y ∈ Z)x2 − y2 = 17 . (8.92)

Is this sentence true or false? If it is true, prove it. If it

is false, prove that it is false (that is, prove its negation).

SOLUTION. Sentence (8.92) is true. Here is a proof:
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Take x = 9, y = 8. Then x2 = 81 and y2 = 64. So

x2 − y2 = 81 − 64 = 17. Therefore the pair (9, 8) is

a witness for (8.92). By Rule ∃prove, this proves (8.92).
Q.E.D.

Problem 30. Consider the sentence

(∀m ∈ Z)(∃n ∈ Z)n < m . (8.93)

Is this sentence true or false? If it is true, prove it. If it

is false, prove that it is false (that is, prove its negation).

SOLUTION. Sentence (8.93) is true. Here is a proof.

Let m be an arbitrary integer.

We want to prove that (∃n ∈ Z)n < m.

For this purpose, we produce a witness. First we say

who the witness is, and then we prove it works, that

is, that it really is a witness.

Let n̂ = m− 1.

Then n̂ ∈ Z and n̂ < m. So the integer n̂ is a

witness for the sentence (∃n ∈ Z)n < m

Therefore (∃n ∈ Z)n < m. [Rule ∃prove]
Since we have proved that (∃n ∈ Z)n < m for an arbi-

trary integer m, we can conclude that (∀m ∈ Z)(∃n ∈
Z)n < m. [Rule ∀prove] Q.E.D.
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Problem 31. Consider the sentence

(∀m ∈ IN)(∃n ∈ IN)n < m . (8.94)

Is this sentence true or false? If it is true, prove it. If it

is false, prove that it is false (that is, prove its negation).

SOLUTION. Sentence (8.94) is false. Here is a proof.

Asssume (8.94) is true.

Them by Rule ∀use we can plug in a value for m,

and the result wil be a true sentence. So we plug in

m = 1.

Them by Rule ∀use iimplies that (∃n ∈ IN)n < 1.

But there is no natural number that is less than 1,

so so ∼ (∃n ∈ IN)n < 1.

So we have attained a contradcition.

Therefore (8.94) is false.

Problem 32. Consider the sentence

(∃n ∈ Z)(∀m ∈ Z)n < m . (8.95)

Is this sentence true or false? If it is true, prove it. If it

is false, prove that it is false (that is, prove its negation).
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SOLUTION. Sentence (8.95) is false. Here is a proof

of its negation, that is, of

∼ (∃n ∈ Z)(∀m ∈ Z)n < m . (8.96)

We are going to prove (8.96) by contradiction .

Assume that

(∃n ∈ Z)(∀m ∈ Z)n < m . (8.97)

Pick a witness for Statement (8.97), that is, an inte-

ger n for which the statement “(∀m ∈ Z)n < m”

holds, and call it n0. [Rule ∃use]
Then n0 ∈ Z and (∀m ∈ Z)n0 < m.

Since n0 ∈ Z, we can conclude that n0 < n0. [Rule

∀use, from
(∀m ∈ Z)n0 < m]

Then ∼ n0 = n0. [Trichotomy law]

But n0 = n0. [Equality Axiom (∀x)x = x.]

So we have proved a contradiction assuming (8.97). Hence,

by the proof-by-contradiction rule, (8.97) is false, that is,

(8.96) is true. Q.E.D.

Problem 33. For each of the following sentences,
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1. Indicate whether the sentence is true or false.

2. If it is true, prove it.

3. If it is false, prove that it is false (that is, prove its

negation).

(∀m ∈ Z)(∃n ∈ IN)n > m , (8.98)

(∀m ∈ IN)(∃n ∈ IN)n < m , (8.99)

(∃n ∈ IN)(∀m ∈ Z)n < m , (8.100)

(∃n ∈ IN)(∀m ∈ IN)n < m , (8.101)

(∃n ∈ IN)(∀m ∈ IN)n ≤ m, (8.102)

(∃x ∈ IR)(∀m ∈ IN)x < m . (8.103)

8.3.2 A detailed proof of an inequality with lots of comments

Problem 34. Let C be a circle with center (5, 1). Let

L be the line with equation y = x + 4. Prove that if the

radius of the circle is less than 5 then C and L do not

intersect.

Solution.

Let R be the radius of C.

COMMENT: This is very important. Every time you

will have to deal repeatedly with some object—a num-

ber, a set, an equation, a statement—give it a name.

Assume that R < 5.
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We want to prove that

∼ (∃x ∈ IR)(∃y ∈ IR)
(

(x−5)2+(y−1)2 = R2∧y = x+4
)

.

(8.104)

Assume (8.104) isn’t true.

