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1 Introduction

These notes are about mathematical proofs. We are going to get started
by presenting some examples of proofs. Later, after we have seen several
proofs, we will discuss in general, in great detail,

• What proofs are.

• How to read proofs.

• How to write and how not to write proofs.

• What proofs are for.

• Why proofs they are important.

But first, in Sections 2 and 3, I am going to show you several examples of
proofs.

In each of these examples, we are going to prove a theorem. Theorems
have statements. Each statement expresses a proposition, and the fact
that the statement has been proved implies that the proposition is true, in
which case we say that the statement is true.

So maybe it is a good idea to start by clarifying the meanings of the
words “theorem”, “statement”, “proof”, and of other related words such as
“proposition”, “fact”, and “conclusion”.

1.1 Propositions, theorems and proofs

Basically, a proposition is something that can be true or false and can be
the object of belief.

In other words: a proposition is an expression P such

that it makes sense to ask the questions:

• Is P true?

• Is P false?

• Do you believe that P?

A fact is a true proposition.
For example,
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• the following are true propositions:

– George Washington was the first president of the United States,
– Paris is the capital of France,
– electrons are negatively charged particles,
– two plus two equals four,
– if a, b are real numbers then (a+ b)2 = a2 + 2ab+ b2;

• the following are false propositions:

– John Adams was the first president of the United States,
– Paris is the capital of Spain,
– electrons are positively charged particles,
– two plus two equals five,
– if a, b are real numbers then (a+ b)2 = a2 + b2;

• the following are propositions that I don’t know if they are true or false:

– Lee Harvey Oswald was part of a conspiracy to kill President
Kennedy,

– there is intelligent extraterrestrial life,
– every even natural number n such that n ≥ 4 is the sum of two

prime numbers1;

• and the following are not propositions:

– John Adams,
– is the capital of Spain,
– Mount Everest,
– the book that I bought yesterday,
– two plus two,
– if a, b are real numbers.

A proof of a proposition P is a logical argument2 that establishes the
truth of P by moving step by step from proposition to proposition until
P is reached. The proof ends with the proposition P , which is called the
conclusion.

For example, let us consider the proof, given on page 18, of Euclid’s
theorem, that the set of prime numbers is infinite: this proof consists of

1This proposition is called “the Goldbach conjecture”; it is an unsolved problem in
Mathematics.

2If you are worried because it is not clear to you what a “logical argument” is, do
not worry. We are going to spend the whole semester discussing logical arguments and
explaining what they are and how to read them and write them, so by the end of the
semester you will know.
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several steps, and the very last of these steps, i.e. the conclusion, says
precisely what we were trying to prove, i.e., that the set of prime nunbers is
infinite.

Proofs can by written in a language, such as English, French, Chinese,
Japanese, Spanish, etc. But in addition, there is a particular language which
is prefectly suited for writing mathematical proofs: formal mathematical
language.

Formal mathematical language involves formulas, rather than words.
For example, “ 2+2 = 4 ” is an expression in formal language, i.e., a formula.

Most of our proofs will be written in a mixture of formal mathematical
language and English. For example, we will write expressions such as

(#) If a and b are real numbers then a2 − b2 = (a+ b)(a− b).

But we will also explain how to write proofs in purely formal mathematical
language. (And we will discuss why having a purely mathematical language
is important: one of the main reasons is that formal mathematical lan-
guage is a universal language, that is, a language understandable by all
the mathematicallu educated people in the world3. Another reason is that
formal mathematical language is completely precise: you cannot say
vague things such as “the distance between A and B is small”, and this is
fine, because nobody knows what “small” means, so it is better if we are not
allowed to say it.)

In order to write proofs in formal language, we will have to learn formal
language, i.e., we will have to learn to say in formal language everthing
that we now say in English or in a mixture of English and formal language.
For example, the sentence (#) that we wrote above will become, in formal
language,

(#) (∀a ∈ IR)(∀b ∈ IR) a2 − b2 = (a+ b)(a− b).

Why are proofs important? Again, this is an issue that will be taken up
later, but let me sketch the answer right away:

A mathematical proof of a proposition P abso-
lutely guarantees, with complete certainty, that
P is true.

3For example, the formula “ 2+2 = 4 ” is the same in English, French, Chinese, or any
other language.
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This is so for a simple reason:

The rules of logic are designed in such a way

that one can only prove, using them, proposi-

tions that are true.

Therefore, if you write a correct proof of a

proposition P , that is, a proof that obeys the

rules of logic, then you can be sure that P is

true.
On the other hand, if you produce a pur-

ported proof of a proposition P that is not true,
then we can all be sure that your proof is incor-
rect, in the sense that in at least one step you
violeted the rules of logic.

And, in case you ask what are those “rules of logic” that you are talking
about? The answer is: I am about to tell you! But it is going to take me a
few weeks to tell you. And, once I have told you, you will see that the rules
are very simple. But you have to be patient and allow me to get you there
step by step4.

Furthermore, there is no other way to know for sure that a math-
ematical statement is true.

For example, consider the statement of the first theorem in this course,
that the set of prime numbers is infinite. There is no way to know for sure
that this is true, other than by proving it. Computing lots of prime numbers
will not do, because no matter how many millions or billions or trillions of
primes you may compute, you will only have computed a finite number of
them, and you will never never know whether these are all the primes, or
whether there are more. The proof given below shows you that, no matter
how long a list of primes numbers may be, there is always at least one prime
that is not on the list. And this guarantees that there are infinitely mamy
primes.

4It’s like swimming. Once you have learned to swim, it seems simple to you. But most
people need to learn to swim gradually, by first practicing floating, then exhaling under
water, then kicking, then maybe doing a backstroke, treading water, and so on. And, once
you have learned all that, it all looks very simple.
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2 An example of a proof: Euclid’s proof of

the infinitude of the set of prime numbers

Our first example of a proof will be Euclid’s proof that there are infinitely
many prime numbers. This proof is found in Euclid’s Elements (Book IX,
Proposition 20). Euclid (who was probably born in 325 BCE and died in 270
BCE) was the first mathematician to write a large treatise where mathemat-
ics is presented as a collection of definitions, postulates, propositions (i.e.,
theorems and constructions) and mathematical proofs of the propositions.

2.1 What Euclid’s proof is about

You probably know what a “prime number” is. (If you do not know, do not
worry; I will explain it to you pretty soon.) Here are the first few prime
numbers:

2, 3, 5, 7, 11, 13, 17, 19 . . .

Does the list of primes stop there? Of course not. It goes on:

23, 29, 31, 37, 41, 43, 47, 53, 59, 61 . . .

And it doesn’t stop there either. It goes on:

67, 71, 73, 79, 83, 89, 97, 101, 103 . . . .

Does the list go on forever? If you go on computing primes, you would find
more and more of them. And mathematicians have actually done this, and
found an incredibly large number of primes.

The largest known prime

As of January, 2019, the largest known prime was

282,589,933 − 1 .

(That is, 2 multiplied by itself 82, 589, 933 times, minus one.) This
is a huge number! It has 24, 862, 048 decimal digits.

Is it possible that the list of primes stops here, that is, that there are no
primes larger than 282,589,933 − 1?
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Before we answer this, just ask yourself: suppose it was indeed true that the
list stops with this prime number. How would you know that? If you think
about it for a minute, you will see that there is no way to know. You could
go on looking at natural numbers larger than 282,589,933− 1, and see if among
these numbers you find one that is prime. But if you don’t find any it doesn’t
mean there aren’t any. It could just be that you haven’t gone far enough in
your computation, and if you went farther you would find one.

In fact, no matter how many primes you may compute, you will never
know whether the largest prime you have found is indeed the largest prime
there is, or there is a larger one.

Can we know in some way, other than by computing lots of primes,
whether the list of primes goes on forever or there is a prime number which
is the largest one?

It turns out that this question can be answered by means of reasoning.
And, amazingly, the answer is “yes, the list of primes goes on forever”! This
was discovered, in the year 300 B.C., approximately, by the great Greek
mathematician Euclid. Euclid’s 3,000-year old proof is a truly remarkable
achievement, the first result of what we would now call “number theory”,
one of the most important areas of Mathematics.

Euclid’s theorem says the following:

Theorem. The set of prime numbers
is infinite.

In order to prove the theorem, we need to understand the precise meaning
of the terms that occur in the statement. So I will begin by explaining the
meaning of “prime number” and “infinite set”.

And, in order to explain what a prime number is, we will have to explain
first what we mean by “divisibility”, and “factors”.

2.2 Divisibility of integers; factors

If you have two integers a and b, you would like to “divide a by b”, and
obtain a “quotient” q, i.e., an integer q that multiplied by b gives you back
a. For example, we can divide 6 by 2, and get the quotient 3. And we can
divide 6 by 3, and get the quotient 2.
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But it is not always possible to divide a by b. For example, if a = 4 and
b = 3, then an integer q such that 3q = 4 does not exist5.

Since dividing a by b is sometimes possible and sometimes not, we will
introduce some new words to describe those situations when division is pos-
sible.

Definition 1. Let a, b be integers.

1. We say that b divides a if there exists an integer k such that

a = bk .

2. We say that a is a multiple of b if b is a factor of a.

3. We say that b is a factor of a if b divides a.

4. We say that a is divisible by b if b divides a.

5. We write
b|a

to indicate that b divides a. �

Remark 1. As the previous definition indicates,

The following are five different ways of saying exactly
the same thing:

• m divides n,
• m is a factor of n,
• n is a multiple of m,
• n is divisible by m,
• m|n. �

5You may say that “the result of dividing 4 by 3 is the fraction 4

3
”. That is indeed true,

but 4

3
is not an integer, and so far we are working in a world in which there are integers

and nothing else. If we want 4

3
to exist, we have to invent new numbers—the fractions,

or “rational numbers”. We are going to do that pretty soon, but for the moment, since
we are working with integers only, it is not possible to divide 4 by 3 and get a quotient
which is an integer.
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Reading statements with the “divides” symbol “|”

The symbol “|” is read as “divides”, or “is a factor of”.
For example, the statement “3|6” is read as “3 divides 6”, or “3 is
a factor of 6”. And the statement “3|5” is read as “3 divides 5”, or
“3 is a factor of 5”. (Naturally, “3|6” is true, but “3|5” is false.)
The vertical bar of “divides” has nothing to do with the
bar used to write fractions. For example, “3|6” is the
statementa “3 divides 6’, which is true. And “3

6
” is a

noun phrase: it is one of the names of the number also
known as “1

2
”, or “0.5”.

aA statement is something we can say that is true or false. A noun phrase is
something we can say that stands for a thing or person. For example, “Mount
Everest”, “New York City”, “My friend Alice”, “The movie I saw on Sunday”,
are noun phrases. “Mount Everest is very tall”, “I live in New York City”,
“My friend Alice studied mathematics at Rutgers”, and “The movie I saw on
Sunday was very boring”, are statements.

Example 1. Here are some examples illustrating the use of the word “di-
vides” and the symbol “|”:

• The following statements are true:

1. 6 divides 6,

2. 6|6,
3. 6 divides 12,

4. 6|12,
5. 1 divides 5,

6. 1|5,
7. 13 divides 91,

8. 13|91,
9. 6 divides 0,

10. 6|0,
11. 6 divides −6,

12. 6| − 6,
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13. −6 divides 6,

14. −6|6,
15. 6 divides −12,

16. −6|12,
17. 6 divides 0,

18. 6|0,
19. 0 divides 0,

20. 0|0,

• and the following statements are false:

1. 6 divides 7,

2. 6|7,
3. 0 divides 1,

4. 0|1,
5. 12 divides 6,

6. 12|6,
7. −5 divides 6,

8. −5|6,
9. 0|6.

2.3 What is a “prime number”

Definition 2. A prime number is a natural number p such that

I. p > 1,

II. p is not divisible by any natural numbers other than 1 and p. �

And here is another way of saying the same thing, in case you do not want
to talk about “divisibility”.

Definition 3. A prime number is a natural number p such that

I. p > 1,

II. There do not exist natural numbers j, k such that j > 1, k > 1, and
p = jk. �
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2.3.1 Why isn’t 1 prime?

If you look at the definition of “prime number”, you will notice that, for a
natural number p to qualify as a prime number, it has to satisfy

p > 1. In other words, the number 1 is not prime. Isn’t

that weird? After all, the only natural number factor of 1 is 1, so the only
factors of 1 are 1 and itself, and this seems to suggest that 1 is prime.

Well, if we had defined a number p to be prime if p has no natural number
factors other than 1 and itself, then 1 would be prime. But we were very
careful not to do that. Why?

The reason is, simply, that there is a very nice theorem called the “unique
factorization theorem”, that says that every natural number greater than 1
either is prime or can be written as a product of primes in a unique way.
(For example: 6 = 2 · 3, 84 = 2 · 2 · 3 · 7, etc.)

If 1 was a prime, then the result would not be true as stated. (For
example, here are two different ways to write 6 as a product of primes:
6 = 2 · 3 and 6 = 1 · 2 · 3.) And mathematicians like the theorem to be true
as stated, so we have decided not to call 1 a prime6.

If you do not like this, just keep in mind that we can use words any way
we like, as long as we all agree on what they are going to mean. If we decide
that 1 is not prime, then 1 is not prime, and that’s it. If you think that for
you 1 is really prime, just ask yourself why and you will see that you do not
have a proof that 1 is prime.

2.3.2 The prime factorization theorem

In our proof of Euclid’s theorem, we are going to use the fact that every
natural number (except 1) can be written as a product of prime numbers.
This is a very important result in arithmetic7, and we are going to prove it
later.

The precise statement is as follows:

Theorem. (The prime factorization theorem.) Every natural number n such
that n ≥ 2 is a product of primes. �

6This is exactly the same kind of reason why Pluto is not a planet. Pluto is not a planet
because astronomers have decided not to call Pluto a planet. Similarly, mathematicians
have decided not to call 1 prime, and that’s why 1 is not prime.

7Actually, many mathematicians call “The Fundamental Theorem of Arithmetic”.
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2.3.3 Clarification: What is a “product of primes”?

Like all mathematical ideas, even something as simple as “product of primes”
requires a precise definition. Without a precise definition, it would not be
clear, for example, whether a single prime such as 2 or 3 or 5 is a “product
of primes”.

Definition 4. A natural number n is a product of primes if there exist

1. a natural number k,

and

2. a finite list8

p = (p1, . . . , pk)

of prime numbers,

such that
n = p1 · p2 · · · · · pk . (2.1)

(If you are familiar with the product “
∏
” notation, formula (2.1) says that

n =
∏k

i=1 pi .)
Notice that k can be equal to one. That is, a single prime, such as 2,

or 3, or 23, is a product of primes in the sense of our definition.
�

Definition 5. If n is a natural number, then a list p = (p1, . . . , pk) of prime
numbers such that (2.1) holds is called a prime factorization of n. �

Example 2. The following natural numbers are products of primes:

• 7 (because 7 is prime); the list (7) is a prime factorization of 7,

• 24; (the list (2, 2, 2, 3) is a prime factorization of 24, because 24 =
2× 2× 2× 3),

• 309; (the list (3, 103) is a prime factorization of 309);

• 3, 895, 207, 331, 689 . Here it would really take a lot of work to find
the natural number k and the prime numbers p1, p2, . . . , pk such that

3, 895, 207, 331, 689 = p1 · p2 · · · · · pk .
But the prime factorization theorem guarantees to us that 3, 895, 207, 331, 689
is a product of primes. �

8Finite lists will be defined and discussed in great detail later in these notes.
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2.4 Proofs by contradiction

Our proof if Euclid’s theorem is going to be a proof by contradiction

Proof by contradiction is probably the most impor-
tant and most widely used of all proof strategies. So you
should not only learn what proofs by contradiction are,
but acquire the habit of alwaysa seriously consid-
ering the possibility of using the proof by con-
tradiction strategy when you are trying to figure
out how to do a proof.

aSure, I am exaggerating a little bit. There are quite a few direct proofs
(that is, proofs that are not by contradiction). But the number of proofs by
contradiction is huge.

Let me first explain what proofs by contradiction are, and then I will tell you
why they are so important.

And the first thing I need to explain is what a contradiction is.
And, ir order to explain that, I have to discuss how to negate a sentence.

2.4.1 Negation

To negate (or deny) a statement A is to assert that A is false. (Any such
statement is called a denial of A)

So, for example, a denial of “7 is a prime number” is “7 is not a prime
number”. (But there are many other ways to write a denial of “7 is a prime
number.” For example, we could write “it is not true that 7 is a prime
number”, or “it is not the case that 7 is a prime number”.)

The symbol “∼” (“it’s not true that”)

The symbol “∼”, put in front of a statement, is used to
assert that the statement is false.
So “∼” stands for “it is not the case that”, or “it is not
true that”.
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Example 3. The following sentences are true:

• ∼ 6 is a prime number (that is, “6 is not a prime number”),

• ∼ 2 is an odd integer (that is, “2 is not an odd integer”),

• ∼(6 is even and 7 is even) (that is, “it’s not true that 6 and 7 are both
even”).

The following sentences are false:

• ∼ 7 is a prime number (that is, “7 is not a prime number”),

• ∼ 3 is an odd integer (that is, “3 is not an odd integer”),

• ∼(6 is even or 7 is even) (that is, “it’s not true that 6 is even or 7 is
even”),

• ∼ 6 is even and 7 is even (that is, “6 is not even and 7 is even”).

2.4.2 When is a negation true?

If A is a sentence, then

• ∼ A is true if A is false;

• ∼ A is false if A is true.

2.4.3 What is a contradiction?

The precise definition of “contradiction” is complicated, and requires some
knowledge of logic. So let me give you a simplified definition that is easy to
understand and is good enough for our purposes.

Temporary, simplified definition of “contradiction”: A contradiction
is a statement of the form “A and ∼ A”, that is, “A is true and A is not
true”. �

Example 4.

• The sentence “2+2 = 7” is not a contradiction. It is a false statement,
of course, but not every false statement is a contradiction.
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• The sentence “2 + 2 = 7 and 2 + 2 = 4” is not a contradiction either.
It is a false statement (because it is the conjunction of two sentences
one of which is false), but that does not make it a contradiction.

• The sentence “2 + 2 = 7 and 2 + 2 6= 7” is a contradiction. because it
is of the form “A and no A”, with the sentence “2 + 2 = 7” in the role
of A.

• The sentence “n = 1 and n 6= 1” is a contradiction.

• The sentence “John Adams was the first U.S. president” is false, but it
not a contradiction.

• The sentence “John Adams was the first U.S. president and was the
second U.S. president” is false, but it not a contradiction.

• The sentence “John Adams was the first U.S. president and was not
the first U.S. president” is a contradiction. �

2.4.4 What is a proof by contradiction?

A proof by contradiction is a proof in which you start by assuming that
the statement you want to prove is false, and you prove a contradiction. Once
you have done that, you are allowed to conclude that the statement you are
trying to prove is true.

To do a proof by contradiction, you would write something like this:

We want to prove A.

Assume that A is false....
2 = 1 and 2 6= 1.
And “2 = 1 and 2 6= 1” is a contradiction.

So assuming that A is false has led us to a contradiction.

Therefore A is true. Q.E.D.
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WARNING

Having explained very precisely what a contradiction is, I have to warn
you that mathematicians will often say things like “ ‘2 + 2 = 7’ is a
contradiction”.
This is not quite true, but when a mathematician says that every math-
ematician will understand what is really intended.
What the person who said “ ‘2 + 2 = 7’ is a contradiction” really meant
is something like this:

Now that I have proved that 2 + 2 = 7, I can easily get a
contradiction from that, because we all know how to prove
that 2 + 2 6= 7, and then we can deduce from these two
formulas the sentence “2 + 2 = 7 and 2 + 2 6= 7”, which is
truly a contradiction.
In other words, once I get to “2 + 2 = 7”, it is clear to me,
and to every mathematician, how to get to a contradiction
from there, so there is no need to go ahead and do it, so I
can stop here.

This is something mathematicians do very oftena: once we get to a
point where it is clear how to go on and finish the proof, we
just stop there.

For a beginning student I would recommend that you actually write your

proof until you get a real contradiction, because this is the only way to

make it clear to the person reading (and grading) your work that you

do understand what a contradiction is.

aAnd not only mathematicians! In chess, once you get to a position from
which it is clear that you can take your rival’s King and win, you say “check-
mate” and the game stops there.
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WHAT DOES “ASSUME” MEAN?

“Assume” means “imagine”. In order to prove that some
statement S is true, we imagine that it is not true, that is, we
explore an imaginary world W in which S is not true, and we
prove that in this imaginary world something impossible (such as a
contradiction, “A is true and A is not true”) would have to happen.
And from this we draw the conclusion that a world in which S is
not true is impossible, so in the real world S must be true.

2.5 What is a finite set? What is an infinite set?

We now explain what a “finite set” is.

Definition 6. Let S be a set,

1. We say that S is finite if there exist a natural number n and a finite
list9

a = (a1, a2, . . . , an)

with n entries which is a list of all the members of S. (This means:
every member of S occurs in the list; that is, for every member x of S
there exists a natural number j such that j ≤ n and x = pj.)

2. We say that S is infinite if it is not finite. �

2.5.1 A simple lemma

A lemma is a statement that one proves in order to use it in the proof of a
theorem. In our proof of Euclid’s Theorem we are going to need the following
lemma:

Lemma 1. If a, b, c are integers, and c divides both a and b, then c divides
a+ b and a− b.

Proof. Since c|a and c|b, we may write

a = cj and b = ck , (2.2)

9If you are wondering “what is a finite list?”, then I can tell you two things: (1) you
are asking a good question, (2) I will give you more information about “finite lists” later,
on page 19.
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where j and k are integers.
But then

a+ b = c(j + k) and a− b = c(j − k) , (2.3)

and j + k and j − k are integers. So c|a+ b and c|a− b. Q.E.D.

2.6 The proof of Euclid’s Theorem

The proof I am going to present here is not exactly Euclid’s, but is based
essentially on the same idea.

First, here is Euclid’s result, again:

Theorem 1. The set of prime numbers

is infinite.

And here is the proof.

Let S be the set of all prime numbers.
We want to prove that S is an infinite set.
We will prove this by contradiction.

Suppose S is not infinite.

Then S is a finite set.

Since S is finite, we may write a finite list

p = (p1, p2, . . . , pn)

of all the members of S, i.e., of all the prime numbers.

Let N = p1.p2. · · · .pn. (That is, N is the product of all the entries of
the list p.)

Let M = N + 1.

Then M ≥ 2, so by the prime factorization theorem (in section 2.3.2)
M is a product q1.q2. · · · .qk of prime numbers.

Then q1 is a prime number10, and q1 divides M (because M = q1u, if

u = q2.q3. · · · .qk).
10All we need here is to have a prime number that divides M . We choose q1, but we

could equally well have chosen q2, or any of the other qj .
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On the other hand, since p is a list of all the prime numbers, and
q1 is a prime number, we can conclude that q1 is one of the entries
p1, p2, . . . , pn of the list p.

So we may write
q1 = pj ,

where j is one of the nmbers 1, 2, . . . , n.

It follows that q1 divides N (because pj divides N and q1 = pj).

Since q1 divides M and q1 divides N , it follows that q1 divides M −N ,
by Lemma 1.

But M −N = 1. So q1 divides 1 .

On the other hand, q1 is prime. It then follows from the definition of
“prime number” (Definition 2, on page 10) that q1 > 1.

Hence q1 6= 1.

But then q1 does not divide 1 , because the only natural number that
divides 1 is 1.

So q1 divides 1 and q1 does not divide 1 , which is a contradiction.

Hence the assumption that S is not an infinite set has led us to a contradic-
tion.
Therefore S is an infinite set . Q.E.D.

2.6.1 What is “Q.E.D.”?

What does “Q.E.D.” mean?

“Q.E.D.” stands for the Latin phrase quod erat
demonstrandum, meaning “which is what was to be
proved”. It is used to indicate the end of a proof.

Appendix: Finite lists
Finite lists have entries. Sets have members.
We can write11 finite lists as follows:

1. First we write a left parenthesis, i.e., the symbol “(”.
11I am saying “we can write” rather than “we write” because there are other ways to

write lists and sets. We will discuss those ways later.
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2. Then we write the names of the entries of the list, in order, beginning
with entry number 1, then entry number 2, and so on. The entries
must be separated by commas.

3. Then, finally, write a right parenthesis, i.e., the symbol “)”.

And we can write finite sets as follows:

1. First we write a left brace, i.e., the symbol “{”.
2. Then we write the names of the members of the set, in some order,

separated by commas.

3. Then, finally, we write a right brace, i.e., the symbol “}”.

WARNING

Be careful with the distinction between sets, written with braces
(“{” and “}”) and lists, written with parentheses ( “(“ and “)”).
For example, the sentence

(1, 2, 3) = (3, 1, 2)

is false, but the sentence

{1, 2, 3} = {3, 1, 2}

is true.

Example 5.

• Here is the list a of the first ten natural numbers, in increasing order:

a = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) . (2.4)

• Here is the list b of the first ten natural numbers, in decreasing order:

b = (10, 0, 8, 7, 6, 5, 4, 3, 2, 1) . (2.5)

And here is a list c of the first ten natural numbers, in a different order:

c = (10, 1, 5, 8, 3, 2, 4, 9, 6, 7) . (2.6)
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These three lists are different. For example, the second entry of a is 2,
whereas the second entry of b is 9 and that of c is 1.

Now let S be the set whose members are the first ten natural numbers.
Then we can write

S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} , (2.7)

or
S = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1} , (2.8)

or, for example,
S = {1, 3, 5, 7, 9, 2, 4, 6, 8, 10} , (2.9)

or
S = {4, 2, 7, 8, 10, 1, 9, 3, 5, 6} , (2.10)

or even
S = {4, 4, 2, 7, 7, 7, 5, 5, 5, 8, 10, 1, 9, 4, 3, 5, 6} . (2.11)

The sets S given by equations (2.7), (2.8), (2.9), (2.10), (2.11),
are all the same set, even though the formulas describing them are dif-
ferent. What the formulas do is tell us who the members of the set are. So,
for example, according to formula (2.7), 1 is a member of S, and 23 is not.
And the other formulas also say that 1 is a member of S, and 23 is not.

The key facts are these:

• Two sets S, T are the same set if they have the same members, that
is, if every member of S is a member of T and every member of T is
member of S.

• Two lists a, b are the same if the first entry of a is the same as the
first entry of b, the second entry of a is the same as the second entry
of b, and so on. That is, a = b if the j-th entry of a is the same as the
j-th entry of b for every j.

Example 6. Let S be the set whose members are all the presidents of the
United States, from George Washington to Donald Trump.

Let a be the list of all the presidents of the United States, from George
Washington to Donald Trump, in chronological order, so

a = (a1, a2, . . . , a45) ,
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where, for j = 1, 2, . . . , 45, aj is the j-th U.S. president.
Then a has 45 entries. How many members does S have?
If you think that the answer is 45, think again!
It turns out that Grover Cleveland served two nonconsecutive terms as

president, from 1885 to 1889 and from 1893 to 1897, and Congress decided
that Cleveland would count as both the 22nd and the 24th president of the
United States. So in the list a, the 22nd entry a22 and the 24th entry a24
are equal. So the set S has in fact 44 members, even though the list a has 5
entries. �

2.7 An analogy: twin primes

Let me tell you about another problem, very similar to the one we have just
discussed, for which the situation is completely different.

Definition 7. A twin prime is a prime number p such that p + 2 is also
prime. �

Example 7. Here are the first few twin primes:

3, 5, 11, 17, 29, 41, 59, 71, 101, 107 . �

Now we can ask the same question that we asked for primes: does the list go
on forever, or does it stop at some largest pair of twin primes?

In other words,

Are there infinitely many twin primes?

This looks very similar to the question whether there are infinitely many
primes. And yet, the situation in this case is completely different:

Nobody knows whether there are infinitely
twin primes. Mathematicians have been try-
ing for more than 2,000 years to solve this
problem, by proving that there are infinitely
many twin primes, or that that there aren’t,
and so far they haven’t been successful.
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The twin prime conjecture is the statement that there are infinitely many
pairs of twin primes. It was formulated by Euclid, about 2,300 years ago,
and it is still an open problem.

THE LARGEST KNOWN TWIN
PRIME

According to Wikipedia, as of September 2018, the cur-
rent largest twin prime known was 2996863034895 ×
21290000 − 1, with 388, 342 decimal digits. It was dis-
covered in September 2016. (The fact that the number
2996863034895× 21290000− 1 is a twin prime means that
it is prime, and the number 2996863034895×21290000+1
is also prime.)

2.8 A surprising fact: non-twin primes

How about primes that are not twin?

Definition 8. A non-twin prime is a prime number p such that p+2 is not
prime. �

Example 8. Here are the first few non-twin primes:

2, 7, 13, 19, 23, 31, 37, 43, 47, 53,

61, 67, 73, 79, 83, 89, 97, 103 . �

And now we can ask, again, the same question that we asked for primes and
for twin primes: does the list go on forever, or does it stop at some largest
pair of twin primes?

In other words,

Are there infinitely many non-twin primes?

This looks very similar to the question whether there are infinitely many twin
primes. And yet, the situation in this case is completely different: it is very
easy to prove the following:

Theorem 2. The set of non-twin primes is infinite.

(I am asking you to do this proof. See Problem 8 below.)
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2.9 Problems

Problem 1. Using the definition of “divides” (Definition 1), explain pre-
cisely why the statements “1 divides 5”, “6 divides −6”, “6 divides 0”, and
“0 divides 0” are true, and the statements “5|6” and “0|6” are false. �

Problem 2. Indicate which of the statements in the following list are true
and which ones are false, and explain why. (That is, prove that the true
statements are true and the false ones are false.)

1. Every integer is divisible by 1.

2. Every integer is divisible by 2.

3. Every integer is divisible by 0.

4. Every integer divides 1.

5. Every integer divides 2.

6. Every integer divides 0.

Problem 3. Express each of the following numbers

• 37,

• 28,

• 236,

• 2247,

as a product of prime numbers. �

Problem 4. Give a precise mathematical definition of “prime number”. �

Problem 5. Give a precise mathematical definition of “twin prime”. �

Problem 6. Give a precise mathematical definition of “finite set” and “in-
finite set”. �

Problem 7. Give precise mathematical definitions of each of the following
concepts:

• divides,

• is divisible by,

• factor (as in “is a factor of”),
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• multiple (as in “is a multiple of”). �

Problem 8. Prove Theorem 2 (on page 23). �

Problem 9. Prove that if a, b, c are integers, a|b and b|c, then a|c. �

Problem 10. Prove that if a, b are integers, a|b and b|a, then a = b or
a = −b. �

Problem 11. The proof that was given in Section 2.6 of Euclid’s Theorem
uses the definition of “prime number” given on page 10. In this problem,
we change the definition of “prime number” and use the following definition:
A prime number is a natural number p such that p is not divisible by any
natural numbers other than 1 and p. That is, we do not require p to be > 1.
So according to this new definition 1 is now prime

Rewrite the proof of Euclid’s Theorem given in Section 2.6 using the new
definition of “prime number”. (What you have to do is basically copy the
proof, but making a few changes. For example, one of the steps of the proof
given in Section 2.6 says “It follows from the definition of ‘prime number’
that q1 > 1”. This step is not valid now, because 1 is prime, so q1 could be
1. You have to make some slight changes in the proof to adapt it to this new
situation.) �

Problem 12. Prove that if p is a prime number and p 6= 2 then p is odd.

In the following problems, you may want to use the division theorem: If a, b
are integers and b 6= 0, then it is possible to write a = bq+ r, where
q, r are integers such that 0 ≤ r < |b|. (For example: if a is an integer
then we can write a = 3q + r where r = 0 or r = 1 or r = 2.)

Problem 13. Prove that if p is a prime number such that p+ 2 and p+ 4
are also prime, then p = 3.
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Problem 14.

1. Find at least ten different prime numbers p such that p + 4 is also
prime.

2. Prove that the only prime number p such that p+4 and p+8 are also
prime is p = 3.

3. Prove that there does not exist a prime number p such that p + 4,
p+ 8 and p+ 12 are also prime.

Problem 15.

1. Find at least ten different prime numbers p such that p + 6 is also
prime.

2. Find at least ten different prime numbers p such that p+6 and p+12
are also prime.

3. Find at least four12 different prime numbers p such that p+ 6, p+ 12
and p+ 18 are also prime.

4. Prove that there exists a unique prime number p such that p + 6,
p+ 12, p+ 18 and p+ 24 are also prime.

5. Prove that there does not exist a prime number p such that p + 6,
p+ 12, p+ 18, p+ 24 and p+ 30 are also prime.

Problem 16.

1. Express the integer 28 as a difference of two squares of integers. (That
is, find two integers m,n such that m2 − n2 = 28.)

2. Express the integer 29 as a difference of two squares of integers. (That
is, find two integers m,n such that m2 − n2 = 29.)

3. Prove that it is not possible to express the integer 30 as a difference
of two squares of integers. (That is, prove that there do not exist two
integers m,n such that m2 − n2 = 30.) �

12There are many more. I am just asking you to find four because I don’t want to make
you work too hard.
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3 More examples of proofs: irrationality of√
2 and of other numbers

3.1 Numbers and number systems

There are several different kinds of numbers, i.e., several different number
systems. It is convenient to give the number systems names, and to introduce
mathematical symbols to represent them.

3.1.1 The most common types of numbers

Here are some examples of number systems:

• the symbol IN stands for the set of natural numbers,
• the symbol Z stands for the set of integers,
• the symbol Q stands for the set of rational numbers,
• the symbol IR stands for the set of real numbers,
• the symbol C stands for the set of complex numbers,
• there are sets Z2, Z3, Z4, Z5, Z6, and, more generally, Zn—the set of
integers modulo n—for every natural number n such that n ≥ 2. (So,
for example, there are the systems Z2, Z3, Z10, Z11, Z5403.)

Some of the above kinds of numbers should be familiar to you, and others
may be less so or not at all. Do not worry if you find on our list things that
you have never heard of before: we will be coming back to the list later, and
discussing all the items in much greater detail.

A number can belong to different number systems, in the same way as,
say, a person can belong to different associations. (For example, somebody
could be a member, say, of the American Association of University Professors,
the Rutgers Alumni Association, and the Sierra Club. Similarly, the number
3 belongs to lots of different number systems, such as, for example, IN, Z, Q,
and IR.)

At this point, we will just discuss IN, Z, Q, and IR, and we will do so very
briefly. We will talk much more about these systems later, and we will also
discuss later other number systems such as C, and the Zn.

The symbols IN, Z, Q, IR, C, are special
mathematical symbols. They are not the
capital letters N, Z, Q, R, C.
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(Why do we use these special symbols? It’s because mathematicians need to
use lots of letters in their proofs, so they do not want to take the letters C,
R, for example, and declare once and for all that they stand for “the set of
all complex numbers” and “the set of all real numbers”. For example, if they
are working with a circle, they want to have the freedom to call the circle
“C”, and to say “let R be the radius of C”, and this would not be allowed
if the symbols “C”, “R” already stood for something else. So they invented
the special symbols C, IR to stand for the set of complex numbers and the
set of real numbers, so that the ordinary letters C, R, will be available to be
used as variables.)

Please do not say “IN is the natural numbers”, or “Z is the in-
tegers”. When we group things together to create a set, that set
is one thing, not many things. So IN cannot be “the natural num-
bers”. What you can, and should, say is: “IN is the set of all natural
numbers.”

3.1.2 The symbol “∈”

If S is a set and a is an object, we write

a ∈ S
to indicate that a is a member of S.

And we write

a /∈ S
to indicate that a is not a member of S.
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How to read the “∈” symbol

The expression “a ∈ S” is read in any of the following
ways:

- a belongs to S,

- a is a member of S,

- a is in S.

The expression “a /∈ S” is read in any of the following
ways:

- a does not belong to S,

- a is not a member of S,

- a is not in S.

Remark 2. Sometimes, “a ∈ S” is read as “a belonging to S”, or “a in S”,
rather than “a belongs to S”, or “a is in S.” For example, if we write

Pick an a ∈ S,

then it would be bad English grammar to say “pick an a belongs to S”. But
“pick an a belonging to S”, “pick an a in S”, or “pick an a that belongs to
S”, are fine. �

Never read “∈” as “is contained in”, or ”is
included in”. The words “contained” and “in-
cluded” have different meanings, that will be dis-
cussed later.

3.1.3 The natural numbers

The symbol IN stands for the set of all natural numbers. (Natural num-
bers are also called “positive integers”, or—sometimes—”whole numbers”,
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or “counting numbers”.) The members of this set are the numbers 1, 2, 3 . . ..
More precisely:

The natural numbers are the numbers obtained from the number
1 by adding 1 any number of times. So, for example, the numbers
1, 1+1 (i.e., 2), 1+1+1 (i.e., 3), 1+1+1+1 (i.e., 4), are natural
numbers. And so are the numbers 4, 503, 46, 902, 444, 531, 322 and

1010
10

10
10

.
The symbol IN stands for the set of all natural numbers.

3.1.4 The integers

The symbol Z stands for the set of all integers.
The members of Z (i.e., the integers) are the natural numbers as well as 0

and the negatives of natural numbers, i.e., the numbers −1, −2, −3, etc. So,
to say that a number n is an integer, we can write “n ∈ Z”, which we read
as “n belongs to the set of integers” or, even better, as “n is an integer”.

So, for example, the following statements are true:

35 ∈ IN

35 ∈ Z

∼ −35 ∈ IN

−35 ∈ Z

35 /∈ Z

0 ∈ Z

∼ 0 ∈ IN

0 /∈ IN

0.37 /∈ Z

π /∈ Z .

3.1.5 The real numbers

The symbol IR stands for the set of all real numbers.
The real numbers are those numbers that you have used in Calculus.

They can be positive, negative, or zero.
The positive real numbers have an “integer part”, and then a “decimal

expansion” that may terminate after a finite number of steps or may continue
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forever. (So, for example, the number 4.23 is a real number, and so is the
number π. The decimal expansion of the number 4.23 terminates after two
decimal figures, but the decimal expansion of π goes on forever. Here, for
example, is the decimal expansion of π with 30 decimal digits:

3.141592653589793238462643383279 .

Using Google you can find π with one million digits. As of 2011, 10 trillion
digits of π had been computed, and nobody has found any pattern! Even
simple questions, such as whether every one of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
appears infinitely many times, are unresolved.)

And the negative real numbers are the negatives of the positive real num-
bers. So, for example, −4.23 and −π are negative real numbers.

3.1.6 Positive, negative, nonnegative, and nonpositive numbers

In this course, “positive” means “> 0” (i.e., “greater than zero”), and “non-
negative” means “≥ 0” (“greater than or equal to zero”). So, for example, 3
and 0.7 are positive (and nonnegative), and 0 is nonnegative but not positive.

Similarly, “negative” means “< 0”, and “nonpositive” means “≤ 0”. So,
for example, −3 and −0.7 are negative (and nonpositive), 0 is nonpositive
but not negative.

3.1.7 Subsets

Definition 9. A set A is a subset of a set B if every member of
A is a member of B.
We write “A ⊆ B” to indicate that A is a subset of B.

For example,

a. If, for example, S is the set of all people in the world, and T is the set
of all people who live in the United States, then T is a subset of S. So
the sentence “T ⊆ S” is true.

b. If A is the set of all animals, and G is the set of all giraffes, then G is
a subset of A, so the sentence “G ⊆ A” is true.

c. Let S be the set of all people who live in the United States, and let
C be the set of all U.S. citizens. Is C a subset of S? The answer is
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“no”, because there are U.S. citizens who do not live in the U.S., so
these people are members of C but not of S, so it’s not true that every
member of C belongs to S.

And here are some mathematical examples:

I. The following sentences are true:

IN ⊆ Z ,

IN ⊆ IR ,

Z ⊆ IR ,

because every natural number is an integer, every natural number is a
real number, and every integer is a real number.

II. And the following sentences are false:

Z ⊆ IN ,

IR ⊆ IN ,

IR ⊆ Z .

(For example, it is not true that Z ⊆ IN, because not every integer is a
natural number since, for example, 0 ∈ Z but 0 /∈ IN.)

3.1.8 The word “number”, in isolation, is too vague

As we have seen, there are different kinds of numbers. So, if you just say
that something is a “number”, without specifying what kind of number it is,
then this is too vague. In other words,

Never say that something is a “number”, unless you have
made it clear in some way what kind of “number” you
are talking about.

For example, suppose you are asked to define “divisible”, and you write:

A number a is divisible by a number b if we can write
a = bc for some number c.
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This is too vague! What kind of “numbers” are we talking about? Could
they be real numbers?. If this was the case, then 3 would be divisible by 5,
because 3 = 5.z, if we take z = 3/5. But we do not want 3 to be divisible by
5. And we want the “numbers: we are talking about to be integers.

So here is a correct definition of “divisible”:

Divisibility of integers: We say that an integer a is divisible by an integer
b (or that a is a multiple of b, or that b is a factor of a, or that b divides a),
if we can write

a = bc

for some integer c. �

For example, the following sentences are true:

3 divides 6 ,
−3 divides 6 ,

6 is divisible by 3 ,
6 is a multiple of 3 ,
3 is a factor of 6 .

3.2 Existential statements

In the definition of divisibility given above, we have used the words “we can
write”. This language makes it sound as though, in order to decide whether,
say, 3 divides 6, we need to have somebody there who “can write” things.
This should not be necessary: “3 divides 6” would be a true sentence even
if there was nobody around to do any writing. So it is much better to use a
more impersonal language:

Divisibility of integers

DEFINITION. An integer a is divisible by
an integer b (or a is a multiple of b, or b is a
factor of a, or b divides a), if there exists an
integer c such that

a = bc .
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The sentence “there exists an integer c such that a = bc” is an example
of nn existential sentence, i.e., a sentence that asserts that an object of
a certain kind exists. Later, when we learn to write mathematics in formal
language (that is, using only formulas), we will see that this sentence can be
written as follows:

(∃c ∈ Z)a = bc . (3.12)

The symbol “∃” is the existential quantifier symbol, and the expression
“(∃c ∈ Z)” is an existential quantifier, and is read as “there exists an
integer c such that”.

So Sentence (3.12) is read as “there exists an integer c such that a = bc”.
And it can also be read as “a = bc for some integer c”, or “it is possible to
pick an integer c such that a = bc”. (I recommend the “it is possible to pick
...” reading.)

3.2.1 The rule for using existential statements (Rule ∃use)

Suppose you know that cows exist, that is that

(∃x)x is a cow . (3.13)

Then the rule for using existential statements says that we can introduce into
our conversation a cow, and give her name, by saying something like “pick a
cow and call her Suzy”.

In general,

• For a sentence (∃x)P (x), a witness is an object a such that P (a). (For
example: for the sentence (3.13), a witness is any a such that a is a
cow, that is, any cow.)

• For a sentence (∃x ∈ S)P (x), a witness is an object a which belongs to
S and is suchthat P (a). (For example, if C is the set of all cows, then
a witness for the sentence (∃x ∈ C)x is brown is any brown cow.)

The rule for using existential statements (Rule ∃use) says that,
if you know that an existential statement is true, then you can
“pick a witness and give it a name”.

For example: suppose you know that a natural number n is not prime and
is > 1. Then you know that the following is true: (∃m ∈ IN)(m|n and m 6=
1 and m 6= n). (That is, n has a factor which is a natural number and is not
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equal to 1 or n.) Then Rule ∃use says that we can pick a witness and call it
a, that is, we can pick a natural number a such that a|n, a 6= 1 and a 6= n.

Rule ∃use
• From

(∃x)P (x)
you can go to “Let w be a witness for

(∃x)P (x), so P (w),” or “Pick a witness for

(∃x)P (x) and call it w”, or “Pick a w such

that P (w).”

• From

(∃x ∈ S)P (x)

you can go to “Let w be a witness for (∃x ∈
S)P (x), so w ∈ S and P (w),” or “Pick a

witness for (∃x ∈ S)P (x) and call it w”, or

“Pick a w such that w ∈ S and P (w).”

For example:

i. If you know that Polonius has been killed, but you do not know who
did it, then you can talk about the person who killed Polonius and give
a name to that person, for example, call him (or her) “the killer”.

ii. if you know that an equation (say, the equation 3x2 + 5x = 8) has a
solution (that is, you know that the existential statement “there exists
a real number x such that 3x2 + 5x = 8” is true) then you are allowed
to pick a solution and call it, for example13, “a”.

13Can you call this solution x? This is a complicated issue. Think of this as follows:
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3.3 Pythagoras’ Theorem and two of its proofs

Pythagoras’ Theorem is one of the oldest and most important theorems in
Mathematics. It is named after the Greek mathematician and philosopher
Pythagoras, who lived approximately from 570 to 495 BCE, although there
is a lot of evidence that the theorem (but probably not the proof) was known
before, by the ancient Babylonians.

The statement of the theorem is as follows:

Theorem 3. (Pythagoras’ Theorem) If T is a right triangle14, c is the length
of the hypothenuse15 of T , and a, b are the lengths of the other two sides,
then

a2 + b2 = c2 . (3.14)

There are many different proofs of Pythagoras’ Theorem. I am going to
give you two proofs.

Pythagoras’ proof. We draw a c× c square PQRS, and then attach at each
side a copy16 of T as shown in the picture.

the letter x is really a slot where you can put in a number. A number that can be put in
the slot so as to make the formula true is called a “solution”. The solution and the slot
are two different things. So it is not a good idea to use the same name for both. If you
do things very carefully, it turns out that it is O.K. to call both the slot and a solution
with the same name, but I strongly recommend that you do not do it. For example the
equation 3x2 + 5x = 8 has are two solutions, namely, 1 and − 8

3
. Which one is “x”? You

cannot call both of them “x”, because they are different. So I think it is better to call one
of the solutions a (or A, or u, or U , or p, or P , or α, or ♥) and then call the other one a
different name (say b, or B, or v, or V , or q, or Q, or β, or ♣).

14A right triangle is a triangle having one right angle
15The hypothenuse of a right triangle T is the side opposite to the right angle of T .
16For those who have studied Euclidean Geometry in high school: a copy of a figure F is

a figure F ′ congruent to F . “Congruent to F” means: “obtainable from F by combining
displacements and rotations. For example, the triangles QC3R, RC4S, and SC1P are all
congruent to PC2Q.
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The point P lies on the straight line segment from C1 to C2, because

1. If α1 is the angle at S of the triangle SC1P , and α2 is the angle at P
of the triangle PC2Q, then α1 = α2, because the triangles SC1P and
PC2Q re congruent.

2. Similarly, if β1 is the angle at P of the triangle SC1P , and β2 is the
angle at Q of the triangle PC2Q, then β1 = β2, because the triangles
SC1P and PC2Q are congruent.

3. Since SC1P and PC2Q are both right triangles, and the sum of the
angles of every triangle is 180o, we have

α1 + β1 + 90o = 180o and α2 + β2 + 90o = 180o ,

so
α1 + β1 = 90o and α2 + β2 = 90o .

4. Since α1 = α2, it follows that α2 + β1 = 90o,
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5. Hence the angle θ between the segments PC1 and PC2 is equal to
α2 + 90o + β1, i.e., to 180o. This proves that the segments PC1 and
PC2 lie on the same straight line, so P lies on the segment C1C2.

A similar argument shows that Q lies on the segment C2C3, R lies on the
segment C3C4, and S lies on the segment C4C1.

So the polygonal C1PC2QC3RC4SC1 is a square.
Let d = a+ b. Then the sides of the square C1C2C3C4 have length d.
Therefore the area of the square C1C2C3C4 is d2.
On the other hand, the smaller square PQRS has side of length c, so its

area is c2. Each of the four triangles has area ab
2
. So the area of C1C2C3C4

is equal to c2 + 4× ab
2
, i.e., to c2 + 2ab.

It follows that

(a+ b)2 = d2

= c2 + 4× ab

2
= c2 + 2ab .

On the other hand, (a+ b)2 = a2 + b2 + 2ab. It follows that

a2 + b2 + 2ab = c2 + 2ab .

Subtracting 2ab from both sides, we get

a2 + b2 = c2 ,

which is the desired result. Q.E.D.

Proof using similar triangles. Let C be the vertex of T where the right angle
is located, and let A, B be the other two vertices.

Draw a line through C perpendicular to the line AB, and let H be the
point where this line intersects the line AB.
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A

H

β

α

C
B      

Let α, β be the angles of T at A, B, so α+ β = 90o. The angle of ACH
at H is also 90o, and the angle at A is α. Hence the angle of ACH at C is
β. So the triangles ABC and ACH are similar. Hence the sides opposites to
equal angles are proportional. That is:

|AC|
|AH| =

|AB|
|AC| ,

from which it follows that

|AC|2 = |AH| · |AB| .

A similar argument shows that

|BC|2 = |BH| · |AB| .
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Adding both equalities we get

a2 + b2 = |AH| · |AB|+ |HB| · |AB|
=

(

|AH|+ |HB|) · |AB|
= |AB| · |AB|
= |AB|2
= c2 .

So a2 + b2 = c2, as desired. Q.E.D.

3.4 Rational and irrational numbers

In this section we will prove a very important fact, namely, that “the number√
2 is irrational”. This means, roughly, the same thing as “there does not

exist a rational number r such that r2 = 2.” (The two statements do not say
exactly the same thing. I will discuss how they differ later.)

But first I want to explain what this means and why this result is so
important. And to do this we need a small philosophical digression into the
question: what is a “number”?. (If you are not interested in philosophical
questions, you may skip this discussion and move on to subsection 3.4.4.)

3.4.1 What are “numbers”?

We have already been talking quite a bot about “numbers”, but I never told
you what a “number” is. The question “what is a number?” is not an easy
one to answer, and I will not even try. But there are some tings that can be
said.

1. Numbers are, basically, tags (or labels) that we use to specify the
amount or quantity of something, i.e., to answer the questions “how
much ...?” or “how many ...?”

2. Since ancient times, it was understood that there are at least two kinds
of “numbers”:

(a) The counting numbers, that we use to specify amounts of dis-
crete quantities, such as coins, people, animals, stones, books, etc.

• counting numbers are used to count: 1, 2, 3, 4, 5, and so on,
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• they are the ones that answer questions of the form
“how many ... are there?”;

• they vary in discrete steps: they start with the number 1,
then they “jump” from 1 to 2, and there is no other counting
number between 1 and 2, then they “jump” from 2 to 3, and
there is no other counting number between 2 and 3, and so
on.

(b) The measuring numbers, that we use to specify amounts that
can vary continuously, such as lengths, areas, volumes, weights.

• measuring numbers are used to measure continuously vary-
ing quantities;

• they are the ones that answer questions of the form
“how much ... is there?”;

• they vary continuously, so that, for example, when you
pour water into a cup, if at some time point there are 10
ounces in the cup, and later there are 12 ounces, it does not
occur to us that the amount of water in the cup may have
jumped directly from 10 to 12 ounces: we understand that at
some intermediate time there must have been 11 ounces, and
at some time before that there must have been 10.5 ounces,
and at some time before that there must have been 10.25
ounces, and at some time before the amount of water in the
cup was 10.15309834183218950482 ounces; and so on17. At
no time did the amount of water “jump”18 from some value u
to some larger value v.

• they can be subdivided indefinitely: for example

17WARNING: The words “and so on” here are very imprecixse. It’s not at all what
they mean. When I talk about the counting numbers and I write “1, 2, 4, 5, and so
on”, you know exacrtly what comes next: it’s 6. But when I write “11, 10.5, 10.25,
10.15309834183218950482, and so on”, I haven’t the faintest idea what comes next! So
the “and so on” for counting numbers is acceptable, but the “and so on” for measuring
numbers is not, and when we do things rigorously and precisely we must get rid of it.

18To make this precise, one needs to use tha language of Calculus: if w(t) is the amount
of water at time t, then w is a continuous function of t. The trouble with this is: at this
point you only have a nonrigorous, not very precise idea of what a “continuous function”
is. You will learn to define the notion of “continuous function”, and work with it, and
prove things about it, in your next “Advanced Calculus” or “Real Analysis” course.
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– You can take a segment of length 1 (assuming we have
fixed a unit of length), and divide it into seven equal seg-
ments, each one of which has length 1

7
. And then you can

draw segments whose lengths are 3
7
, or 4

7
, or 9

7
, or 23

7
, thus

getting fractional lengths.

– And, instead of 7, you can use any denominator you want,
and get lengths such as 5

2
, 12

5
, 29

17
, 236,907

189,276
, and so on.

– Hence, if n and m are any natural numbers, then we can
(at least in principle) construct segments of length m

n
.

That is, we can construct segments of length f , for any
fraction f .

The measuring numbers such as 5
2
, 12

5
, 29

17
, or 236,907

189,276
, that can obtained

by dividing a counting number m into n equal parts, where n is another
counting number, are called fractions.

And this suggests an idea:

Idea 1: Perhaps the measuring numbers are exactly the same as the frac-
tions.

In other words: suppose we use the length u of some straight-line segment U
as the unit for measuring length. (That is, we call the lenght of this segment
“meter”, or “yard”, or “foot”, or “mile”, and then we try to express every
length in meters, or yards, or feet, or miles.) When we do that, we will
of course need fractions to expres some lenghts because, for example, if we
measure distances in miles, not every distance will be 1 mile, or 2 miles, or n
miles for some counting number n. Some distances will be, say, half a mile,
or three quarters of a mile, on thirteen hundredths of a mile, or forty-seven
thousandths of a mile19.

Then Idea 1 suggests that the length of every segment V should be equal
to a fraction m

n
times u (wnere m,n are natural numbers, i.e., counting

numbers). That means that if we divide the segment U into n equal segments

19Here is another important difference between counting and measuring numbers: to
count things using counting numbers you do not need units, but to measure amounts using
measuring numbers you do. If you are asked how many pills there are in a bottle, then
you answer “six”, or “twenty-five’, or whatever, and nobody is going to ask “six what?”.
But if you are asked how much water there are in the bottle, and you answer “six”, then
somebody is going to ask “six what?”, expecting that you will say something like “six
ounces”, or “six liters”, because if you do not specify the units of your measurement the
number you gave is meaningless.
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of length w = u
n
, then the length of U is n times w, and the length of V is m

times w. So U and V are commensurable. Since we can take U and V to be
any two segments we want, we find that If Idea 1 i true, then any two
segments are commensurable.

COMMENSURABLE LENGTHS

“Commensurable” means “measurable together”. Precisely:

Definition 10.

• Two segments U , V , are commensurable if you can use a ruler
of the same length w to “measure u and v together”, that is,
to express both lengths u and v as integer multiples mw, nw
of the unit of length w.

• Two segments U , V , are incommensurable if they are not
commensurable.

But then a momentous discovery of far-reaching consequences was made:

There are incommensurable lenghts.

That is, it is not true that any two lengths are commensurable.
Precisely: it is possible to construct geometrically20 a segment whose

length r satisfies r2 = 2. For example, if we draw a square whose sides have
length 1, then the length r of the diagonal of the square will satisfy r2 = 2,
by Pythagoras’ theorem.

20What does “constructing geometrically” mean? This is tricky. For Euclid (who lived
about 23 centuries ago), “constructing geometrically” meant “constructing with a ruler
and compass”. (See the Wikipedia article ”Compass and straightedge consrtuctions”.)
Using ruler and compass, one can construct lines and circles, but there are lots of other
curves—for example, ellipses—that cannot be constructed that way. On the other hand,
there are other equally “geometric” methods that can be used to construct some of those
curves. For example, ellipses can be constructed using pins and strings. (See the Wikipedia
article “Ellipses”.)
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r

1

1

=1 +1   = 2
22

r
2

And it was discovered that there is no fraction r such that r2 = 2. This
means that

I. If you believe that “number” means “fraction”, then there is no number
that measures the length of the diagonal of a square whose sides have
lengt 1.

II. If you are willing to accept that there could be “numbers” that are not
fractions, then maybe there is a number r that measures the length of
the diagonal of a square whose sides have lengt 1, but that number r,
that we could call “

√
2”, is not a fraction.

Today we would say that

• Those numbers that are not fractions, such as
√
2, do indeed exist, and

we call them “real numbers”.
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• The fractions, called “rational21 numbers”, are real numbers, but many
real numbers are “irrational” numbers, that is, numbers that are not
rational.

• Actually, most22 real numbers are not rational.

• It took mathematicians more than 2,000 years after the discovery of
the irrationaly of

√
2 to come up with a truly rigorous definition of the

concept of “real number”. (The name “real number” was introduced by
Descartes in the 17th century. The first rigorous definition was given
by George Cantor in 1871, and the most widely used definitions were
proposed by Karl Weierstrass and Richard Dedekind.

3.4.2 Why was the irrationality of
√
2 so important?

The discovery of the inconmensurability of
√
2 was made, according to legend,

by Hippasus of Metapontum, who lived in the 5th century B.C.E and
was a member of the religious sect of the Pythagoreans, i.e., the followers of
the philosopher and mathematician Pythagoras23. And the legend also says
that the discovery was so shocking to the Pythagoreans that Hippasus was
drowned at sea, as punishment for having divulged the secret. (But this is a
legend, and there is no evidence that it is true.)

Why was the existence of inconmensurable magnitudes so upsetting to
the Pythagoreans? The reason is this: the Pythagoreans were a mystical-
religious cult.

21The word “rational” here has nothing to do with “rationality” in the sense of “in
accordance withb reason or logic”. It comes from the word “ratio”, which means “quo-
tient”. An “irrational number” is a number that is not the quotient (“‘ratio”) of two
integers. If you hear somebody say something like “scientists have shown that nature is
irrational: mathematicians have shown that irrationality is everywhere present, because
most numbers are irrational”, then you shoud realize that thit is an ignorant statement by
somebody who does not understand what “irratioanl numbers” are. The “irrationality” of
irrational numbers has nothing to do with their being unreasonable, absurd, or illogical;
it just means that they are not quotients of two integers.

22If this statement does not strike you as incomprehensible because you don’t know
what it means, you should think again, and ask yourself “what could it possibly mean to
say that most real numbers are irrational”? It turns out that this can be made precise,
but making it precise is hard.

23Yes, that’s the same Pythagoras of Pythagoras’s theorem.
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The Pythagoreans honored the effort put into mathematics,
and coordinated it with the observation of the cosmos in var-
ious ways, for example: by including number in their reason-
ing from the revolutions and their difference between them,
by theorizing what is possible and impossible in the organi-
zation of the cosmos from what is mathematically possible
and impossible, by conceiving the heavenly cycles according
to commensurate numbers with a cause, and by determining
measures of the heaven according to certain mathematical ra-
tios, as well as putting together the natural science which
is predictive on the basis of mathematics, and putting the
mathematical objects before the other observable objects in
the cosmos, as their principles.

From the Wikipedia article on Pythagore-

anism, which quotes the Protrepticus, by

D. S. Hutchinson and M. R. Johnson, a

2015 reconstruction of a lost dialogue of

Aristotle.

In other words, for the Pythagoreans everything in the world was determined
by ratios (i.e. quotients) of “numbers”, and for them “number” meant “nat-
ural number” (i.e., counting number). The discovery that some lengths were
not ratios of “numbers” undermined the Pythagorean system to such an ex-
tent that the members of the sect felt it necessary to conceal this fact from
the general public.

But it is important to put all this in proper perspective: there is no real
proof that Hippasus truly was the discoverer of the irrationality of

√
2, or

that he was drowned at sea for that discovery.

3.4.3 What is a “real number”, really?

The discovery that there are lengths that are inconmensurable with one an-
other naturally forced mathematicians to ask a fundamental question: what
is a “number”, really?

And, as we have explained, it took more than 2,000 years until mathe-
maticians found a satisfactory answer.
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3.4.4 The most important number systems: real numbers vs. in-
tegers and natural numbers; definition of “rational number”

Now let us look at the main number systems24 that mathematicians use
today.

1. The measuring numbers, together with their negatives, and zero, are
called real numbers.

2. The set of all real numbers is called IR. (It is also called “the set of all
real numbers”, or “the real line”.)

3. The counting numbers are called natural numbers. (They are also
called “positive integers”.)

4. The set of all natural numbers is called IN.

5. The natural numbers, together with their negatives and zero, are called
integers.

6. The set of all integers called Z.

7. The real numbers that are quotients of two integers are called rational
numbers. That is, we have the following key definition:

24There are many number systems. What we will do here is barely scratch the surface
of a very rich theory.
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Definition 11.

• A rational number is a real number r such

that there exist integers m,n for which:

(a) n 6= 0

(b) r = m
n .

• The set of all rational numbers is called Q.

(So “x ∈ Q” is a way of saying “x is a rational

number”.)

• In formal language: If r ∈ IR, then r ∈ Q ifa

(∃m∈Z)(∃n∈Z)
(

n 6=0 and r=
m

n

)

. (3.15)

• An irrational number is a real number r which

is not rational.
aFormula (3.15) is not yet completely formal, because it contains the word

“and”. Soon we are going to leanr the symbol “∧” for “and”, and then we will

be able to rewrite (3.15) as (∃m ∈ Z)(∃n ∈ Z)
(

n 6= 0 ∧ r = m
n

)

.

3.4.5 A remark about sets

We will spend a lot of time in this course studying sets. At this point, all
you need to know is that

• sets have members.

• If S is a set and x is an object (for example, a number or a person or
a giraffe or a set) then “x ∈ S” is a way of saying that x is a member
of S.
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• “x ∈ S” is read as “x belongs to S”, or “x is in S”, or “x is a member
of S”.

• We write “x /∈ S” to indicate that x is not a member of S.

• So, for example,

– If C is the set of all cows, then to say that Suzy is a cow we can
equally well say “Suzy∈ C”.

– You can read “Suzy∈ C in any of the following ways:

1. Suzy belongs to C,

2. Suzy is in C,

3. Suzy belongs to the set of all cows,

4. Suzy is a cow.

But the third reading, although correct, is very stupid, because
there is no reason to say “Suzy is a member of the set of all cows”
when you can say the same thing in a much shorter and simpler
way by saying “Suzy is a cow”.

– Similarly, you can read “Suzy/∈ C in any of the following ways:

1. Suzy does not belong to C,

2. Suzy is not in C,

3. Suzy does not belong to the set of all cows,

4. Suzy is not a cow.

And the third reading, though correct, sounds silly, so you would
never say it that way.

• Here is another example.

– “IN”, as we know, is the set of all natural numbers. So, to say
that 3 is a natural number we can equally well say “3 ∈ IN”.

– You can read “3 ∈ IN in any of the following ways:

1. 3 belongs to IN,

2. 3 is in IN,

3. 3 belongs to the set of all natural numbers,

4. 3 is a natural number.
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But the third reading, although correct, is very stupid, because
there is no reason to say “3 is a member of the set of all natural
number” when you can say the same thing in a much shorter and
simpler way by saying “3 is a natural number”.

Problem 17. For each of the following formulas,

(a) translate the formula into English,

(b) indicate whether it is true or false.

Give the best, most natural English translation. For example, the formula
“1 ∈ IN” could be translated as “1 belongs to the set of natural numbers”,
but this sounds very awkward. A much better way to say the same thing in
English is “1 is a natural number”, so this translation is to be preferred.

1. −3 ∈ IN,

2. 0 ∈ IN,

3. 0 /∈ Z,

4. 0 ∈ Z,

5. −3 ∈ IR,

6. 0 ∈ IR,

7. 0 /∈ IR,

8. 0 ∈ IR,

9. 0 ∈ Q,

10. 3 ∈ Q,

11. −3 ∈ Q,

12. 237
42

∈ Q,

13.
√
2 ∈ Q,

14.
√
2 /∈ Q,

15. π ∈ Q.
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3.4.6 Proof of the irrationality of
√
2

As explained before, we could state the theorem on the irrationality of
√
2

by saying that “
√
2 is irrational”. This, however, would mean that there is

a “number
√
2”, i.e., a number whose square is 2. But the issue whether

such a number exists is different from the one that concerns us here, namely,
whether there exists a rational number r such that r2 = 2. So I prefer to
state the theorem in a way that does not imply any a priori commitment to
the existence of a “number” r such that r2 = 2.

And, before we give the proof, we introduce a few concepts and state
some facts that will be used in the proof, (These facts will be proved later in
the course.)

THE DEFINITION OF “EVEN” AND “ODD”
INTEGERS

Definition 12. Let a be an integer. We say that a is even if it is
divisible by 2. And we say that a is odd if it is not even.

The integers 1 are −1 are factors of every integer, because if n ∈ Z then
n = n× 1 and n = (−n)× (−1), so n is divisible by 1 and by −1. So 1 and
−1 are not very interesting factors, because they are always there. So we
refer to 1 and −1 as the trivial factors of an integer.

THE DEFINITION OF “COPRIME INTEGERS”

Definition 13.

• Let a, b be integers. We say that a and b are coprime if they do
no have any nontrivial common factors.

• We write “a ⊥ b” to indicate that a and b are coprime.

• In formal language, if a ∈ Z and b ∈ Z, then a ⊥ b if

∼ (∃k ∈ Z)(k|a and k|b and k 6= 1 and k 6= −1) .

Example 9. The integers 12 and 35 are coprime. Indeed:

• The factors of 12 are 1, −1, 2, −2, 3, −3, 4, −4, 6, −6, 12 and −12.
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• The factors of 35 are 1, −1, 5, −5, 7, −7, 35 and −35.

So the only common factors are 1 and −1, i.e., the trivial factors. Hence 12
and 35 are coprime. �

3.5 The proof of the irrationality of
√
2

Now, finally, we are ready to prove that
√
2 is irrational.

We are going to use two facts:

Fact 1. Every rational number is equal to a quotient m
n
of two co-

prime integers.

Fact 2. The product of two odd integers is odd.

Example 10. Here are some examples to illustrate what Fact 1 means:

• let a = −36
22

. The integers −36 and 22 are not coprime, because they
are both divisible by 2. But we can factor out the 2, and get a = −18

11
.

Now the numerator −18 and the denominator 11 are coprime.

• let a = 630
840

. The natural numbers 630 and 840 are not coprime, because
they are both divisible, for example, by 2. We can factor out the 2,
and get a = 315

420
. The numerator 315 and the denominator 420 are not

yet coprime, because they are both divisible, for example, by 3. We
can factor out the 3, and get a = 105

140
. The numerator 105 and the

denominator 140 are not yet coprime, because they are both divisible,
for example, by 5. We can factor out the 5, and get a = 21

28
. The

numerator 21 and the denominator 28 are not yet coprime, because
they are both divisible by 7. We can factor the common factor 7 and
we get, finally, a = 3

4
. And now the numerator 3 and the denominator

4 are coprime. �

Theorem 4. There does not exist a rational number r such that r2 = 2.

Proof. We give a proof by contradiction .

Assume that there exists a rational number r such that r2 = 2.

Pick one such number and call it r. (Here we are using Rule ∃use.)
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Using the fact that r ∈ Q, we may pick integers m,n such that

(1) n 6= 0,

(2) r = m
n
,

(Here we are using again Rule ∃use.)

Using Fact 1, we may actually choose m,n such that

(3) m and n are coprime.

Since r2 = 2, we have m2

n2 = 2.

Therefore m2 = 2n2.

So m2 is even.

But then m is even. (Reason: Assume25 that m is not even. Then m
is odd. So by Fact 2, m2 is odd. But we have proved that m2 is even.
So m2 is not odd. Therefore m2 is odd and m2 is not odd, which is a
contradiction.)

Since m is even, m is divisible by 2, that is, (∃k ∈ Z)m = 2k.

So we may pick an integer k such that m = 2k.

Then m2 = 4k2.

But m2 = 2n2.

Hence 2n2 = m2 = (2k)2 = 4k2.

Therefore n2 = 2k2.

So n2 is even.

But then n is even. (Reason: Assume26 that n is not even. Then n
is odd. So n2 is odd by Fact 2. But we have proved that n2 is even.
So n2 is not odd. Therefore n2 is odd and n2 is not odd, which is a
contradiction.)

25Notice that we have a proof by contradiction within our main proof by contradiction.
26Another proof by contradiction !
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So m is even and n is even.

Therefore m and n are divisible by 2.

So m and n have a nontrivial common factor.

Hence m and n are not coprime .

But m and n are coprime

So m and n are coprime and m and n are not coprime , which is a con-
tradiction.

So the assumption that there exists a rational number r such that r2 = 2 has
led us to a contradiction,

Therefore there does not exist a rational number r such that r2 = 2 .Q.E.D.

3.6 More irrationality proofs

We now use the same technique to prove that
√
3 is irrational. The key point

here is to realize that “even vs. odd” now has to be replaced by “divisible by
3 vs. not divisible by 3”. And, in order to do the crucial step (the analogue
of “if m2 is divisible by 2 then m is divisible by 2”) we need a generalization
of Fact 2:

Fact 3. If p is a prime number, then the product of two integers that are not
divisible by p is not divisible by p either.

(We will prove Fact 3 later.)

Theorem 5. There does not exist a rational number r such that r2 = 3.

Proof. We want to prove that ∼ (∃r ∈ Q)r2 = 2. We will do a proof by
contradiction .

Assume that (∃r ∈ Q)r2 = 2, i.e., there exists a rational number r such
that r2 = 3.

Pick one such number and call it r.
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Using the fact that r ∈ Q, we may pick integers m,n such that

(1) n 6= 0,

(2) r = m
n
,

Then, using Fact 1, we can actually choose m,n so that

(3) m and n are coprime.

Since r2 = 3, we have m2

n2 = 3.

Therefore m2 = 3n2.

So m2 is divisible by 3.

But then m is divisible by 3. (Reason: By Fact 3, if m was not divisible
by 3, it would follow that m2 is not divisible by 3 either. But m2 is
divisible by 3, and we got a contradicition.)

Since m is divisible by 3, we may pick an integer k such that m = 3k.

Then m2 = 9k2.

But m2 = 3n2.

Hence 3n2 = 9k2, so
n2 = 3k2 . (3.16)

So n2 is divisible by 3.

But then n is divisible by 3. (Reason: By Fact 3, if n was not divisible
by 3, it would follow that n2 is not divisible by 3 either. But n2 is
divisible by 3, and we got a contradicition.)

So 3 is a factor of m and 3 is a factor of n.

Hence m and n have a nontrivial common factor.

So m and n are not coprime.

But m and n are coprime.
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Therefore m and n are coprime and m and n are not coprime , which
is a contradiction,

So the assumption that there exists a rational number r such that r2 = 3 has
led us to a contradiction,

Therefore there does not exist a rational number r such that r2 = 3 .Q.E.D.

3.6.1 What happens when you make a mistake in a proof

Can we do the same that we did before to prove the following theorem?

THEOREM: There does not exist a rational number r such that r2 = 4.
Proof. We will do a proof by contradiction .

Assume that there exists a rational number r such that r2 = 4.

Pick one such number and call it r.

Using Fact 1, we may pick integers m,n such that

(1) n 6= 0,

(2) r = m
n
,

(3) m and n have no nontrivial common factors.

Since r2 = 4, we have m2

n2 = 4.

Therefore m2 = 4n2.

So m2 is divisible by 4.

But then m is divisible by 4. (Reason: By Fact 3, if m was not divisible
by 4, it would follow that m2 is not divisible by 4 either. But m2 is
divisible by 4, and we got a contradicition.)

Since m is divisible by 4, we may pick an integer k such that m = 4k.

Then m2 = 16k2.

But m2 = 4n2.

Hence n2 = 4k2, so
n2 = 3k2 . (3.17)
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So n2 is divisible by 4.

But then n is divisible by 4. (Reason: By Fact 3, if n was not divisible
by 4, it would follow that n2 is not divisible by 3 either. But n2 is
divisible by 4, and we got a contradicition.)

So 3 is a factor of m and 4 is a factor of n.

Hence m and n have a nontrivial common factor.

So m and n are not coprime.

But m and n are coprime.

Therefore m and n are coprime and m and n are not coprime , which
is a contradiction,

So the assumption that there exists a rational number r such that r2 = 4 has
led us to a contradiction,

Therefore there does not exist a rational number r such that r2 = 4 .Q.E.D.

Same proof, right?

WRONG!!!!!

What is wrong here?

1. The result is false. It is not true that there does not exist a rational
number r such that r2 = 4. Indeed, if we take r = 2 then r is ratinal
and r2 = 4.

2. Since the conclusion of the proof is false, the proof itself must be wrong.
That is, whoever wrote this proof must have cheated27 in some step.

In our case, Fact 3 explicitly says that “if p is prime then if a is not
divisible by p it follows that a2 is not divisible by p”. So we are allowed
to apply Fact 3 if p is prime, but we are not allowed to apply it if p is
not prime.

27Nothing personal here. “Cheat” means “violate the rules.” Of course, I haven’t told
you yet what the rules are, but let me anticipate one of them. You are allowed to use
a result that has been proved, but you are now allowed to make up a statement
that has not been proved and use it as if it was true.
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So the two steps where we applied Fact 3 are wrong. In those steps,
we cheated, by violating the rules.

The general principle is this: If a proof is correct then you
can be sure that the conclusion is true.

And another way to say that is this: if the conclusion of a proof is
false, then the proof must be wrong. There has to be a mistake
in the proof itself.

So, if I give you a proof of a conclusion that is false, you have to be able
to find where in the proof the author cheated. I will not be satisfied with a
statement such as “the proof is wrong because the conclusion is false.” I will
want to know where in the proof a mistake was made.

Consider the following analogy: If I am trying to drive to Boston and end
up in New York, then of course I can conclude thta I did something worng.
But I will want to know what I did wrong, where I made a wrong turn. The
same happens with proofs.

3.6.2 More complicated irrationality proofs

I hope it is clear to you that the same method, exactly, will apply to prove
that

√
5,

√
7,

√
11, and, more generally,

√
p for any prime number, is irra-

tional.
Now let us try a more complicated case. Let us prove that

Theorem 6. There does not exist a rational number r such that r2 = 12.

Remark 3. The number 12 is not prime. (Actually, 12 = 4 × 3.) So we
cannot apply Fact 3 with 12 in the role of p.

Proof. We will do a proof by contradiction .

Assume that there exists a rational number r such that r2 = 12.

Pick one such number and call it r, so r2 = 12..

Using the fact that r ∈ Q, we may pick integers m,n such that

(1) n 6= 0,

(2) r = m
n
,
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Then, using Fact 1, we may pick m,n such that

(3) m and n are coprime.

Since r2 = 12, we have m2

n2 = 12.

Therefore m2 = 12n2.

Hence m2 = 3× 4n2.

So m2 is divisible by 3.

But then m is divisible by 3. (Reason: By Fact 3, if m was not divisible
by 3, it would follow that m2 is not divisible by 3 either. But m2 is
divisible by 3, and we got a contradicition.)

Since m is divisible by 3, we may pick an integer k such that m = 3k.

Then m2 = 9k2.

But m2 = 12n2.

Hence 12n2 = 9k2, so
4n2 = 3k2 . (3.18)

So 4n2 is divisible by 3.

But then n is divisible by 3. (Reason: By Fact 3, assume n is not
divisible by 3; then by Fact 3 n2 is not divisible by 3; since 4 is not
divisible by 3, another application of Fact 3 tells us that 4n2 is not
divisible by 3. But 4n2 is divisible by 3, so we got a contradiction.)

So 3 is a factor of m and 3 is a factor of n.

Hence m and n have a nontrivial common factor.

So m and n are not coprime.

But m and n are coprime.

Therefore m and n are coprime and m and n are not coprime , which
is a contradiction,

So the assumption that there exists a rational number r such that r2 = 12
has led us to a contradiction,
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Therefore there does not exist a rational number r such that r2 = 12 .Q.E.D.

Problem 18. Prove that each of the following numbers is irrational:

1.
√
5,

2. 3
√
5,

3. 3
√
9,

4.
√
28,

5.
√

2 +
√
2,

6.
√

2
3
,

7.
√

27
31
. �

Problem 19. Prove or disprove28 each of the following statements:

1. The sum of two rational numbers is a rational number.

2. The product of two rational numbers is a rational number.

3. The sum of two irrational numbers is an irrational number.

4. The product of two irrational numbers is an irrational number.

5. The sum of two irrational numbers is a rational number.

6. The product of two irrational numbers is a rational number.

7. The sum of a rational number and an irrational number is an irrational
number.

8. The product of a rational number and an irrational number is an irra-
tional number. �

Problem 20.

I. Explain why the following “proofs” that
√
2+

√
3 and

√
6 are irrational

(in which we are allowed to use the facts that
√
2 and

√
3 are irrational)

are wrong:

28To disprove a stetement means “to prove that the statement is false”. For example,
when we proved that 1 is not even we disproved the statement ‘1 is even”.
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1. Proof that
√
2 +

√
3 is irrational:

We know that
√
2 is irrational.

We know that
√
3 is irrational.

Hence the sum
√
2 +

√
3 is irrational. Q.E.D.

2. Proof that
√
6 is irrational:

We know that
√
2 is irrational.

We know that
√
3 is irrational.

Hence the product
√
2.
√
3 is irrational.

So
√
6 is irrational. Q.E.D.

II. Give correct proofs that
√
2 +

√
3 and

√
6 are irrational. �

Problem 21. Prove that
√
2 + 3

√
2 is irrational. �

Problem 22. Prove that
√
2+

√
3+

√
5 is irrational. (NOTE: This requires

some hard thinking on your part.) �

Problem 23. Prove that
√
2 +

√
3 +

√
5 +

√
7 is irrational. (NOTE: This

requires quite a lot of thinking on your part.) �

Problem 24. Prove that, if n ∈ IN, and p1, p2, . . . , pn are n distinct primes,
then

√
p1 +

√
p2 + · · ·+√

pn is irrational. (NOTE: This is very difficult.) �

3.7 A general theorem on irrationality of square roots

After having proved that various numbers such as
√
2,

√
3,

√
5,

√
28,

√
2
3
,

√
27
31

are irrational, can we prove once and for all a general theorem that will

include all these cases? The answer is “yes”, and here is the theorem. Notice
that all the irrationality results about square roots that we have proved
before follow easily from this theorem. (For example: if r = 2, then r = 2

1

and 2 ⊥ 1, so Theorem 7 tells us that
√
r is irrational, because 2 is not the

square of an integer; similarly, if r = 2
3
, then Theorem 7 tells us that

√
r is

irrational, because 2 ⊥ 3 and 2 and 3 are not squarea of integers.)

Theorem 7. Let r be a rational number written as a quotient m
n
, where m

and n are coprime integers and n > 0. Then either
√
r is irrational or both

m, n are squares of integers.

The key fact that will be used in this proof is the following
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Fact 4. If a, b, c are integers such that c|ab and c ⊥ b, then c|a. (That is, if
c divides ab and is coprime with b, then c divides a.

Rough idea of the proof of Fact 4. We can write a, b, c as products of primes:
a = p1.p2. · · · .pn, b = q1.q2. · · · .qm, c = r1.r2. · · · .rk. Then the expression of
ab as a product of primes is

ab = p1.p2. · · · .pn.q1.q2. · · · .qm . (3.19)

Since c|ab, all the primes rj occur in the right-hand side of (3.19). But c ⊥ b,
so none of the rj is a qj. It follows that all the rj are p’s i.e., factors of a, so
c|a.

This argument is not completely rigorous. I will give you a rigorous—and
much more elegant—proof later.

Proof of Theorem 7:

We will prove that if
√
r is rational then both m, n are squares of integers.

Assume
√
r ∈ Q.

Then we can write
√
r = p

q
, where p, q are integers, and q 6= 0.

Furthermore, in view of Fact 1, we can actually choose p and q to be
coprime.

We then have
p2

q2
=
m

n
,

so
p2n = mq2 .

So n|mq2. But n ⊥ m, so by Fact 7 n|q2.

Also, q2|p2n.

But q2 ⊥ p2. (Reason: Suppose q2 and p2 were not coprime. Then they
would have a common factor k such that k > 1. And k would have a
prime factor u. Then u is prime and divides both q2 and p2. By Fact
3, u divides q and u divides p, so p and q are not coprime. But p and
q are coprime, so we get a contradiction.)

Since q2|p2n and q2 ⊥ p2, it follows that q2|n.
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So q2 divides n, n divides n are natural numbers.

Therefore n = q2.

Since n = q2 and p2n = mq2, it follows that p2n = mn.

So p2 = m.

We have shown that m = p2 and n = q2. Hence both m and n are
squares of integers.

We have shown that if
√
r is rational then m and n must be squares of

integers. So either m and n are squares of integers or r is irrational.Q.E.D.
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4 What is a proof, really?

THIS SECTION IS STILL BEING WRITTEN. WHEN

IT IS FINISHED IT WILL BE INCLUDED IN THESE

NOTES.

4.1 Analysis of the proof of Theorem 1

THIS SECTION IS STILL BEING WRITTEN. WHEN

IT IS FINISHED IT WILL BE INCLUDED IN THESE

NOTES.
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5 The languages of mathematics: formal, nat-

ural, and semiformal

In these notes, we will be talking mostly about math-

ematical objects, that is, numbers of various kinds

(natural numbers, integers, rational numbers, real num-

bers, complex numbers, integers modulo n, etc.), sets,

functions, relations, graphs, geometric objects (such as

points, lines, segments, angles, circles, planes, curves and

surfaces of various kinds, etc.), and many other kinds of

objects (such as groups, rings, fields, algebras, modules,

vector spaces, manifolds, bundles, Lie groups, etc.) that

mathematicians have invented and you will learn about

in more advanced courses.

And we will talk about these mathematical objects us-

ing mathematical language. But mathematical lan-

guage is a special kind of language, in many ways similar

to other languages such as English, and in many ways

different. So, in order to talk about mathematical lan-

guage we will want to say a few words about language in

general, so that we can explain what makes mathematical

language special.

Mathematical language, as commonly used, is semi-

formal language, that is, a mixture of formal lan-

guage and the natural language (English, Chinese,
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French, whatever) that one uses in a particular country.

(Formal lamguage is a language consisting entirely of for-

mulas. For example, the statement “A = πR2” is an

expression in formal language.)

For example, when we say

from the facts that 2+2 = 4 and 4+2 = 6 we deduce that (2+2)+2 = 6

(5.20)

this is a mixture of formal mathematical language and

English. (The formal language part consists of the for-

mulas “2 + 2 = 4”, “4 + 2 = 6”, and “4 + 2 = 6”. The

English part is the rest.)

If we wanted to say the same thing in French, we would

say

des faits que 2+2 = 4 et 4+2 = 6 on deduit que (2+2)+2 = 6 .

(5.21)

Notice that the formal language part does not

change. That’s because formal language is uni-

versal. The formula “2 + 2 = 4” is exactly the same in

English, French, Chinese, or any other language.

As we will see in the course, it is possible to for-

malize mathematics fully, that is, to develop a for-

mal language into which we can translate every mathe-

matical statement.

For example, statement (5.20) would become, in purely
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formal language:

(2 + 2 = 4 ∧ 4 + 2 = 6) =⇒ (2 + 2) + 2 = 6 . (5.22)

And, once you get to this level, the texts you get are no

longer in English or Franch or Chinese, because formal

language is the same everywhere, exactly as the

formula “1 + 1 = 2’ is the same everywhere and can be

understood by all people, no matter what language they

speak.

This means that if we could write all of mathemat-

ics in formal language, we would have a language that

permits people of all nationalities, speaking all kinds of

lamguages, to communicate easily: if a mathematician

who speaks Chinese says something, and a mathemati-

cian who speaks English does not understand, then all

these two mathematicians have to do is switch to formal

language, and then they would have no problem commu-

nicating.

Formal language has other advantages that we will talk

about soon. So you would think that mathematicians

must use formal language all the time. But in fact we do

not. We use a semiformal language which is a mixture of

formal language and our own natural languages, because

formal language is too dry and to hard to read. But

formal language remains the means of communication of
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last resort: if I don’t understand something you wrote,

then I would ask you to say it in formal language. I you

cannot say it in formal language, then what you wrote is

meaningless. If you can say it in formal language, then

I will understand what you said, and I will be able to

decide if it is right or wrong.

Example 11. Suppose you are trying to define “prime

number”, and write “a prime number is a number that is

only divisible by 1 and itself”. Then I do not understand

what you are saying, so I cannot tell if it is right or wrong.

Why do I not understand?

• Fisrt of all, I do not understand what “number”

means. There are lots of different kinds of num-

bers: natural numbers, integers, rational numbers,

real numbers, complex numbers, integers modulo n,

etc. When you say “number”, which one do you

mean?

• Also: what does “only divisible” mean? You may

say that when yoy write “p is only divisible by 1 and

itself”, what you mean is that “the only factors of p

are 1 and p”. But then I would reply: “so 3 is not

prime, because the factors of 3 are 3, 1, −1 and −3,

so it’s not true that the only factors are 1 and 3; so

3 is not prime.” Then you would probably reply: “I



Math 300, Fall 2019 69

did not mean to count negative factors as factors”,

And I would aswer: “why didn’t you say that?”

If I ask you to write your statement in formal language,

then that will force you to make your meanings precise.

For example, you will write something like29

if p ∈ IN , then p is prime if (∀k ∈ IN)
(

k|p =⇒ (k = 1∨k = p)
)

.

(5.23)

This is now completely clear, so at this point I will finally

have understood what you are saying. And then I will be

able to tell if this is right or wrong.

The answer is: as a definition of “prime number”, this

is wrong, because 1 is not prime, but according to (5.23)

1 is prime.

But we can make it right by writing:

if p ∈ IN , then p is prime if p > 1∧(∀k ∈ IN)
(

k|p =⇒ (k = 1∨k = p)
)

.

(5.24)

5.1 Things and their names

In any language, whether it is English, French, Russian,

Spanish, Chinese, or formal or semiformal mathematical
29This is not yet a fully formal definition. To make it fully formal we need to introduce a

symbolic way to say “p is prime”. We can do this by using “P (x)” for “x is prime”, and then

your statement would become: (∀p ∈ IN)

(

P (p) ⇐⇒ (∀k ∈ IN)
(

k|p =⇒ (k = 1∨k = p)
)
)

.

This is not yet a correct definition of “prime number” but at least it is pefectly clear.



Math 300, Fall 2019 70

language, we talk about things (objects, entities), and

in order to do that we give them names.
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THINGS

In these notes, the word thing refers to an ob-

ject of any kind: a concrete inanimate material

object such as a table or a molecule or a planet,

a “living thing” such as a plant, an animal, a per-

son, or an amoeba, or an abstract thing such as a

mathematical object.

So, in these notes, Mount Everest is a thing, and

the chair on which you are sitting is a thing, and a

book is a thing, but so are a giraffe, a spider, and

you, and I, and my uncle Jim, and the number

four, and the set IN of all natural numbers.

Some students don’t like using the word “thing” to

refer to people, perhaps because they are thinking

that “people are not things”. My answers to that

are:

1. We can use words in any way we like, as long

as we do it consistently. So in this course we

can decide how to use the word “thing”, and

there should be no problem as long as what

we mean is clear to everybody.

2. We often do talk about “living things”, and

that includes people.

3. If you don’t like using the word “thing” in this

way, there is a word that’s perfect for you: you

can talk about “entities” instead. An entity is

anything that exists. It can be a table, a river,

a planet, an atom, a cell, a plant, a giraffe, a

person, a number, a triangle, a matrix, a set,



Math 300, Fall 2019 72

5.1.1 Giving things individual names

The simplest way to give names to things is to give each

thing an individual name, as when you call people with

names such as “Mary”, “John”, or “George Washing-

ton”, you give cities names such as “New York City”,

“Paris”, or “London”, or you give mountains names such

as “Mount Everest” or “Mount Aconcagua”.

But this way of naming things is not very convenient,

because in our daily life we have to talk about an enor-

mous number of things of many different kinds, and it

would be truly impossible to give an individual name to

each one.

Just imagine if every fork, every knife, every spoon,

every plate, every glass, every cup, every napkin, every

table, every pencil, every pen, every cell phone, every

toothbrush, every animal, every plant, every cell in ev-

ery person’s or animal’s or plant’s body, every molecule

and every atom in the Universe, every electron and ev-

ery proton and every neutron and every particle of every

kind, had to have its own individual name, and you had

to know the name of each of those things before you can

talk about it! Imagine how difficult life would be if every

time you want to ask a waiter for a spoon you had to find

out first the name of that particular spoon!
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5.1.2 Variable noun phrases

So languages have developed a special device for naming

things without having to give each individual thing its

own name. We do this by using variables, that is, noun

phrases that can be temporarily designated to stand for

a particular thing but can then be re-used, as needed,

to stand for a different thing.

NOUN PHRASES

A noun phrase is a word or phrase that stands

for or is the name of something or somebody.

For example: “he”, “she”, “the giraffe”, “my un-

cle Jimmy’, “Mount Everest”, “the pencil”, “the

Math 300 final exam”, “the table that I bought

yesterday”, “the President of the United States”,

“Mary”, “New York City”, “the most expensive

restaurant in New York City”, “the owner of the

most expensive restaurant in New York City”, are

all noun phrases.

Example 12.When I say “I am going to open the door

and let you in”, the noun phrases “I”, “the door”, and

“you” stand, respectively, for the speaker, a door, and

the person that the speaker is talking to. But later, if

somebody else says the same thing to somebody else,
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the words “I”, “the door”, and “you” will stand for two

different people and a different door.

These noun phrases are variables: at each particular

time they are used they stand for some definite thing or

person, called the referent, or the value of the variable.

In each particular instance, it must be clear what the

value is. (For example, if you and I are on a beach, and

there is no door in sight, then when I say “I am going to

open the door and let you in” you will not understand

what I am talking about30.). �

Variable noun phrases are re-usable: after I

have used “the door” to refer to one particular door, I

may use “the door” again later to refer to a different

door.

Example 13. In a court of law, the noun phrase “the

defendant” is used as a variable. When a trial begins,

someone announces in some way that, for the duration of

this trial, the words “the defendant” will refer to a certain

specific person. Then, during the trial, everybody refers

to that person as “the defendant”. When the trial is over,

the variable “the defendant” becomes free, that is, not

attached to any particular person, and is free to be used
30Unless my statement is part of some larger context that makes the value of the noun

phrase “the door” clear. For example, I could be telling you that later, when we get home,
I will open the door and let you in. In that context, the value of “the door” is clear.
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to refer to a new defendant when a new trial begins. �

Example 14. When you buy a house, the contract will

probably contain a clause at the beginning declaring the

words “the buyer” to stand for you for that particular

contract. This means that the phrase “the buyer” is a

variable, whose value is you for this contract. Later, for

a new house sale, where the buyer is a different person,

a new contract will be signed, in which the phrase “the

buyer” has a totally different value. So the value of the

phrase “the buyer” is fixed only within a specific contract,

and changes when you go to another contract. �

5.1.3 Declaring the value of a variable

When we communicate our thoughts by speaking or writ-

ing, we use variable noun phrases all the time. But in

order to be understood we also have to communicate to

the reader or listener what each variable stands for each

time we use it. That is, we have to declare the values

of the variables we use. How is that done?

In English, values of variables are declared in dozens

of different ways. For example,

• Often, we first mention a person by his or her name,

and then when we use the pronouns “he”, “him”,

“his”, “she”, “her”, it is understood that the pronoun
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stands for that person. For example, suppose I write

George Washington was the first presi-

dent of the United States, and he served

as president for two terms. He was suc-

ceeded by John Adams, who served only

one term. When Adams ran for reelection

to a second term, he was the object of

malicious attacks by his opponents, and

eventually lost the election to Thomas

Jefferson.

In this text, the pronoun “he” appears three times.

The first two times, it clearly refers to George Wash-

ington, but the third time it refers to John Adams.

The mention of John Adams undoes the declaration

that “he” stands for George Washington, and assigns

the new value “John Adams” to the pronoun.

• The pronoun “I” is understood to stand for whoever

is speaking or writing.

• The pronoun “you” is understood to stand for who-

ever the speakers or writers are addressing themselves

to.

• Values of variables are often declared by pointing.

For example, if I say “please give me that book”,
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and I point to a book, then that book is the value of

the variable “the book”.

• Sometimes, the value of a variable is clearly deter-

mined by the fact that there is only one thing within

sight that the variable can stand for. For example,

if I say “please give me the book”, and there is only

one book within sight, then that book is the value.

• Often, the value of a variable is announced explicitly,

as in the examples we gave above of the variable “the

defendant” in a trial, and “the buyer” in a contract.

5.1.4 Using variables to name things in mathematical language

In mathematical language, it is customary to use letters

as variables. The most commonly used letters are

• lower case letters such as x, y, r, p, q, a, b, atc.,

• capital letters such as X , Y , P , Q, A, B, etc.,

• lower case Greek letters (α, β, ϕ, ψ, σ, etc.),

• capital Greek letters31 (Φ, Ψ, Σ, etc.).

But it is perfectly possible to use as variables other sym-

bols such as
31Some capital Greek letters are not used, because they are identical to their Latin

counterparts. For example, A (capital alpha) and B (capital beta) are identical to the
Latin A and B.
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• longer strings such as “abb” or “the number I have

been talking about”,

• other symbols, such as ⋄, or ♣.

Actually, you can use as a variable any symbol

or string of symbols you want (except only for

symbols such as =, <, ≤, >, ≥, +, ×, →, ⇒, ∧, ∨, ⇔,

etc., that already stand for something else), provided

that you declare its value (i.e. tell the reader clearly

what the symbol or string of symbols stands for).

Remark 4. The symbols π and e stand for the well

known real numbers 3.141592653589793238 . . . and 2.718281828459045235

respectively. But even those symbols can be (and some-

times are) used as variables with other values, provided

that the reader is told clearly what these symbols stand

for32. �

5.1.5 Free (i.e. open) vs. bound (i.e. closed) variables

A free variable (or “open variable”) in a text is a letter

(or string of symbols) that is “unattached”, in the sense

that it has not been assigned a value, and is therefore free

to be assigned any value we want.
32For example: the symbol π is sometimes used to stand for a permutation; the expres-

sion πk(S) stands for the k-th homotopy group of a space S; the letter e is sometimes used
for the charge of an electron.
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A bound variable (or “closed variable”) is a variable

that has been assigned a value.

For instance, suppose a student starts a proof by writ-

ing:

(*)
x2 = 1 + x .

or

(**) I am going to prove that x2 = 1 + x .

In these texts, the letter x is a free variable. The formula

says that “x-squared is equal to x + 1”, but it does not

tell us who x is. So we have no way to know whether the

formula is true or false. Therefore texts such as (*) or

(**) are unacceptable, because they are meaningless.

On the other hand, suppose a student writes

(***)
Let x = 1+

√
5

2 .

Then

x2 = 1 + x .

In this text, the phrase “let x = 1+
√
5

2 ” effectively

declares the variable x to have the value 1+
√
5

2 .

So, after this value declaration, “x” stands for the num-

ber 1+
√
5

2 .

Then the meaning of (***) is perfectly clear, so (***)

is acceptable, because in it the variable x is

used correctly: before it is used, a value for
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it is declared.

And then the meaning of (***) is perfectly clear: (***)

is just a roundabout way to say that

(1 +
√
5

2

)2

= 1 +
1 +

√
5

2
.

Once this particular use of the variable x is over, you

could, if you want to, use the same letter to represent

some other number or object of any kind. But in that

case it would have to be very clear that the old declaration

that x = 1+
√
5

2 no longer applies.

You could do this, for example, by saying something

like

(****)
Let x = 1+

√
5

2 . Then x2 = 1 + x.

Now suppose, instead, that x = 1−
√
5

2 . Then

it is also true that x2 = 1 + x.

In (****), the word “now” serves the purpose of telling

the reader that “we are starting all over again, and the

old declared value of x no longer applies.” (And the

word “instead”, which is unnecessary, strictly speaking,

reinforces that.)

5.1.6 Arbitrary things

There is another way to assign a value to a variable: we

can declare the value to be an arbitrary object of a
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certain kind.
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ARBITRARY THINGS

An arbitrary thing of a certain kind is a fixed thing

about which we know nothing, except that it is of that

kind. For example, an “arbitrary integer” is an integer

about which you know nothing other than that it is

an integer.

The way you should think about “arbitrary things ”

is as follows.

• Imagine that you are playing a game against some-

body (a friend, or a computer, or an alien from an-

other planet) that we will call the CAT (“creator

of arbitrary things”).

• The CAT’s job is as follows: every time you say

or write “let a be an arbitrary thing of such and

such kind,” the CAT picks one such thing, writes

down what that thing is on a piece of paper, puts

the paper in an envelope, and seals the envelope.

So, for example, if you say “let a be an arbitrary

natural number” then the CAT will pick a natural

number and write down what it is on a piece of

paper that will go inside the envelope.

• Later. after you have finished talking or writing,

you or the CAT will open the envelope, and you

will know who a really was.

• At that point,

– if what you said about a turns out to be true,

then you win, and the CAT loses.
– if what you said about a is not true, then the

CAT wins, and you lose.
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Example 15. Suppose you say:

Let n be an arbitrary integer.

What can you say after that, being sure that it is true?

Certainly, you cannot say that n = 2, because n could

be 1, or −7, or 25.

And you cannot say that n is even, because n could be

odd.

But here are a few things you can say:

• n = n.

• |n| ≥ 0.

• n is either a natural number, or the negative of a

natural number, or zero.

• n + n2 is even. (Reason: n is either even or odd. If

n is even, then n2 is also even, so the sum n + n2 is

even. If n is odd, then n2 is also odd, and the sum

of two odd integers is even, so n+ n2 is even. So, no

matter who n is, whether it is even, or odd, positive

or negative, yuuo can be sure that n + n2 is even.)

• n2 ≥ 0. (Reason: the square of every real number,

and in particular of every integer, is ≥ 0.)

• If n is even then n2 is divisible by 4. (This sentence

is true for every natural number n. Indeed, the sen-

tence is an implication: n is even=⇒ n2 is divisible
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by 4. The integer n could be even or odd, and you

have no control over that, because the CAT chooses

n, and the CAT can choose n any way he or she

wamts to. But: if n is odd, then the implication “n

is even=⇒ n2 is divisible by 4” is true, because the

premise “n is even” is false; and if n even then we

may pick an integer k such that n = 2k, and then

n2 = 4k2, so n2 is divisible; by 4, so the conclusion

“‘n2 is divisible by 4” is true. So the sentence is true

for every n.)

• n(n + 1)(n + 2) is divisible by 6.

• If n > 4 then n2 > n + 11. (Reason: as we will

see later, an implication “If A then B” is true if A

is false or if B is true. Using this: if n ≤ 4 then

the implication “if n > 4 then n2 > n + 11” is true

because “‘n > 4” is false. And if n > 4 then the

implication “if n > 4 then n2 > n + 11” is true

because n2 > n + 11’ is true.)

On the other hand, you cannot say “n2 > 0”, because if

you say that then the CAT will pick n to be 0, and you

lose. �

Example 16. Suppose you say:

Let m, n be arbitrary natural numbers.

What can you say after that, being sure that it is true?
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Certainly, you cannot say that m = n, because m and n

could be different.

And you cannot say that m 6= n, because m and n could

be equal.

And you cannot say that m > n, because m could be

smaller than n.

But here are a few things you can say:

• m+n ≥ 2. (Reason: m ≥ 1 and n ≥ 1, so m+n ≥
2.)

• m.n is a natural number.

• (m + n)2 = m2 + 2m + n2.

• (m + n)3 = m3 + 3m2n + 3mn2 + n3.

• m2 − n2 = (m− n)(m + n).

• n + n2 and m +m2 are even.

• Either m > n or m = n or m < n. �

5.1.7 Universal quantifiers and arbitrary things

Suppose you want to make sure (that is, prove) that

something is true for all the members of some set S. For

example, you may want to make sure that every student

in a class knows that there is an exam next Tuesday.

You could do this in two ways:
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1. You can use the exhaustive search method:

chack, one by one, all the memers of S, and verify

that they all know about the exam.

2. You can use general reasoning: you try to come

up with an argument that shows that every stu-

dent knows about the exam. (For example: maybe

you have sent an e-mail to a mailing list of all the

students, telling them about the exam. And yyou

are sure that all the students get the messages to

this mailing list, and that they all read them. Then

you can be sure that they all know about the exam.)

If the set S is very large then it may be very difficult

to use the exhaustive search method. And if the set is

infinite then using exhaustive search is impossible. And

this is the situation we encounter most of the time in

Mathematics: the sets S about we want to make sure that

statements of the form “P (x) is true for every member x

of S” are usually infinite, or finite but very large. So the

only way to prove that something is true for all members

of some set S is to use reasoning:

This is why, in order to prove universal sentences (∀x ∈
S)P (x), we use the following method:

• we imagine that we have an arbitrary member x of

S,
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• we reason about x, prove facts about x,

• and, maybe, eventually, we prove that P (x), the fact

about x that we wanted to make sure is true, is in-

deed true.

If we can do that for an arbitrarymember of S, then we

have established that P (x) is true for every x ∈ S, that is,

that (∀x ∈ S)P (x). (“(∀x ∈ S)P (x)” is a “universally

quantified sentence”. We will study such sentences in

great detail in Section 7, on page 95.)

The method for proving universally quantified sentences

(∀x ∈ S)P (x) by proving that P (x) is true for an arbi-

trary member x of S is the Rule for proving uni-

versal sentences, that we will call Rule ∀prove , This
rule will be discussed in section 7.5, on page 115 below.

Problem 25. Indicate whether each of the following

statements about n is true for an arbitrary integer n. If

the answer is “yes”, prove it. If the answer is “no”, prove

it by giving a counterxample, that is, a particular value

of n for which the statement is false.

1. n is even.

2. n is even or n is odd.

3. n is even and n is odd.
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4. n is even or n + 1 is even.

5. n(n + 1) is even.

6. n(n + 1)(n + 2) is divisible by 3.

7. n(n + 1)(n + 2) is divisible by 6.

8. n2 > 0.

9. n2 ≥ 0.

10. n(n + 1) ≥ 0.

11. (∀m ∈ Z)(n < m =⇒ n2 < m2).

12. (∀m ∈ Z)(n > m =⇒ n2 > m2).

13. (∀m ∈ Z)(n = m =⇒ n2 = m2).

14. (∀m ∈ Z)(n2 = m2 =⇒ n = m).
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6 Dealing with equality

Throughout these notes, the symbols “=” and “ 6=” will

be used.

• The symbol “=” is read as “is equal to”.

• The symbol “ 6=” is read as “is not equal to”.

The meaning of “=” in mathematics is quite simple: if

a and b are any two things, then “a = b” (read as “a is

equal to b”, or “a equals b”) means that a and b are the

same thing.

Example 17.

• The sentence “3 = 2 + 1” is read as “three is equal

to two plus one”.

• The sentence “3 = 2 + 2” is read as “three is equal

to two plus two”.

• The sentence “3 6= 2 + 1” is read as “three is not

equal to two plus one”.

• The sentence “3 6= 2 + 2” is read as “three is not

equal to two plus two”.

• The sentences “3 = 2+ 1” and “3 6= 2+ 2” are true.

• The sentences “3 = 2+ 2” and “3 6= 2+1” are false.

�
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6.1 The substitution rule (Rule SEE, a.k.a. Rule =use)
and the axiom (∀x)x = x

There are two basic facts you need to know about equal-

ity.

THE TWO BASIC FACTS ABOUT EQUALITY

First, there is the substitution rule, which tells you

that in a proof you can always “substitute equals for

equals”:

RULE SEE (substitution of equals for

equals): If in a step of a proof you have an equality

s = t or t = s, and in another step you have a sen-

tence P , then you can write as a step any statement

obtained by substituting t for s in one or several of

the occurrences of s in P .

The second thing you need to know is the following

axiom:

EQUALITY AXIOM (The “everything is equal

to itself” axiom):

x = x for every x .

Example 18. In the sentence “2 + 2 = 4”, the symbol

“2” occurs twice. Suppose you have “2 + 2 = 4” as one
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of the steps in a proof. And suppose that in another

step you have “1 + 1 = 2”. Then you can substitute

“1+1” for “2” in the first occurrence of “2” in the sentence

“2 + 2 = 4”, thus getting “(1 + 1) + 2 = 4”. Or you can

substitute “1+1” for “2” in the second occurrence of “2”

in “2 + 2 = 4”, thus getting “2 + (1 + 1) = 4”. Or you

can substitute “1 + 1” for “2” in both occurrences of “2”

in “2 + 2 = 4”, thus getting “(1 + 1) + (1 + 1) = 4”. Or

you can substitute “1+1” for “2” in none of occurrences,

in which case you get back “2 + 2 = 4”. �

Example 19.The following are true thanks to the equal-

ity axiom:

1. 3 = 3,

2. (345 + 1, 031)× 27 = (345 + 1, 031)× 27,

3. Jupiter=Jupiter33

4. π = π.

5. My uncle Billy=My uncle Billy. �

33But you have to be very careful here! There are at least three different things
named “Jupiter”: a planet, a Roman god, and a Mozart symphony. When you write
“Jupiter=Jupiter”, you have to make sure that the two “Jupiter” in the equation have
the same meaning. It would be false if you said that the planet Jupiter is the same as the
Roman god Jupiter!
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6.2 Equality is reflexive, symmetric, and transitive

Most textbooks will tell you that equality has the follow-

ing three properties:

I. Equality is a reflexive relation. That is:

for every x , x = x . (6.25)

II. Equality is a symmetric relation. That is:

for every x , y , if x = y then y = x . (6.26)

III. Equality is a transitive relation. That is:

for every x , y , z , if x = y and y = z then x = z

(6.27)

And, in addition, they will also tell you that the following

important property holds:

IV. If two things are equal to a third thing

then they are equal to each other. That is,

for every x , y , z , if x = z and y = z then x = y .

(6.28)

We could have put these properties as axioms, but we

are not doing that because all these facts can easily be

proved from our two basic facts about equality.
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Theorem 8. Facts I, II, III, and IV above follow from

the two basic facts about equality described in the box

on page 90 above.

Proof. Fact I is exactly our Equality Axiom, so you

don’t need to prove it.

And now I am doing to do the proof of Fact II for you.

So what you have to do is prove III and IV.

Proof of Fact II.

Let x, y be arbitrary.

Assume x = y.

We want to prove that y = x.

By the Equality Axiom, x = x.

Since we have “x = y”, Rule SEE tells us that,

in the sentence “x = x”, we can substitute “y”

for any of the two occurrences of x in “x = x”.

So we choose to substitute “y” for the first of the

two xs that occur in “x = x”.

This yields y = x .

Since we have proved that y = x assuming that x =

y, we have shown that

if x = y then y = x . (6.29)
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(This is because of Rule =⇒prove, discussed later in

these notes.)

Since we have proved (6.29) for arbitrary x, y, it follows

that

For all x, y, if x = y then y = x . (6.30)

(This is because of Rule ∀prove, discussed later in these

notes in section 7.5 on page 115.) This completes our

proof. Q.E.D.

Proof of Facts III and IV. YOU DO THEM.

Problem 26. Write proofs of Fact III and Fact IV,

following the model of the proof given here for Fact II.�
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7 Universal sentences and how to prove and

use them

A universal sentence is a sentence that says that

something is true for every object x of a certain kind.

For example, the sentence

every natural number is either even or odd (7.31)

says that every natural number has the property of being

even or odd.

So this is a universal sentence.

Other examples of universal sentences are:

• Every natural number is an integer.

• Every real number has a square root34.

• Every real number has a cube root35.

• If n is any natural number then n is even or odd. �

• Every cow has four legs.

• Every cow has nine legs36.

• All humans are thinking beings.

• All giraffes have a long neck.
34False!
35True!
36Sure, this one is false. But it is a universal sentence.
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• Every giraffe has a long neck.

• Every real number is positive37.

• Every natural number can be written as the sum of

three squares of integers38.

• Every natural number can be written as the sum of

four squares of integers39.

• Every integer is even40.

• If a, b, c are integers, then if a divides b and c it

follows that a divides b + c.

Universal sentences can always be rephrased is terms

of “arbitrary things”. For example, sentence (7.31) says

If n is an arbitrary natural number then n is either even or odd .

(7.32)

We can say this in a more formal (and shorter) way by

using the universal quantifier symbol:

∀
(This symbol is an inverted “A”. The symbol is chosen

to remind us that “∀” stand for “for all”.)
37This one is false.
38False again!
39This one, believe it or not, is true. But it is very hard to prove, and precisely for that

reason, if you are interested in mathematics, I recommend that you read the proof. It is
truly beautiful. The result is called “Lagrange’s four squares theorem”.

40Also false.
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Precisely, the symbol is used as follows:

• Using the universal quantifier symbol, we form re-

stricted universal quantifiers, that is, expres-

sions of the form

(∀x ∈ S) ,

where

– x is a variable,

– S is the name of a set.

• It is also possible to form unrestricted universal

quantifiers, that is, expressions of the form

(∀x) ,
where x is a variable,

• A restricted or unrestricted universal quantifier can

be attached to a sentence by writing it before the sen-

tence. This operation is called universal quan-

tification, and the result is a universally quan-

tified sentence.

• So,
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If S is a set, and P (x) is a statement involving
the variable x, then

(∀x ∈ S)P (x)

is a universally quantified sentence, obtained

by universally quantifying the sentence P (x).

If P (x) is a statement involving the variable x,
then

(∀x)P (x)

is a universally quantified sentence, obtained

by universally quantifying the sentence P (x).

7.1 How to read universal sentences

7.1.1 Sentences with restricted universal quantifiers

The universal sentence

(∀x ∈ S)P (x)

can be read as follows:

• for every member x of S, P (x) is true41,

or as

• for every member x of S, P (x),

or as
41See Remark 5 below.
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• for all members x of S, P (x) is true,

or as

• for all members x of S, P (x),

or as

• if x is an arbitrary member of S then P (x) is true,

or as

• if x is an arbitrary member of S then P (x) .

7.1.2 Sentences with restricted universal quantifiers

The universal sentence

(∀x)P (x)

can be read as follows:

• for every x, P (x) is true42,

or as

• for every x, P (x),

or as

• for all x, P (x) is true,

or as
42See Remark 5 below.
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• for all x, P (x),

or as

• if x is arbitrary then P (x) is true,

or as

• if x is arbitrary then P (x) .

7.1.3 A recommendation

Of all these ways of reading “(∀x ∈ S)P (x)” and “(∀x)P (x)”,
I strongly recommend the ones involving “ar-

bitrary” x, because once you get used to reading uni-

versal statements that way it becomes very clear how to

go about proving them.

Remark 5. If A is any sentence, then saying “A is true”

is just another way of asserting A. For example, saying

that

“all animals are made of cells′′ is true (7.33)

is just another way of saying

all animals are made of cells . (7.34)

Similarly, saying

P (n) is true (7.35)
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is just another way of saying

P (n) . (7.36)

This is why the sentence “(∀n ∈ Z)P (n)” can be read

either as “if n is an arbitrary integer then P (n) is true”,

or as “if n is an arbitrary integer then P (n)”. �

7.2 Using the universal quantifier symbol to write uni-
versal statements

7.2.1 What is formal language?

As we explained before, formal language is a language

in which you use only formulas, and no words.

For example, you know from your early childhood how

to take the English sentence “two plus two equals four”

and say the same thing in formal language. i.e., with a

formula. You just write

2 + 2 = 4 . (7.37)

We can say more complicated things in formal language

by introducing more symbols. For example, here is the

definition if “divisible” that we saw earlier:

DEFINITION Let a, b be integers. We say that a is

divisible by b (or that b is a factor of a) if there exists an

integer k such that a = bk. �
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Then, we can agree to introduce the new symbol “|”
to stand for “is a factor of”, and write

b|a (7.38)

instead of “b is a factor or a”, or “a is divisible by b”.

In particular, we can now say “x is even” in formal

language, as follows: “2|x”. So, for example the assertion

that “the sum of two even integers is even” becomes, in

formal language:

(∀a ∈ Z)(∀b ∈ Z)
(

(2|a ∧ 2|b) =⇒ 2|a + b
)

. (7.39)

Can you say more complicated things in formal lan-

guage? For example, can you rewrite the English sen-

tence

(#)

If we take any two real numbers and

compute the square of their sum, then

you get the same result as when you

add the squares of the two numbers

plus twice their product.

in formal language?

You know since high school that you can take a big

part of (#) and rewrite it in formal language. The trick

is to give names to the two integers that you want to

talk about. Then you can write
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(#1)
If we take any two real numbers and

call them a and b, then

(a + b)2 = a2 + b2 + 2ab ,

or

(#2)
If a, b are arbitrary real numbers,

then

(a + b)2 = a2 + b2 + 2ab .

Naturally, you could use any names you want, For exam-

ple, you could equally well have written

(#3)
If x, y are arbitrary real numbers,

then

(x + y)2 = x2 + y2 + 2xy .

or

(#4)
If we take any two real numbers and

call them x and y, then

(x + y)2 = x2 + y2 + 2xy .

Sentences (#1), (#2), (#3), (#4) are statements in semi-

formal language: they are a mixture of formal lan-

guage and ordinary English.
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These statements are universal sentences. And now

you have learned how to formalize43 universal state-

ments. So you can write

(#5) (∀a ∈ IR)(∀b ∈ IR)(a+b)2 = a2+b2+2ab .

or

(#6) (∀x ∈ IR)(∀y ∈ IR)(x+y)2 = x2+y2+2xy .

Statements (#5) and (#6) are formal sentences, that

is, formulas with no words.

7.2.2 The road to full formalization.

What we have done is get started moving towards full

formalization.

You started doing this in your childhood, when you

learned how to formalize “two plus two equals four” by

writing “2 + 2 = 4”.

And now you have learned how to formalize more com-

plicated sentences, Using the universal quantifier symbol,

you are now able to say many more things in formal lan-

guage.
43that is, how to say in formal language
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Example 20. Suppose you wanted to say “every natural

number is positive”. You can write

(∀n ∈ IN)n > 0 . (7.40)

This is a formula, that is, a sentence in formal language.

�

Example 21.Although we do not know yet how to write

something like

(#7)

If we have any two integers, when

say that the first one is divisible by

the second one what we mean is that

there exists an integer that multiplied

by the second one results in the first

one.

in full formal language, we are able, using what we know

so far, to go a long way, and rewrite (#7) in semiformal

language, with very few words, i.e., getting very close to

a fully formal sentence. We can write

(#8)
(∀a ∈ Z)(∀b ∈ Z)(“a|b” means

“there exists k such that k ∈ Z and

b = ak.”)

�

Example 22. Let us say “If a, b, c are integers, then

if a divides b and c it follows that a divides b + c” in

semiformal language.
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We can say:

(∀a ∈ Z)(∀b ∈ Z)(∀c ∈ Z)
(

if a|b and a|c then a|b+c
)

,

(7.41)

which is, again, a sentence in semiformal language. �

Later, when we learn how to say “means”, “there exists”,

“if . . . then” and “and”, we will be able to say (#8) and

(7.41) in fully formal language, as follows:

• We can translate (#8) into fully formal language as

(∀a ∈ Z)(∀b ∈ Z)(a|b⇐⇒ (∃k ∈ Z)b = ak) .

(7.42)

• We can translate (7.41) into fully formal language as

(∀a ∈ Z)(∀b ∈ Z)(∀c ∈ Z)
(

(a|b∧a|c) =⇒ a|b+c
)

,

(7.43)

7.3 Open and closed variables and quantified sentences

Let us recall that
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A free variable is a letter (or string of symbols)

that is “unattached”, in the sense that it has no

particular value, and is free to be assigned any

value we want.

A bound variable is a variable that has been as-

signed a specific value, by means of a value

declaration.

We can turn a free variable into a temporary

constant by declaring its value.

Let me add a couple of points to that:

• Free variables are also called open variables.

• Bound variables are also called closed variables.

(They are called “bound” variables because they are

“bound”, attached to a value, by contrast with free

variables, that are free to be assigned any value be-

cause they do not have a value already assigned to

them. And they are called “closed” because they are

not open to be assigned a value, since they already

have one.)

• A value declaration is valid until it ex-

pires. When the value declaration expires, the vari-

able becomes free again, and you can assign a new

value to it.
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Example 23. Here is an example of declaring a value for

a variable, and of making that declaration expire. You

could write:

1. Let x = 1+
√
5

2 .

2. Then x2 = 1 + x.

3. Now suppose, instead, that x = 1−
√
5

2 .

4. Then it is also true that x2 = 1 + x.

Here, step 1 assigns the value 1+
√
5

2 to the variable, so this

variable, which until then was open, is now attached to

the value 1+
√
5

2 , so x is bound, no longer free.

But then, in step 3, we are ssigning a new value to

x, which means that the previous value declaration has

expired. The fact that the previous value declaration has

expired is signaled by the word “now”’, and reinforced by

the word “instead”.

Notice that if you had written

1. Let x = 1+
√
5

2 .

2. Then x2 = 1 + x.

3. Let x = 1−
√
5

2 .

4. Then it is also true that x2 = 1 + x.

this would have been confusing for many readers, because
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they would have wondered: “wasn’t x equal to 1+
√
5

2 ?

How come suddenly it seems to have a different value?”

The words “now” and “instead” make it crystal clear to

the reader that the first value declaration has just expired

and we are free to assign to x a new value if we so desire.

�

7.4 A general principle: two rules for each symbol

Every time we introduce a new symbol, we need two rules

telling us how to work with it:

• We need a rule that tells us how to use statements

involving that symbol.

and

• We need a rule that tells us how to prove statements

involving that symbol.

Example 24. Let us look at the new symbol “|” (“di-

vides”) that we introduced in Part I of these notes. What

is the “use” rule’? What is the “prove” rule?

The “use” rule is:
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If you get to a point in a proof where you have

a statement

a|b ,
then you can go from this to

We may pick an integer k such that

b = ak .

And the “prove” rule is:

If you get to a point in a proof where you have

integers a, b, c and you know that

b = ak ,

then you can go from this to

a|b .
These rules are just another way of stating the definition

of “divides”. �

7.4.1 Naming sentences

Sentences are also things that we can talk about, so we

can give them names.

One common way mathematicians use to name sen-

tences is to give a sentence a capital letter name, such as

A, or B, or P , or Q, or S.
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So we could talk about the sentence “x eats grass” by

giving it a name, that is, by picking a capital letter and

declaring its value to be this sentence.

We could do this by writing

Let P be the sentence “x eats grass”.

However, there is a much more convenient way to do

this: If a sentence has an open variable, we

include this open variable in the name of the

sentence, thus signaling to the reader that the

sentence contains that open variable.

So, for example, a good name for the sentence “x eats

grass” could be P (x) (or A(x), or S(x), etc.). We could

declare the value of the variable P (x) by saying

(*) Let P (x) be the sentence “x eats

grass”.

An important convention about names of sentences is

this: suppose we want to talk about the sentence obtained

from P (x) by substituting (i.e., “plugging in”) the name

of a particular thing for the open variable x. If we already

have a name for that thing, say “a”, then the name of

the sentence arising from the substitution is P (a).

So, for example, after we make the value declaration

(*), then “P (Suzy)” is the name of the sentence “Suzy

eats grass”.
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What if you have a sentence with, say, two or more

open variables? You do the same thing: if, for example,

you want to give a name to the sentence “x told y that z

does not like w”, you can call that sentence P (x, y, z, w).

You could make the value declaration

Let P (x, y, z, w) be the sentence “x told y

that z does not like w”.”

And then,

• If you want want to talk about the sentence ”Alice

told Jim that Bill does not like Mary”, then that sen-

tence would have the name P (Alice, Jim,Bill,Mary).

• If you want want to talk about the sentence ”Al-

ice told Jim that Bill does not like her” (that is,

does not like Alice), that sentence would be called

P (Alice, Jim,Bill,Alice).

• If you want want to talk about the sentence ”Al-

ice told Jim that Bill does not like him” (that is,

does not like Jim), that sentence would be called

P (Alice, Jim,Bill, Jim).

• And, if, for some reason, you want to talk about

the sentence with two open variables ”x told y that

Bill does not like Mary”, that sentence would be

P (x, y, Jim,Mary).
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7.4.2 Universal sentences bound variables but at the end let them
free

If P (x) is a sentence with the open variable x, and C is

a set, then the sentence

(∀x ∈ C)P (x)

should be read as

Let x be an arbitrary member of C; then P (x) is

true; and now the value declaration of “x” expires,

and x is a free variable again.

Why do we want to do this?

The reason is that the value declaration (“Let x be an

arbitrary member of C”) was made for the sole purpose

of explaining which condition this arbitrary member of

C is supposed to satisfy. Once this has been explained,

there is no need to keep the variable x bound forever. It

is better to let it be free again, so that the next time we

need a variable for something, we can use x.

So, for example, when I explain to you that

(F) If x is an arbitrary integer then

(x + 1)2 = x2 + 2x + 1 ,

the important thing that I want you to remember is that

“if you take an integer, add one to it, and square the re-

sult, then what you get is the sum of the square of your
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integer, plus two times it, plus one”. There is no need

for you to remember, in addition, the name that I used

for that integer for the purpose of explaining Fact (F) to

you. You should not have to waste any time or effort

trying to remember “was that fact that was explained to

me about x? Or was it about y? Or was it about n?”

There is not need for you to remember that, because it

does not matter which variable was used. And,

more importantly: Fact (F) is not really about a

specific integer called x. It is a fact about

an arbitrary integer, and it does not matter

whether you call it x, or y, or z, or n, or

α, or β, or ⋄, or even “Suzy” or “my un-

cle Jimmy”. The letter x is used as a device

within the conversation in which you explain

Fact (F) to me, and once this conversation is

over we can forget about x.

Example 25. Suppose you have written, in a proof:

(∀n ∈ Z)n(n + 1) is even . (7.44)

Can you write, in the next step of your proof:

Since n(n + 1) = n + n2, it follows that n + n2 is

even. ?

The answer is no. Why? Because after the end of the

sentence (7.44), n is a free variable again, so it does not
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have a value, so when you use “n” in the next step, no-

body knows what you are talking about, so what you

wrote is meaningless, so it’s not acceptable.

Suppose you want to go from (7.44) to

(∀n ∈ Z)n + n2 is even . (7.45)

How can you do that? The answer is: you use the rules

for using and proving universal sentences. But you do

it correctly. And for that you need to read the next

section. �

7.5 Proving and using universal sentences (Rules ∀prove
and ∀use)

Now that we know that for every new symbol we intro-

duce we need a “use” rule and a “prove” rule, it is natural

to ask: What are the “use” rule and the “prove” rule

for the universal quantifier symbol ∀ ?”
Both are very simple, very natural rules.
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Here is the “use” rule:

The rule for using universal sentences
(Rule ∀use, also known as

the “universal specialization rule”)

• If you have proved

(∀x)P (x) ,

and you have an object called a, then you can go

to P (a).

• If you have proved

(∀x ∈ S)P (x) ,

and you have an object called a for which you know

that a ∈ S, then you can go to P (a).

The reason Rule ∀use is called called the universal spe-
cialization rule, is that the rule says that if a state-

ment is true in general (that is, for all things that belong

to some set S), then it is true in each special case (that

is, for a particular thing that belongs to S).

Example 26. If you know that (∀x)x = x, then you

can conclude from that, using Rule ∀use, that

3 = 3 ,
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and that

5 + 3 = 5 + 3 .

Example 27. Suppose you know that

(&) All cows eat grass.

and that

(&&) Suzy is a cow.

Then, from (&) and (&&) you can conclude, thanks to

the specialization rule, that

(&&) Suzy eats grass.

In formal language. you would say this as follows: Let

P (x) be the sentence “x eats grass”, and let C be the

set of all cows. Then P (Suzy) is the sentence “Suzy eats

grass”. And (&) says

(&’) (∀x ∈ C)P (x) ,

whereas (&&) says

(&&’) Suzy ∈ C.

So we are precisely in the situation where we can apply

the rule for using universal sentences, and conclude that

P (Suzy), that is that Suzy eats grass. �.

And here is the “prove” rule:
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The rule for proving universal sentences

• To prove (∀x)P (x), you start by writing

Let x be arbitrary,

and then prove P (x)

If you manage to do that, then you are allowed to
write

(∀x)P (x)

in the next step of your proof.

• To prove (∀x ∈ S)P (x), you start by writing

Let x be an arbitrary member of S,

and then prove P (x)

If you manage to do that, then you are allowed to
write

(∀x ∈ S)P (x)

in the next step of your proof.

This rule is also called the generalization rule, be-

cause it says that if you can prove a statement for an

arbitrary object that belongs to a set S then you can

“generalize”, i.e., conclude that the statement is true in

general, for all members of S.
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7.6 An example: Proof of the inequality x+ 1
x
≥ 2

Let us illustrate the use of the proof rules for universal

quantifiers with an example. We will first present a ver-

sion of the proof with lots of comments. The comments

are explanations to help the reader follow what is going

on, but are not really necessary for the proof. We will

then present another, much shorter version, in which the

comments are omitted.

Theorem 9. If x is a positive44 real number, then

x + 1
x ≥ 2. (In formal language: (∀x ∈ IR)(x > 0 =⇒

x + 1
x ≥ 2).)

PROOF, WITH LOTS OF COMMENTS. (The

comments are in Italics.)

The assertion we want to prove is a universal sen-

tence, so we are going to use Rule ∀prove. For that

purpose, we imagine we have in our hands an ar-

bitrary real number called x, and we work with that

number.

Let x be an arbitrary real number.

Now we want to prove that x > 0 =⇒ x + 1
x ≥

2. This is an implication. So we are going to
44The meaning of the word “positive” was discussed in Lecture 1, in a subsection called

“positive, negative, nonnegative, and nonpositive numbers”. As explained there, “posi-
tive” means “> 0”.
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apply Rule =⇒prove. For that purpose, we assume

that the premise of our implication is true, i.e.,

that x > 0. The reason for this is as follows:

x is an arbitrary real number, so x could be any

ral number, and in particular x could be positive,

negative, or zero. If x is not positive, then the

implication is true, because an implication whose

premise is false is true. So all we need is to look

at the cases when x > 0, and prove in that case

that x + 1
x ≥ 2.

Assume that x > 0.

We want to prove that

x +
1

x
≥ 2 . (7.46)

We will prove this by contradiction.

Assume that (7.46) is not true.

Then

x +
1

x
< 2 . (7.47)

We now use a fact from real number arith-

metic, namely, that if we multiply both sides

of a true inequality by a positive real num-

ber then the result is a true inequality, that
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is:

(∀a ∈ IR)(∀b ∈ IR)(∀c ∈ IR)
(

(a < b∧c > 0) =⇒ ac < bc
)

.

(7.48)

In our case. we can use Rule ∀use to plug

in x+ 1
x for a, 2 for b, and x for c in (7.48),

and get
(

x +
1

x
< 2 ∧ x > 0

)

=⇒
(

x +
1

x

)

x < 2x .

(7.49)

Since x + 1
x < 2 ∧ x > 0 is true (because

we are assuming that x + 1
x < 2 and that

x > 0), we can apply Rule =⇒use to con-

clude that
(

x+ 1
x

)

x < 2x. But
(

x+ 1
x

)

x =

x2 + 1, so we have shown that x2 + 1 < 2x.

Summarizing:

Since x > 0, we can multiply both sides of

(7.47) by x, getting

x2 + 1 < 2x . (7.50)

Now we use another fact from real number

arithmetic, namely, that if we add a real

number to both sides of a true inequality,

then the result is a true inequality, that is:

(∀a ∈ IR)(∀b ∈ IR)(∀c ∈ IR)(a < b =⇒ a+c < b+c) .

(7.51)
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In our case. we can use Rule ∀use to plug

in x2 + 1 for a, 2x for b, and −2x for c in

(7.51), and get

x2 + 1− 2x < 2x− 2x, . (7.52)

Since 2x − 2x = 0, we can conclude that

x2 + 1− 2x < 0. Summarizing:

We add −2x to both sides, and get

x2 + 1− 2x < 0 . (7.53)

But x2 + 1− 2x = (x− 1)2.

(This is easy to prove it. Try to do it.)

So

(x− 1)2 < 0 . (7.54)

Now we use a third fact from real number

arithmetic, namely, that the square of every

real number is nonnegative, that is:

(∀u ∈ IR)u2 ≥ 0 . (7.55)

We use Rule ∀use to plug in x− 1 for u, and

get

(x− 1)2 ≥ 0 . (7.56)

Next, we use a fourth fact from real number

arithmetic, namely, that if a real number is
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nonnegative then it it is not negative45, that

is:

(∀u ∈ IR)(u ≥ 0 =⇒∼ u < 0) . (7.57)

It then follows from (7.56) that

∼ (x− 1)2 < 0 . (7.58)

From (7.54) and (7.58), we get

(x− 1)2 < 0 ∧
(

∼ (x− 1)2 < 0
)

. (7.59)

So we have proved a contradiction.

We have proved that a world in which the in-

equality x+ 1
x > 2 is not true is an impossible

world. Hence

x + 1
x > 2.

We have proved that x+ 1
x > 2 assuming that x > 0.

Hence Rule =⇒prove allows us to conclude that

x > 0 =⇒ x +
1

x
≥ 2 . (7.60)

Finally, we have proved (7.60) for an arbitrary real num-

ber x. Hence

(∀x ∈ IR)(x > 0 =⇒ x +
1

x
≥ 2) . (7.61)

Q.E.D.
45Remember that: “positive” means “> 0”, “negative” means “< 0”, “nonnegative”

means “≥ 0”, and “nonpositive” means “≤ 0”.
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THE SAME PROOF, WITHOUT THE COM-

MENTS.

Let x be an arbitrary real number.

Assume that x > 0.

We want to prove that

x +
1

x
≥ 2 . (7.62)

Assume that (7.62) is not true.

Then

x +
1

x
< 2 . (7.63)

Since x > 0, we can multiply both sides of

(7.63) by x, getting

x2 + 1 < 2x . (7.64)

We add −2x to both sides, and get

x2 + 1− 2x < 0 . (7.65)

But x2 + 1− 2x = (x− 1)2. So

(x− 1)2 < 0 . (7.66)

Now we use the fact that the square of every

real number is nonnegative, that is:

(∀u ∈ IR)u2 ≥ 0 . (7.67)
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We use Rule ∀use to plug in x− 1 for u, and

get

(x− 1)2 ≥ 0 . (7.68)

Then

∼ (x− 1)2 < 0 . (7.69)

From (7.66) and (7.69), we get

(x− 1)2 < 0 ∧
(

∼ (x− 1)2 < 0
)

. (7.70)

So we have proved a contradiction.

Hence

x + 1
x > 2.

We have proved that x+ 1
x > 2 assuming that x > 0.

Hence Rule =⇒prove allows us to conclude that

x > 0 =⇒ x +
1

x
≥ 2 . (7.71)

Finally, we have proved (7.69) for an arbitrary real num-

ber x. Hence

(∀x ∈ IR)(x > 0 =⇒ x +
1

x
≥ 2) . (7.72)

Q.E.D.
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THE SAME PROOF, IN A MUCH SHORTER

VERSION.

Let x be an arbitrary real number.

Assume that x > 0. We want to prove that

x +
1

x
≥ 2 . (7.73)

Assume that (7.73) is not true. Then

x +
1

x
< 2 . (7.74)

Since x > 0, (7.74) impliues

x2 + 1 < 2x . (7.75)

Therefore

x2 + 1− 2x < 0 . (7.76)

But x2 + 1− 2x = (x− 1)2. So

(x− 1)2 < 0 . (7.77)

On the other hand.

(x− 1)2 ≥ 0 . (7.78)
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Clearly, (7.77) and (7.78) lead to a contradic-

tion.
Hence
x + 1

x > 2.

Therefore

(∀x ∈ IR)(x > 0 =⇒ x +
1

x
≥ 2) . (7.79)

Q.E.D.

7.6.1 A few more examples of proofs involving universal sentences

Theorem 10. If a, b are real numbers, then

ab ≤ a2 + b2

2
.

(In formal language: (∀a ∈ IR)(∀b ∈ IR)ab ≤ a2+b2

2 .)

PROOF. YOU DO IT

Problem 27. Prove Theorem 10.

Problem 28. Explain what is wrong with the following

proof of Theorem 10.

Take the inequality ab ≤ a2+b2

2 .

Multiplying both sides by 2, we get 2ab ≤ a2 + b2.

Subtracting 2ab from both sides, we get

0 ≤ a2 + b2 − 2ab .
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But a2 + b2 − 2ab = (a− b)2. So we have 0 ≤ (a− b)2 ,

which is true.

So the inequality checks out. Q.E.D.

Theorem 11. If x, α, β are positive real numbers

then

αx +
β

x
≥ 2
√

αβ .

(In formal language: (∀α ∈ IR)(∀β ∈ IR)(∀x ∈ IR)
(

(α >

0 ∧ β > 0 ∧ x > 0) =⇒ αx + β
x ≥ 2

√
αβ
)

.)

I am going to give you two proofs. The first one follows

the same pattern as the proof of Theorem 9. The second

one, much shorter, uses Theorem 9.

FIRST PROOF.

Let α, β, x be arbitrary positive real numbers46.

Let q = 2
√
αβ, so q2

4α = β..

Assume ∼ αx + β
x ≥ q.

Then αx + β
x < q.

Therefore αx2 + β < qx.

Hence αx2 − qx + β < 0.
46In this one step I am conflating six real steps: let α be an arbitrary real number, let

β be an arbitrary real number, let x be an arbitrary real number, assume α > 0, assume
β > 0, assume x > 0.
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But

αx2 − qx + β = αx2 − 2
√
αx

q

2
√
α
+ β

= αx2 − 2
√
αx

q

2
√
α
+
q2

4α
− q2

4α
+ β

=
(√

αx− q

2
√
α

)2

≥ 0 .

So we obtain a contradiction, and then we can con-

clude that αx + β
x ≥ q, i.e. that

αx +
β

x
≥ 2
√

αβ .

Q.E.D.

SECOND PROOF. Let us try to write αx + β
x as

p
(

u+1
u

)

for some positive u, and use the fact that u+1
u ≥

2. Let x = hu, where h and u are to be determined later.

Then αx + β
x = αhu + β

hu. If we could make αh = β
h ,

we would get

αx +
β

x
= αhu +

β

hu

= αhu + αh
1

u

= αh
(

u +
1

u

)

,
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as desired.

So we need to chose h such that αh = β
h , that is, such

that h =
√

β
α.

With this choice of h, we get

αx +
β

x
= αh

(

u +
1

u

)

≥ 2αh

= 2α

√

β

α

= 2
√

αβ .

Q.E.D.

7.6.2 *The inequality xn

n
− ax ≥ −n−1

n
a

n

n−1 : a proof using Calculus

Theorem 12. Let a and b be positive real numbers,

and let n be a positive integer. Then

ab ≤ 1

n

(

an + (n− 1)b
n

n−1

)

. (7.80)

Remark 6. For n = 2, inequality (7.80) says that

ab ≤ a2 + b2

2
,

which is Theorem 10.

So (7.80) is a generalization of Theorem 10. �

Proof of Theorem 12. We will use Calculus.
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Let a, b be arbitrary positive real numbers.

Define a function f by letting

f (x) =
xn

n
− bx for x ∈ IR , x ≥ 0 .

We would like to find the value of x where f has its

minimum value of f for all positive x. That is, we

would like to find a positive real number c such that

f (c) ≤ f (x) for all positive x.

For this purpose, we compute the derivative f ′ of f .

We have

f ′(x) = xn−1 − b for every x ∈ IR .

Let c = b
1

n−1 . Then cn−1 = b, so f ′(c) = cn−1−b = 0.

This means that c is a candidate for our minimum.

That is, it is possible that c is where f has its mini-

mum value, in which case it would follow that

f (x) ≥ f (c) for all x ∈ IR such that x > 0 .

(7.81)

We now prove (7.81) rigorously

If 0 < x < c, then xn−1 < cn−1 = b, so xn−1−b < 0,

so f ′(x) < 0.
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This means that the function f is decreasing for 0 <

x < c. So f (x) ≥ f (c) for 0 < x < c.

If x > c, then xn−1 > cn−1 = b, so xn−1 − b > 0, so

f ′(x) > 0.

This means that the function f is increasing for x >

c. So f (x) ≥ f (c) for x > c.

We have shown that f (x) ≥ f (c) when 0 < x < c

and when x > c. And clearly f (x) = f (c) when

x = c. Hence (7.81) is true.

It follows from (7.81) that for every positive x ∈ IR

we have f (x) ≥ f (c), that is,

xn

n
− bx ≥ cn

n
− bc . (7.82)

Since (7.82) holds for every positive x, we can use it

for x = a, thereby obtaining

an

n
− ab ≥ cn

n
− bc . (7.83)
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Since c = b
1

n−1 and cn−1 = b, we have

cn

n
− bc =

b
n

n−1

n
− b× b

1
n−1

=
b

n
n−1

n
− b1+

1
n−1

=
b

n
n−1

n
− b

n
n−1

=
(1

n
− 1
)

b
n

n−1

= −n− 1

n
b

n
n−1 .

In view of (7.83), we get

an

n
− ab ≥ −n− 1

n
b

n
n−1 , (7.84)

that is,
an

n
− ab +

n− 1

n
b

n
n−1 ≥ 0 , (7.85)

from which it follows that

ab ≤ an

n
+
n− 1

n
b

n
n−1 , (7.86)

that is,

ab ≤ 1

n

(

an + (n− 1)b
n

n−1

)

, (7.87)

which is exactly what we were trying to prove.Q.E.D.



Math 300, Fall 2019 134

8 Existential sentences

8.1 Existential quantifiers

• The symbol

∃
is the existential quantifier symbol.

• An existential quantifier is an expression “(∃x)”
or “(∃x ∈ S)” (if S is a set). More precisely,

“(∃x)” is an unrestricted existential quan-

tifier,

and

“(∃x ∈ S)” is a restricted existential quan-

tifier.

• Existential quantifiers are read as follows:

1. “(∃x)” is read as

∗ “there exists x such that”

or

∗ “for some x”

or

∗ “it is possible to pick x such that”.
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2. “(∃x ∈ S)” is read as

∗ “there exists x belonging to S such that”

or

∗ “there exists a member x of S such that”

or

∗ “for some x in S”

or

∗ “it is possible to pick x in S such that”

or

∗ “it is possible to pick a member x of S such

that”

Example 28. The sentence

(∃x ∈ IR)x2 = 2 (8.88)

could be read as

There exists an x belonging to the set of real

numbers such that x2 = 2 .

But this is horrible! A much better way to read it

is:

There exists a real number x such that x2 =

2 .

An even better way is
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There exists a real number whose square is 2.

And the nicest way of all is

2 has a square root.

And you can also read (8.88) as:

It is possible to pick a real number x such that x2 = 2 .

I strongly recommend this reading, because when

you read an existential sentence this way it becomes clear

that the next thing to do is to actually pick an x, that

is, to apply the rule for using an existential sentence, i.e.

Rule ∃use �

8.1.1 How not to read existential quantifiers

Students sometimes read an existential sentence such as

(∃x ∈ IR)x2 = 2) (8.89)

as follows: there exists a real number x and x2 = 2.

This is completely wrong, and should be avoided

at all costs, because if you read an existential sentence

that way you are going to be led to making lots of other

mistakes.

Why is this wrong?

• If you read (8.89) as “there exists a real number x

and x2 = 2”, then you give the impression that (8.89)

makes two assertions:
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1. that there exists a real number,

2. that x2 = 2.

• But (8.89) does not say that at all! What it does is

make one assertion, namely, that there exists a real

number x such that x2 = 2. (“Such that” means “for

which it is true that”.)

If you are asked to prove (8.89) and you read is as

“there exists a real number x and x2 = 2”, then you will

think that you have to prove two things, namely, (1) that

there exists a real number, and (2) that x2 = 2. But

what you have to prove is one thing: that it is possible

to pick a real number whose square is 2.

The word “and” in this bad reading is particularly per-

nicious, because it makes you see two sentences where

there is only one sentence. The quantifier (∃x ∈ IR)

is not a sentence.

You can see this even more clearly if you read (8.89)

as “for some real numbers x, x2 = 2”. It is clear that

“for some real numbers x” is not a sentence. And it’s

nonsense to say “for some real numbers x and x2 = 2”.

Since “for some real numbers x” is another way to read

the quantifier (∃x ∈ IR), it should be clear that there is

no “and” in such a quantifier,
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8.1.2 Witnesses

A witness for an existential sentence (∃x)P (x) is an ob-

ject a such that P (a) is true.

A witness for an existential sentence (∃x ∈ S)P (x), is

an object a such that a ∈ S and P (a) is true.

8.2 How do we work with existential sentences in
proofs?

As you may have guessed, I am going to give you two

rules, one for proving existential sentences, and one for

using them. And the names of these rules are going to

be—yes, you guessed it!—Rule ∃prove and Rule ∃use.

8.2.1 The rule for using existential sentences (Rule ∃use)

Rule ∃use says something very simple and natural: if

you know that an object of a certain kind

exists, then you can pick one and give it a

name.

In other words, if you know that (∃x)P (x) or

that (∃x ∈ S)P (x), then you are allowed to pick

a witness and give it a name.

Example 29. Suppose “P (x)” stands for “x eats grass”,

and C is the set of all cows. Suppose you know that

(∃x ∈ C)P (x) , (8.90)
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that is, you know that there are grass-eating cows.

Then the thing you can do, according to Rule ∃use, is
pick a cow and give her a name.

So, for example, you could write

Pick a cow that eats grass and call her Suzy.

Or you could write

Let Suzy be a witness for the sen-

tence (8.90, so Suzy is a grass-

eating cow.

or

Let Suzy be a grass-eating cow.

Example 30. Suppose you have a real number x and

you know that

(∃y ∈ IR)y5 − y3 = x . (8.91)

Then you can say, in the next step of your proof: :

Pick a witness for (8.91) and call it r, so r ∈ IR

and r5 − r3 = 5.

or you could write

Let r be a real number such that r5− r3 = 5.

And you could even say
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Let y be a real number such that y5−y3 = 5.

�

Remark 7.When you pick a witness, as in the previous

example, you can give it any name you want: you can

call it r, k, m, u, r̂, a, α, ⋄, ♣, Alice, Donald Duck,

whatever.

You can even call it y, if you wish.

The key point is: the name you use cannot be

already in use as the name of something else.

So “y” qualifies as an acceptable name because, within

the sentence “(∃y ∈ IR)y5 − y3 = x”, y is a bound

variable, but as soon as the sentence ends, “y” becomes

a free variable, with no declared value, so you are allowed

to use it.

However, I recommend that you do not use the same

letter that appeared in the existential quantifier. �

There is, however, one thing that is absolutely forbidden:

You cannot give the new object that you

are picking a name that is already in

use as the name of another object.

The reason for this prohibition is very simple: if you could

use the name r to name this new object that you are

introducing, while r is already the name of some other
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object that was introduced before, then you would be

forcing these two objects to be the same. But there is no

reason for them to be the same, so you cannot give them

the same name.

Example 31. Suppose you know that Mr. Winthrop

has been murdered. That means, if we use “P (x)” for

the predicate “x murdered Mr. Winthrop”. that you

know that (∃x)P (x) (that is, somebody murdered Mr.

Winthrop). Then you can introduce a new character into

your discourse, and call this person “the murderer”, or

“the killer”. (This is useful, because you want to be able

to talk about that person, and say things such as “the

murderer must have had a key so as to be able to get

into Mr. Winthrop’s apartment”.) But you cannot call

the murderer “Mrs. Winthrop”, because if you do so you

would be stipulating that it was Mrs. Winthrop that

killed Mr. Winthrop, which could be true but you do not

know that it is. �
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And here is a precise statement47 of Rule ∃use:

Rule ∃use

(I) If

1. P (x) is a sentence,
2. the letter a is not in use as the name of

anything,
3. you have proved (∃x)P (x),
then

* you can introduce a witness and call it a,

so that this new object will satisfy P (a)

(II) In addition, if S is a set, and you have proved

that (∃x ∈ S)P (x), then you can stipulate

that a ∈ S as well.

8.2.2 The rule for proving existential sentences (Rule ∃prove)

This rule is very simple, and very easy to remember:

• to prove that there is money here, show

me the money;

• to prove that cows exist, show me a cow;
47In this statement, we use the same convention explained earlier: P (a) is the sentence

obtained from P (x) by substituting a for x. For example, if P (x) is the sentence “x
eats grass”, then P (Suzy) is the sentence “Suzy eats grass”. If P (x) is the sentence
“x+ 3y = x2”, then P (a) is the sentence “a+ 3y = a2”.
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• to prove that good students exist, show me

a good student,

• to prove that incorruptible politicians ex-

ist, show me an incorruptible politician,

• to prove that prime numbers exist, show

me a prime number,

and so on.

Example 32. Suppose you want to prove that (∃x ∈
Z)x2 + 3x = 10.

You can say “Take x = 2. Then x2+3x = 10, because

x2 = 4 and 3x = 6, so x2 + 3x = 4 + 6 = 10”. So 2 is

a witness for the sentence (∃x ∈ Z)x2 + 3x = 10. Then

Rule ∃prove allows us to go to (∃x)x2 + 3 · x = 10. �

And here is a precise statement of the witness rule:
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Rule ∃prove

If:

1. P (x) is a sentence,

2. a is a witness for (∃x)P (x) (that is, you have

proved that P (a)),

then

* you can go to (∃x)P (x).
In addition, if S is a set, and you have proved that

a ∈ S, then you can go to (∃x ∈ S)P (x).

In other words,Rule ∃prove says that you can prove

the sentences (∃x)P (x) or (∃x ∈ S)P (x) by pro-

ducing a witness.

8.3 Examples of proofs involving existential sentences

8.3.1 Some simple examples

Problem 29. Consider the sentence

(∃x ∈ Z)(∃y ∈ Z)x2 − y2 = 17 . (8.92)

Is this sentence true or false? If it is true, prove it. If it

is false, prove that it is false (that is, prove its negation).

SOLUTION. Sentence (8.92) is true. Here is a proof:
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Take x = 9, y = 8. Then x2 = 81 and y2 = 64. So

x2 − y2 = 81 − 64 = 17. Therefore the pair (9, 8) is

a witness for (8.92). By Rule ∃prove, this proves (8.92).
Q.E.D.

Problem 30. Consider the sentence

(∀m ∈ Z)(∃n ∈ Z)n < m . (8.93)

Is this sentence true or false? If it is true, prove it. If it

is false, prove that it is false (that is, prove its negation).

SOLUTION. Sentence (8.93) is true. Here is a proof.

Let m be an arbitrary integer.

We want to prove that (∃n ∈ Z)n < m.

For this purpose, we produce a witness. First we say

who the witness is, and then we prove it works, that

is, that it really is a witness.

Let n̂ = m− 1.

Then n̂ ∈ Z and n̂ < m. So the integer n̂ is a

witness for the sentence (∃n ∈ Z)n < m

Therefore (∃n ∈ Z)n < m. [Rule ∃prove]
Since we have proved that (∃n ∈ Z)n < m for an arbi-

trary integer m, we can conclude that (∀m ∈ Z)(∃n ∈
Z)n < m. [Rule ∀prove] Q.E.D.
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Problem 31. Consider the sentence

(∀m ∈ IN)(∃n ∈ IN)n < m . (8.94)

Is this sentence true or false? If it is true, prove it. If it

is false, prove that it is false (that is, prove its negation).

SOLUTION. Sentence (8.94) is false. Here is a proof.

Asssume (8.94) is true.

Them by Rule ∀use we can plug in a value for m,

and the result wil be a true sentence. So we plug in

m = 1.

Them by Rule ∀use iimplies that (∃n ∈ IN)n < 1.

But there is no natural number that is less than 1,

so so ∼ (∃n ∈ IN)n < 1.

So we have attained a contradcition.

Therefore (8.94) is false.

Problem 32. Consider the sentence

(∃n ∈ Z)(∀m ∈ Z)n < m . (8.95)

Is this sentence true or false? If it is true, prove it. If it

is false, prove that it is false (that is, prove its negation).
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SOLUTION. Sentence (8.95) is false. Here is a proof

of its negation, that is, of

∼ (∃n ∈ Z)(∀m ∈ Z)n < m . (8.96)

We are going to prove (8.96) by contradiction .

Assume that

(∃n ∈ Z)(∀m ∈ Z)n < m . (8.97)

Pick a witness for Statement (8.97), that is, an inte-

ger n for which the statement “(∀m ∈ Z)n < m”

holds, and call it n0. [Rule ∃use]
Then n0 ∈ Z and (∀m ∈ Z)n0 < m.

Since n0 ∈ Z, we can conclude that n0 < n0. [Rule

∀use, from
(∀m ∈ Z)n0 < m]

Then ∼ n0 = n0. [Trichotomy law]

But n0 = n0. [Equality Axiom (∀x)x = x.]

So we have proved a contradiction assuming (8.97). Hence,

by the proof-by-contradiction rule, (8.97) is false, that is,

(8.96) is true. Q.E.D.

Problem 33. For each of the following sentences,
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1. Indicate whether the sentence is true or false.

2. If it is true, prove it.

3. If it is false, prove that it is false (that is, prove its

negation).

(∀m ∈ Z)(∃n ∈ IN)n > m , (8.98)

(∀m ∈ IN)(∃n ∈ IN)n < m , (8.99)

(∃n ∈ IN)(∀m ∈ Z)n < m , (8.100)

(∃n ∈ IN)(∀m ∈ IN)n < m , (8.101)

(∃n ∈ IN)(∀m ∈ IN)n ≤ m, (8.102)

(∃x ∈ IR)(∀m ∈ IN)x < m . (8.103)

8.3.2 A detailed proof of an inequality with lots of comments

Problem 34. Let C be a circle with center (5, 1). Let

L be the line with equation y = x + 4. Prove that if the

radius of the circle is less than 5 then C and L do not

intersect.

Solution.

Let R be the radius of C.

COMMENT: This is very important. Every time you

will have to deal repeatedly with some object—a num-

ber, a set, an equation, a statement—give it a name.

Assume that R < 5.
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We want to prove that

∼ (∃x ∈ IR)(∃y ∈ IR)
(

(x−5)2+(y−1)2 = R2∧y = x+4
)

.

(8.104)

Assume (8.104) isn’t true.

Then

(∃x ∈ IR)(∃y ∈ IR)
(

(x−5)2+(y−1)2 = R2∧y = x+4
)

.

(8.105)

Pick witnesses for (8.105) and call them x, y.

COMMENT: Remember that after a quanti-

fied sentence ends the quantified variables be-

come free again, so they can be re-used. That’s

why it is perfectly legitimate to name the wit-

nesses x and y.

Then

(x− 5)2 + (y − 1)2 = R2 ∧ y = x+ 4 . (8.106)

In particular,

(x− 5)2 + (y − 1)2 = R2 . (8.107)

And also

y = x + 4 . (8.108)

COMMENT: How did we go from (8.106) to

(8.107) and (8.108)? It’s clear, isn’t it? But
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in a proof every step must be justfied (or

justifiable) by the rules. So which is the

rule used here? The answer is: it’s the logical

rule for using conjunctions, that is, Rule ∧use:
if you have a conjunction A∧B, then you can

go to A, and you can go to B. You may think

this is a very stupid rule, but it is certainly a

reasonable rule. When we went from (8.106)

to (8.107) and (8.108), it seemed obvious to

you, didn’t it? That’s because Rule ∧use is an
obvious rule, so obvious that you use it all the

time without even noticing it. But that doesn’t

mean that the rule isn’t there. It is there. If

you wanted to write a computer program that

checks proofs and tells you whether a proof is

valid, how would the program know that going

from (8.106) to (8.107) and (8.108) are valid

steps? You have to put that in the program.

That is, you have to put Rule ∧use in your

program.

Since y = x+ 4, we can substitute x+ 4 for y in

(8.107), and get

(x− 5)2 + (x + 4− 1)2 = R2 , (8.109)
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that is

(x− 5)2 + (x + 3)2 = R2 . (8.110)

But

(x− 5)2 + (x + 3)2 = x2 − 10x + 25 + x2 + 6x + 9

= 2x2 − 4x + 34

= 2(x2 − 2x + 17)

= 2(x2 − 2x + 1− 1 + 17)

= 2(x2 − 2x + 1 + 16)

= 2
(

(x− 1)2 + 16
)

≥ 2× 16

= 32

so

(x− 5)2 + (x + 3)2 ≥ 32 . (8.111)

But

(x− 5)2 + (x + 3)2 = R2 . (8.112)

So

R2 ≥ 32 . (8.113)

COMMENT: How did we go from (8.111) and

(8.112) to (8.113)? It’s clear, isn’t it? But in

a proof every step must be justfied (or
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justifiable) by the rules. So which is the

rule used here? The answer is: it’s the logical

rule for using equality, that is, Rule =use (also

called Rule SEE, “susbtitution of equals for

equals”): if you know that an equality s = t—

or t = s—holds, and you also know that some

statement P involving s holds, then you can go

to P (s→ t), where P (s→ t) is the statemenet

pbtained from P by substituting t for s in P .

You may think this is a very stupid rule, but it

is certainly a reasonable rule. When we went

from (8.111) and (8.112) to (8.113), it seemed

obvious to you, didn’t it? That’s because Rule

SEE is an obvious rule, so obvious that you

use it all the time without even noticing it.

But that doesn’t mean that the rule isn’t there.

It is there.

If you wanted to write a computer program

that checks proofs and tells you whether a proof

is valid, how would the program know that go-

ing from (8.111) and (8.112) to (8.113) is a

valid step? You have to put that in the pro-

gram. That is, you have to put Rule SEE in

your program.

But we are assuming that R < 5, and then R2 <
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25.

COMMENT: That’s because R is positive. If

all you know about was that R is a real number

and R < 5, then R could be −10, in which case

it would not follow that R2 > 25. But in our

case R is the radius of a circle, so R > 0, and

the conclusion that R < 25 follows.

So ∼ R2 ≥ 32. But R2 ≥ 32. So we have proved

a contradiction.

COMMENT: The contradiction is the state-

ment “R2 ≥ 32∧ ∼ R2 ≥ 32”. This is a con-

tradiction because it is fo the form Q∧ ∼ Q,

where Q is the statement “R2 ≥ 32”.

So (8.104) is proved. Q.E.D.

8.3.3 The same proof without the comments

Proof. Let R be the radius of C.

Assume that R < 5.

We want to prove that

∼ (∃x ∈ IR)(∃y ∈ IR)
(

(x−5)2+(y−1)2 = R2∧y = x+4
)

.

(8.114)
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Assume (8.114) isn’t true. Then

(∃x ∈ IR)(∃y ∈ IR)
(

(x−5)2+(y−1)2 = R2∧y = x+4
)

.

(8.115)

Pick witnesses for (8.115) and call them x, y.

Then (x − 5)2 + (y − 1)2 = R2 ∧ y = x + 4, so

in particular,

(x− 5)2 + (y − 1)2 = R2 . (8.116)

Since y = x+ 4, we can substitute x+ 4 for y in

(8.116), and get (x − 5)2 + (x + 4 − 1)2 = R2,

that is

(x− 5)2 + (x + 3)2 = R2 . (8.117)

But

(x− 5)2 + (x + 3)2 = x2 − 10x + 25 + x2 + 6x + 9

= 2x2 − 4x + 34

= 2(x2 − 2x + 17)

= 2(x2 − 2x + 1− 1 + 17)

= 2(x2 − 2x + 1 + 16)

= 2
(

(x− 1)2 + 16
)

≥ 2× 16

= 32
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so

(x− 5)2 + (x + 3)2 ≥ 32 . (8.118)

But (x− 5)2 + (x + 3)2 = R2, so R2 ≥ 32.

But we are assuming that R < 5, and then R2 <

25.

So ∼ R2 ≥ 32. But R2 ≥ 32. So we have proved

a contradiction.

So (8.114) is proved. Q.E.D.

8.4 Existence and uniqueness

Suppose P (x) is a one-variable predicate. We write

(∃!x)P (x)

for “there exists a unique x such that P (x).”

This means “there is one and only one x such that

P (x)”.

The precise meaning of this is that

1. there exists an x such that P (x),

and

2. if x1, x2 are such that P (x1)∧ P (x2), then x1 = x2.
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In formal language:

(∃!x)P (x) ⇐⇒
(

(∃x)P (x) ∧
(

(∀x1)(∀x2)(P (x1) ∧ P (x2)) =⇒ x1 = x2

)
)

.

It follows that, in order to prove that there exists a unique

x such that P (x), you must prove two things:

Existence: There exists x such that P (x),

Uniqueness: Any two x’s that satisfy P (x) must be

equal.

That is:

To prove

(∃!x)P (x)
it suffices to prove

(∃x)P (x) (8.119)

and

(∀x1)(∀x2)
(

(P (x1) ∧ P (x2)) =⇒ x1 = x2

)

.

(8.120)

(Formula (8.119) is the existence assertion, and

Formula (8.120) is the uniqueness assertion.)

Example 33. “I have one and only one mother” means:
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• I have a mother,

and

• Any two people who are my mother must be the

same person. (That is: if u is my mother and v is

my mother than u = v.) �

8.4.1 Examples of proofs of existence and uniqueness

Problem 35. Prove that there exists a unique natural

number n such that n3 = 2n− 1.

Solution. We want to prove that

(∃!n ∈ IN)n3 = 2n− 1 .

First let us prove existence. We have to prove that (∃n ∈
IN)n3 = 2n− 1. To prove this, we exhibit a witness: we

take n = 1. Then n is a natural number, and n3 = 2n−1.

So (∃n ∈ IN)n3 = 2n− 1.

Next we prove uniqueness. We have to prove that if

u, v are natural numbers such that u3 = 2u − 1 and

v3 = 2v − 1, then it follows that u = v.

So let u, v be natural numbers such that u3 = 2u− 1

and v3 = 2v − 1. We want to prove that u = v.
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Since u3 = 2u− 1 and v3 = 2v − 1, we have

u3 − v3 = 2u− 1− (2v − 1)

= 2u− 2v

= 2(u− v) ,

so

u3 − v3 − 2(u− v) = 0 .

But it is easy to verify that

u3 − v3 = (u− v)(u2 + uv + v2) .

(If you do not believe this, just multiply out the right-

hand side and you will find that the result equals u3 =

v3.) Hence

0 = u3 − v3 − 2(u− v)

= (u− v)(u2 + uv + v2)− 2(u− v)

= (u− v)(u2 + uv + v2 − 2) .

We know that if a product of two real numbers is zero

then one of the numbers must be zero. Hence

u− v = 0 or u2 + uv + v2 − 2 .

But u2 + uv + v2 − 2 cannot be equal to zero, because

u2, uv and v2 are natural numbers, so each of them is

gretar than or equal to 1, and then u2 + uv + v2 ≥ 3,
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so u2 + uv + v2 − 2 ≥ 1, and then u2 + uv + v2 − 2 6=
0. Therefore u − v = 0, so u = v, and our proof of

uniqueness is complete.

Problem 36. Prove that there exists a unique real num-

ber x such that

x7 + 3x5 + 23x = 6 .

You are allowed to use everything you know from Calcu-

lus. �
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9 A summary of Logic

9.1 Terms and sentences

9.1.1 Nouns and noun phrases in English

• According toWikipedia, a noun is “a word that func-

tions as the name of some specific thing or set of

things, such as living creatures, objects, places, ac-

tions, qualities, states of existence, or ideas”.

• A noun phrase “is a phrase that has a noun (or in-

definite pronoun) as its head or performs the same

grammatical function as such a phrase”.

So, for example, here is a list of noun phrases:

1. George Washington,

2. the first president of the United States,

3. the man who succeeded George Washington as prs-

dient of the United States,

4. this table,

5. the table,

6. the table that I bought yesterday,

7. the table that I bought yesterday at Walmart’s and

then brought home in a truck that I had borrowed

from my very good friend Alice,

8. I,
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9. you,

10. she,

11. he,

12. the news,

13. the number five,

14. the number that results from adding two plus three,

15. the product of two and three,

16. the number that results from adding two plus three

and then multiplying the result by four,

17. the number that results from adding two plus three,

multiplying the result by four, and then dividing the

result of the multiplication by the product of six

times seven,

18. the sum of the cubes of all the natural numbers from

eight to forty-seven.

9.1.2 The “use-mention” distinction

Consider the following two sentences:

Clarabelle is a cow.

“Clarabelle” is a ten-letter word.

The first sentence talks about an animal and makes an

assertion about that animal: it tells us that that animal

is a cow.
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The second sentence does not talk about an animal. It

does not say anything about the animal called Clarabelle.

It makes an assertion about a word: it tells us that the

word “Clarabelle” has ten letters.

The first sentence talks about the animal, so it men-

tions Clarabelle, And, in order to mention (i.e., talk

about) Clarabelle it uses the word “Clarabelle”.

The second sentence talks about the word, so it men-

tions the word “Clarabelle”.

So the first sentence uses the word “Clarabelle” and

the second sentence mentions it.

The distinction between use and mention is very im-

portant, and it is useful to understand it in order to avoid

making mistakes in writing that sometimes might be con-

fusing to the reader.

Let us be precise: word and groups of words are things,

and like all other things words and groups of words can

be given names. the name of a word or group of

words is the word or groups of words enclosed

in quotation marks.

So, for example, the following are correct statements:

• Clarabelle is an animal.

• The name of Clarabelle is “Clarabelle”.

• “Clarabelle” is a word.

• “Clarabelle” is a French name, not a cow.
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• Clarabelle is a cow, not a French name;

• Clarabelle eats grass.

• “Clarabelle” does not eat grass.

• The name of the word “Clarabelle” is “ “Clarabelle” ”.

• The name of the first president of the United States

was “George Washington”. (If you had written in-

stead “the name of the first president of the United

States was George Washington”, then, since George

Washington was a general, it would follow that the

name of the first president of the United States was

a general, which is quite ridiculous, since a name is a

word or group of words, and cannot be a general.)

• The name of George Washington is48 “George Wash-

ington”.

• If I say “the name of that cow over there is Clara-

belle”, then I am saying among other things that the

name of that cow over there is a cow, which is not

what I probably want to say49. I probably want to

say that that the name of that cow over there is the
48So, strictly speaking, it is wrong to write: “my name is Alexander Hamilton”, or “my

name is Asher Lev”, or “my name is Eminem”. One should write “my name is “Alexander
Hamilton” ”, or “my name is “Asher Lev” ”, or “my name is “Eminem” ”. But this mistake
is so common that nobody pays attention to it.

49For example: Clarabelle eats grass. So, if the name of that cow over there is Clarabelle,
it follows that the name of that cow over there eats grass. And this is nonsense, of course:
cows eat grass, names do not.
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word “Clarabelle”, so I must say: the name of that

cow over there is “Clarabelle”.

When you say something about Clarabelle, the cow,

you use the word “Clarabelle” to talk about the cow,

and by doing so you mention (i.e., talk about) the cow.

When you say something about “Clarabelle”, the word,

you mention (i.e., talk about) the word “Clarabelle”,

but you are not using the word to talk about the animal.

When you use a word or group of words to talk about

the thing that the word stands for, you do not enclose

the word or group of words in quotation marks.

When you mention a word or groups of words (i.e.,.

talk about the word or gourp of words), you must en-

close the word or group of words in quotation marks.

When writing mathematics, it is important to keep the

distinction between use and mention, by using quotation

marks when appropriate.

For example,

• we can write
I will prove that 2 + 2 = 4

in the same was as we would write

Alice said that she likes coffee.

• but we should not write
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I will prove 2 + 2 = 4

in the same was as we would not write

Alice said I like coffee.

We must write

Alice said “I like coffee”.

and

I will prove “2 + 2 = 4”,

or

I will prove that “2 + 2 = 4” is true,

or
I will prove that the sentence “2 + 2 = 4” is true,

or

I will prove the sentence “2 + 2 = 4”.

9.1.3 Terms in mathematical language

The noun phrases that we use in formal mathematical

language are called terms.

So a term is an expression that is the name of a thing.

For example50 the terms “four”, “4”, “two plus two”,
50Notice the use of the quotation marks, in keeping with the use vs. mention distinction

explained in subsection 9.1.2. We can say correctly that 4 is a number, that 2 + 2 is a
number, that the term “4” has the value 4, that the term “2 + 2” has the value 4, that
2 + 2 = 4 (meaning that both terms “2 + 2” and “4” have the same value). But it would
be incorrect to write “4” = “2 + 2” because this says that the two terms “4” and “2 + 2”
are the same, which is not true. (For example, the term “4” consists of just one character,
whereas the term “2+2” consists of three characters, so they are manifestly not the same.)
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“2+2” , “three plus one”, 3+1” all have the same value,

namely, the number 4.

And usually mathematical terms are written with for-

mulas, that is, very concise expressions using special

symbols. For example,

• instead of “the number five”, we write “5”;

• instead of “the number that results from adding two

plus three”, we write “2 + 3”;

• instead of “the product of two and three”, we write

“2× 3”;

• instead of “the number that results from adding two

plus three and then multiplying the result by four”,

we write “(2 + 3)× 4”;

• instead of “the number that results from adding two

plus three, multiplying the result by four, and then

dividing the result by the sum of twenty-three and

the product of six times seven”; we write “ (2+3)×4
23+6×7 ”;

• instead of “the sum of the cubes of all the natural

numbers from five to ten” we write “
∑10

i=5 ”.

9.1.4 Examples of terms and sentences

Example 34. The following expressions are terms:
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• New York City;

• Mount Everest;

• the table;

• the student who asked why an implication is true

when the premise is false;

• 2,

• 2 + 2,

• 2 + x,

• x + y,

• (x + y)2 + 3x + 5,

• ∑n
k=1(k

3 + 1)

But the following expressions are sentences, not terms:

• 2 + 2 = 4,

• 2 + x = 4,

• x + y = 0,

• x + y = 0,

• x + y > 0,

• (∃y ∈ IR)x + y = 0,
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• (∃y ∈ IR)x + y < 0,

• (∀y ∈ IR)x + y = 0,

• (∀y ∈ IR)(∃z ∈ IR)y + z = x.

• (∀x ∈ IR)x.0 = 0,

• (∀x ∈ IR)(∃y ∈ IR)x + y > 0,

• (∀x ∈ IR)x2 ≥ 0,

• ∑5
x=1 x

2 = y.

• (∀x ∈ IR)x.0 = 0,

• ∑x=1 5x
2 = y.

9.1.5 The value of a term

A term has a value, which is the thing that the term

stands for. For example,

• the value of the term “5” is the natural number 5,

and we indicate this by writing “5 = 5”;

• the value of the term “2 + 3” is the natural number

5, and we indicate this by writing “2 + 3 = 5”;

• the value of the term “2× 3” is the natural number

6, and we indicate this by writing “2× 3 = 6′′;
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• the value of the term “(2 + 3) × 4” is the natural

number 20, and we indicate this by writing “(2 +

3)× 4 = 20”;

• the value of the term “ (2+3)×4
23+6×7 ” is the rational num-

ber (i.e., fraction) 20
65, and we indicate this by writ-

ing “ (2+3)×4
23+6×7 = 20

65 ”; furthermore, the number 20
65 is

the same as the number 4
13, so we could also written

“ (2+3)×4
23+6×7 = 4

13 ”;

• the value of the term “
∑10

i=5 i
3 ” is the natural num-

ber 2, 955, and we indicate this by writing the equal-

ity “
∑10

i=5 i
3 = 2, 955”.

The values of terms can be all kinds of mathemat-

ical objects. Since the mathematical objects that you

are most familiar with are numbers (natural numbers,

integers, real numbers, complex numbers, etc.), you are

probably used to terms whose values are numbers. But

there are millions of other kinds of mathematical objects,

and we can write terms with values of any of those kinds.

For example:

• The expression
[

1 2

−1 3

]

+

[
2 2

3 1

]
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is a term whose value is a 2 by 2 matrix. The ac-

tual value of the term is the matrix

[
3 4

2 4

]

, and we

indicate this by writing:
[

1 2

−1 3

]

+

[
2 2

3 1

]

=

[
3 4

2 4

]

• Functions51 can be added (in some cases), and

composed (in some cases). If f and g are functions

then the name of the sum of f and g is “f + g”, the

name of the product of f and g is “f · g”, and the

name of the composite “g followed by f” is “f ◦ g”.
So, for example, if f, g, h are three functions, then

the expression “((f + g) · g) ◦ h” is a term whose

value is a function.

• Sets52 can be combined in various ways. For ex-

ample, of A and B are sets, then we can form the

sets A ∪ B (the union of A and B), A ∩ B (the

intersection of A and B), A × B (the Cartesian

product of A and B). Then the value of the term

“(IR× Z) ∩ (Z× IR)” is a set, namely, the intersec-

tion of the Cartesian product of IR and Z with the

Cartesian product of Z and IR.
51We will talk about functions later in the course.
52We will discuss sets in detail later later in the course.
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9.1.6 Terms as instructions for a computation, i.e., as programs

You should think of a mathematical term as a computing

device that executes a program, i.e., follows with a list of

instructions for computing a result, called the value. For

example,

• the term “2+3” is a device that executes the following

program: “add the number 3 to the number 2 and

write down the result”;

• the term “2× 3” is a device that executes the follow-

ing program: “multiply the number 2 by the number

3 and write down the result”;

• the term “(2 + 3)× 4” is a device that executes the

following program: “add the number 3 to the number

2, multiply the result by the number 4, and write

down the result”;

• the term “ (2+3)×4
23+6×7 ”; is a device that executes the

following program: “add the number 2 to the number

3, multiply the result by the number 4, and divide

the result by the number you get when you add to the

number twenty-three the product of six times seven,

and write down the result”;

• the term “
∑10

i=5(i
3 + 3i2 + 5) ” is a device that exe-

cutes the following program:

1. Look at all the natural numbers from 5 to 10.
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2. For each such natural number, do the following:

(a) Call the number i.
(b) Compute (i3 + 3i2 + 5)2.

3. Add up all the results of the computation of (i3+

3i2 + 5)2 for all values of i.

4. Write the result of this sum as the final result of

the computation.

9.1.7 Letter variables in terms

A term can contain variables, i.e. symbols that are not

the names of definite objects, but could be used to stand

for different objects.

For example: The term “x + 3”, contains the letter

variable x; it corresponds to the program: “add 3 to x

and write down the result”. When asked to compute

x + 3, the term does not know what to do, because it

does not know who x is. But if you give x a specific

value, for example by saying “Let x = 2”, then the term

knows what to do: it gives x the value 2, and becomes

the term 2 + 3, which then know what to, and compues

the value 5.

In other words: if a term t contains a variable x, then

it is possible to give a value to the variable, and the term

then can compute a value.
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You should think of a variable as a “slot”

that can be filled by plugging in a value. For

example, the term “x+ 3” consists of (1) a slot that can

be filled in with a number; (2) the + sign, (3) the number

3.

A term may contain several variables. For example,

the term

(x + y + 3x2)y + y2(z2 + 3xz) + yex

contains the variables x, y, and z. The term has 10 slots.

You can give a value to each of the three variables. The

term then instructs us to fill in the first, third, seventh

and tenth slots (the “x-slots”) with the value we have

chosen for x, the second, fourth, fifth and ninth slots (the

“y-slots”) with the value we have chosen for y, and and

the sixth and eight slots (the “z-slots”) with the value

we have chosen for z. We can do this by writing, for

example:

Let x = 3 , y = −1 , z = 4 .

Then (x + y + 3x2)y + y2(z2 + 3xz) + yex = 33− e3 .

or
(

(x+y+3x2)y+y2(z2+3xz)+yex

)

x=3,y=−1,z=4

= 33−e3 .
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In a term t, a letter variable that has no value

declared within the term and represents a slot

that can be filled in by giving it values is called

a free variable, or open variable.

9.1.8 Bound (dummy, closed) variables in terms

One of the main purposes of writing terms and sentences

in formal language, with symbols, rather than phrases

with lots of words, is to be able to say things much more

concisely53. (This is quite clear: “ 2 + 2 = 4 ” is much

shorter than “two plus two equals four”. And try to say

“ (a + b)2 = a2 + 2ab + b2 ” with words, rather than

symbols, and you’ll se how much longer it gets.)
Further conciseness can be achieved by using letters to

stand for expressions that appear repeatedly in a term
53This is not the only purpose. Another purpose is precision: for example, if I say

“two plus three times five”, then this is ambiguous, because it could mean “two plus the
product of three and five”, or “the sum of three plus two, multiplied by five”. In formal
language, we write “(2 + 3) × 4” or “2 + (3 × 5)”, and each of these two expressions has
a clear and precise meaning. The ambigüity has disappeared. Furthermore, we agreed
on the convention that when a product such as 3 × 4 is combined with another term by
a “+” the parentheses surrounding the product can be omitted. So when we think we
ought to write “2 + (3× 4)” we write instead “2 + 3× 4”, and it is completely clear what
that means, because if we had wanted to say “(2 + 3)× 4” we would have had to enclose
“2 + 3” in parenthees. A third purpose is universality: to say “two plus two equals
four” in Spanish you have to say “dos más dos es igual a cuatro”, and in French you have
to say “deux plus deux égale quatre”. But in formal mathematical language you write
“2+ 2 = 4”, and this is understood by everybody, whether they speak English or Spanish
or French or Chinese or any other language.



Math 300, Fall 2019 175

and are very long. For example, the term

32 + 5
1 +

√
5

2
− 23

(

1 +
√
5

2

)2

++7

(

1 +
√
5

2

)3

+ 19

(

1 +
√
5

2

)4

(9.121)

can be written as

(32 + 5x− 23x2 + 7x3 + x4)
x=1+

√
5

2
, (9.122)

which we read as the computing instruction “give x the

value 1+
√
5

2 , then compute 32+5x−23x2+7x3+x4, and

write down the result”.

Another example is the term

13+23+33+43+53+63+73+83+93+103 , (9.123)

that can be written as
10∑

k=1

k3 , (9.124)

which we read as the computing instruction

1. Look at all the natural number values between 1 and

10.

2. For each such value, do the following:

(a) Call your number k.

(b) Compute k3.

3. Add up the results of these computations, for all nat-

ural numbers between 1 and 10.
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As you can see, the term (9.122) is much shorter than the

term (9.121), and the term (9.124) is much shorter than

the term (9.123). And the difference becomes even more

dramatic if consider very long terms, in which there is a

computation that is repeated over and over. For example,

suppose you want to talk about the sum of the cubes of

the first 10, 000 natural numbers: using letters, we can

write
10,000
∑

k=1

k3 . (9.125)

If you wanted to write this without using the
∑

notation,

you would have to write a sum of 10, 000 terms, which

would of course be enormously long54.

It is clear that:

• In (9.122), we could have used any other letter in-

stead of x, and the resulting term would execute ex-

actly the same computation. So, for example, if we

had written

(32 + 5u− 23u2 + 7u3 + u4)
u=1+

√
5

2
, (9.126)

this would describe exactly the same computationas

(9.126), and the term would have exactly the same
54Can you figure out what the value of this sum is? The answer is:

5, 001, 000, 050, 000, 000. Can you figure this out without having to compute 10, 000 cubes
and then add them? Later in the course we will see how to figure this out and get the
answer fairly fast.
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value and (9.122).

• Similarly, in (9.124), we could have used any other

letter instead of k, and the resulting term would exe-

cute exactly the same computation. So, for example,

if we had written
10∑

i=1

i3 , or

10∑

j=1

j3 , or

10∑

x=1

x3 , or

10∑

α=1

α3 , or

10∑

⋄=1

⋄3 ,

the resulting term would correspond to exactly the

same computation and have the same value55.

• Actually, in the term “
∑10

k=1 k
3” the letter k “isn’t

there”, in the sense that we could describe the term

without ever mentioning “k”. For example, I could

ask you to compute the value of this term without

mentioning k: by saying “compute the sum of the

cubes of all the natural numbers from 1 to 10”, and

you would know exactly what to do.

• A similar situation arises for the term

(32 + 5x− 23x2 + 7x3 + x4)
x=1+

√
5

2
.

The letter x “isn’t there”, in the sense that we could

describe the term without ever mentioning “x”. For
55Using “x” here is not something one would normally do, because mathematicians

usually prefer to use “x” for real numbers rather than natural numbers; but it is not
forbidden to use x for a natural number.
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examle, I could ask you to compute the value of this

term without mentioning x: by saying

a. Add the following five numbers:

1. the number 32,

2. the number 5× 1+
√
5

2 ,

3. the number (−23)×
(
1+

√
5

2

)2

,

4. the number 7×
(
1+

√
5

2

)3

,

5. the number
(
1+

√
5

2

)4

.

b. Then write down the result.

9.1.9 What is a dummy (free, open) variable?

In a term t, a letter variable whose values are

generated within the term itself, so that we do

not need to ask the outside world what the value

of that variable is in order to be able to compute

the value of the term, is called a bound variable,

or closed variable, or dummy variable.
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The three clear signs that a variable is dummy

The following are three obvious signs that a variable in an expression T

is a dummy variable:

(I) It is possible to substitute for the variable any other letter without
changing the value of the expression. Indeed, the terms

N∑

j=1

j2 , (9.127)

N∑

x=1

x2 , (9.128)

N∑

q=1

q2 , (9.129)

all have the same value as “
∑N

k=1 k
2 ”, and this is a sign that in

the term “
∑N

k=1 k
2 ” the letter k is a dummy variable.

(II) If you ask somebody to execute the computation described by the
expression T then this person does not need to be told what the
value of the variable is, because the computation itself generates
the value or values it needs for the variable. For example, if I
ask you to compute the value of “

∑N
k=1 k

2”, then you have to do
this: you give k all natural number values between 1 and N , for
each such value you compute its square, and then you add all the
results. In order to be able to do this, you have to ask “who is
N?”, but you do not have to ask “who is k?”, because you
yourself, in the process of doing the computation, are going to
generate the values of k. This is a second sign that in the term
“
∑N

k=1 k
2” the letter k is a dummy variable.

(III) The expression T is equal or equivalent to another expression not
involving the variable at all. For example, “

∑N
k=1 k

2 ” is equal to
(2N+1)N(N+1)

6 , an expression that does not contain k. And this is

a third sign that in the term “
∑N

k=1 k
2” the letter k is a dummy

variable.
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9.1.10 Other examples of dummy variables in terms

The two examples of dummy variables that you proba-

bly know from previous courses are those occurring in

expressions such as “
∑b

k=a . . .” and “
∏b

k=a . . .”.

For example, the term “
∑5

k=1 k
2” executes the follow-

ing computation: look at all the natural numbers from 1

to 45, for each such number compute its square, add all

the results and write down the sum”.

And the term “
∏5

k=1(k + 1)2” executes the following

computation: look at all the natural numbers from 1 to

45, for each such number compute the square of the sum

of one plus the number, multiply all the results and write

down the sum”.

In both cases, the letter k is a dummy variable. You

do not need to ask “who is k’ ?” is order to carry out the

computation. If you are asked to compute
∑25

k=1 k
3 or

∏25
k=1(k + 1), then you do not have to ask “who is k?”.

You yourself generate all the values of k from 1 to 25 and

for each value compute something (k3 in the first case,

k + 1 oin the second case), and then do something with

the results (add them all up in the first case, multiply

them in the second case).

Variables of integration. Another important exam-

ple of a dummy variable is a variable of integration.
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If I ask you to tell me what the value of the integral
∫ b

a

x2 dx

is, you have to ask me “who are a and b” but you don’t

have to ask “who is x?”. That’s because x is a dummy

variable. This is precisely the second of the three “signs

that a variable is a dummy variable”.

Let us look at the first sign: “It is possible to sub-

stitute the letter for any other letter, without changing

the value of the term”. This is indeed true: if, instead of

“
∫ b

a (x+1)
2 dx” I write “

∫ b

a (y+1)
2 dy”, or “

∫ b

a (u+1)
2 du”,

or “
∫ b

a (q+ 1)2 dq”, or “
∫ b

a (α+ 1)2 dα”, then all those in-

tegrals are exactly the same.

Finally, let us look at the third sign: “The term T is

equal to another expression not involving the variable at

all.” And this is indeed true: the integral
∫ b

a (x + 1)2 dx

is equal to (b+1)3

3 − (a+1)3

3 . And the expression “(b+1)3

3 −
(a+1)3

3 ” does not contain x at all.

So, clearly, in the term “
∫ b

a x
2 dx”, the variable

x is a dummy variable. This means that the inte-

gral
∫ b

a x
2dx does not depend on x; it depends

on a and b but not on x, in the sense that if

you want me to give you a specific value for

the term then you have to tell me who a and



Math 300, Fall 2019 182

b are, but not whi x is.

Variables in the definition of a function We

will be discussing functions later. But let me tell you

the basic facts:

• A function assigns to each object x belonging to a

certain set S another object, called the value of the

function at x. If f is a name of the function, then

we use f (x) to denote the value of f at x.

• The set S is called the domain of the function.

• In order to introduce and describe a function f , we

can do this: we explain how, for each member of the

domain S, the value of f at this member is computed

or determined. To do this, we write things like

the function IR ∋ x 7→ 3(x + 1)4 + ex , (9.130)

which says that (a) the domain of the function is

the set IR, (b) for each member of the domain IR, if

we call that member x, then the value f (x) is the

number 3(x + 1)4 + ex.

Notice that “x” is a name that we introduce in order to

explain how to compute f (x). We could equally well have

written:

the function IR ∋ u 7→ 3(u + 1)4 + eu,
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and that would be exactly the same function.

So the variable x in a function definition

such as (9.130) is dummy.

Remark 8. An expression such as “the function IR ∋
x 7→ x2 ” is a term. Its value is a function, namely, the

function that takes each real number and squares it. The

term “the function IR ∋ x 7→ x2” contains the variable

x but, as we just explained, x is a dummy variable, be-

cause (a) the term is equal to another term that does

nto contain x at all (namely, the term “the function that

for each real number produces as value the square of the

number”, or “the function that takes each real number

and suares it”); (b) if we substitute another letter for x

we get the same function. (For example, “the function

IR ∋ u 7→ u2” is exactly the same function: it’s “the

function that takes each real number and squares it”.)

The expressions “the function IR ∋ x 7→ x2” and “the

function IR ∋ x 7→ (x+1)2− 2x− 1” are terms. Each of

these terms has a value, which is a function. Furthermore,

those two functions are the same function, because for

every real number x the numbers x2 and (x+1)2−2x−1

are equal. So the terms “the function IR ∋ x 7→ x2” and

“the function IR ∋ x 7→ (x+1)2−2x−1” have the same

value, and we can assert that



Math 300, Fall 2019 184

The function IR ∋ x 7→ x2 = the function

IR ∋ x 7→ (x + 1)2 − 2x− 1.

NOTE: It would be incorrect to write

“The function IR ∋ x 7→ x2” = “the function

IR ∋ x