Then

(∃x ∈ IR)(∃y ∈ IR)
(

(x−5)2+(y−1)2 = R2∧y = x+4
)

.

(8.105)

Pick witnesses for (8.105) and call them x, y.

COMMENT: Remember that after a quanti-

fied sentence ends the quantified variables be-

come free again, so they can be re-used. That’s

why it is perfectly legitimate to name the wit-

nesses x and y.

Then

(x− 5)2 + (y − 1)2 = R2 ∧ y = x+ 4 . (8.106)

In particular,

(x− 5)2 + (y − 1)2 = R2 . (8.107)

And also

y = x + 4 . (8.108)

COMMENT: How did we go from (8.106) to

(8.107) and (8.108)? It’s clear, isn’t it? But
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in a proof every step must be justfied (or

justifiable) by the rules. So which is the

rule used here? The answer is: it’s the logical

rule for using conjunctions, that is, Rule ∧use:
if you have a conjunction A∧B, then you can

go to A, and you can go to B. You may think

this is a very stupid rule, but it is certainly a

reasonable rule. When we went from (8.106)

to (8.107) and (8.108), it seemed obvious to

you, didn’t it? That’s because Rule ∧use is an
obvious rule, so obvious that you use it all the

time without even noticing it. But that doesn’t

mean that the rule isn’t there. It is there. If

you wanted to write a computer program that

checks proofs and tells you whether a proof is

valid, how would the program know that going

from (8.106) to (8.107) and (8.108) are valid

steps? You have to put that in the program.

That is, you have to put Rule ∧use in your

program.

Since y = x+ 4, we can substitute x+ 4 for y in

(8.107), and get

(x− 5)2 + (x + 4− 1)2 = R2 , (8.109)
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that is

(x− 5)2 + (x + 3)2 = R2 . (8.110)

But

(x− 5)2 + (x + 3)2 = x2 − 10x + 25 + x2 + 6x + 9

= 2x2 − 4x + 34

= 2(x2 − 2x + 17)

= 2(x2 − 2x + 1− 1 + 17)

= 2(x2 − 2x + 1 + 16)

= 2
(

(x− 1)2 + 16
)

≥ 2× 16

= 32

so

(x− 5)2 + (x + 3)2 ≥ 32 . (8.111)

But

(x− 5)2 + (x + 3)2 = R2 . (8.112)

So

R2 ≥ 32 . (8.113)

COMMENT: How did we go from (8.111) and

(8.112) to (8.113)? It’s clear, isn’t it? But in

a proof every step must be justfied (or
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justifiable) by the rules. So which is the

rule used here? The answer is: it’s the logical

rule for using equality, that is, Rule =use (also

called Rule SEE, “susbtitution of equals for

equals”): if you know that an equality s = t—

or t = s—holds, and you also know that some

statement P involving s holds, then you can go

to P (s→ t), where P (s→ t) is the statemenet

pbtained from P by substituting t for s in P .

You may think this is a very stupid rule, but it

is certainly a reasonable rule. When we went

from (8.111) and (8.112) to (8.113), it seemed

obvious to you, didn’t it? That’s because Rule

SEE is an obvious rule, so obvious that you

use it all the time without even noticing it.

But that doesn’t mean that the rule isn’t there.

It is there.

If you wanted to write a computer program

that checks proofs and tells you whether a proof

is valid, how would the program know that go-

ing from (8.111) and (8.112) to (8.113) is a

valid step? You have to put that in the pro-

gram. That is, you have to put Rule SEE in

your program.

But we are assuming that R < 5, and then R2 <
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25.

COMMENT: That’s because R is positive. If

all you know about was that R is a real number

and R < 5, then R could be −10, in which case

it would not follow that R2 > 25. But in our

case R is the radius of a circle, so R > 0, and

the conclusion that R < 25 follows.

So ∼ R2 ≥ 32. But R2 ≥ 32. So we have proved

a contradiction.

COMMENT: The contradiction is the state-

ment “R2 ≥ 32∧ ∼ R2 ≥ 32”. This is a con-

tradiction because it is fo the form Q∧ ∼ Q,

where Q is the statement “R2 ≥ 32”.

So (8.104) is proved. Q.E.D.

8.3.3 The same proof without the comments

Proof. Let R be the radius of C.

Assume that R < 5.

We want to prove that

∼ (∃x ∈ IR)(∃y ∈ IR)
(

(x−5)2+(y−1)2 = R2∧y = x+4
)

.

(8.114)
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Assume (8.114) isn’t true. Then

(∃x ∈ IR)(∃y ∈ IR)
(

(x−5)2+(y−1)2 = R2∧y = x+4
)

.

(8.115)

Pick witnesses for (8.115) and call them x, y.

Then (x − 5)2 + (y − 1)2 = R2 ∧ y = x + 4, so

in particular,

(x− 5)2 + (y − 1)2 = R2 . (8.116)

Since y = x+ 4, we can substitute x+ 4 for y in

(8.116), and get (x − 5)2 + (x + 4 − 1)2 = R2,

that is

(x− 5)2 + (x + 3)2 = R2 . (8.117)

But

(x− 5)2 + (x + 3)2 = x2 − 10x + 25 + x2 + 6x + 9

= 2x2 − 4x + 34

= 2(x2 − 2x + 17)

= 2(x2 − 2x + 1− 1 + 17)

= 2(x2 − 2x + 1 + 16)

= 2
(

(x− 1)2 + 16
)

≥ 2× 16

= 32
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so

(x− 5)2 + (x + 3)2 ≥ 32 . (8.118)

But (x− 5)2 + (x + 3)2 = R2, so R2 ≥ 32.

But we are assuming that R < 5, and then R2 <

25.

So ∼ R2 ≥ 32. But R2 ≥ 32. So we have proved

a contradiction.

So (8.114) is proved. Q.E.D.

8.4 Existence and uniqueness

Suppose P (x) is a one-variable predicate. We write

(∃!x)P (x)

for “there exists a unique x such that P (x).”

This means “there is one and only one x such that

P (x)”.

The precise meaning of this is that

1. there exists an x such that P (x),

and

2. if x1, x2 are such that P (x1)∧ P (x2), then x1 = x2.
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In formal language:

(∃!x)P (x) ⇐⇒
(

(∃x)P (x) ∧
(

(∀x1)(∀x2)(P (x1) ∧ P (x2)) =⇒ x1 = x2

)

)

.

It follows that, in order to prove that there exists a unique

x such that P (x), you must prove two things:

Existence: There exists x such that P (x),

Uniqueness: Any two x’s that satisfy P (x) must be

equal.

That is:

To prove

(∃!x)P (x)
it suffices to prove

(∃x)P (x) (8.119)

and

(∀x1)(∀x2)
(

(P (x1) ∧ P (x2)) =⇒ x1 = x2

)

.

(8.120)

(Formula (8.119) is the existence assertion, and

Formula (8.120) is the uniqueness assertion.)

Example 33. “I have one and only one mother” means:



Math 300, Fall 2019 157

• I have a mother,

and

• Any two people who are my mother must be the

same person. (That is: if u is my mother and v is

my mother than u = v.) �

8.4.1 Examples of proofs of existence and uniqueness

Problem 35. Prove that there exists a unique natural

number n such that n3 = 2n− 1.

Solution. We want to prove that

(∃!n ∈ IN)n3 = 2n− 1 .

First let us prove existence. We have to prove that (∃n ∈
IN)n3 = 2n− 1. To prove this, we exhibit a witness: we

take n = 1. Then n is a natural number, and n3 = 2n−1.

So (∃n ∈ IN)n3 = 2n− 1.

Next we prove uniqueness. We have to prove that if

u, v are natural numbers such that u3 = 2u − 1 and

v3 = 2v − 1, then it follows that u = v.

So let u, v be natural numbers such that u3 = 2u− 1

and v3 = 2v − 1. We want to prove that u = v.
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Since u3 = 2u− 1 and v3 = 2v − 1, we have

u3 − v3 = 2u− 1− (2v − 1)

= 2u− 2v

= 2(u− v) ,

so

u3 − v3 − 2(u− v) = 0 .

But it is easy to verify that

u3 − v3 = (u− v)(u2 + uv + v2) .

(If you do not believe this, just multiply out the right-

hand side and you will find that the result equals u3 =

v3.) Hence

0 = u3 − v3 − 2(u− v)

= (u− v)(u2 + uv + v2)− 2(u− v)

= (u− v)(u2 + uv + v2 − 2) .

We know that if a product of two real numbers is zero

then one of the numbers must be zero. Hence

u− v = 0 or u2 + uv + v2 − 2 .

But u2 + uv + v2 − 2 cannot be equal to zero, because

u2, uv and v2 are natural numbers, so each of them is

gretar than or equal to 1, and then u2 + uv + v2 ≥ 3,
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so u2 + uv + v2 − 2 ≥ 1, and then u2 + uv + v2 − 2 6=
0. Therefore u − v = 0, so u = v, and our proof of

uniqueness is complete.

Problem 36. Prove that there exists a unique real num-

ber x such that

x7 + 3x5 + 23x = 6 .

You are allowed to use everything you know from Calcu-

lus. �


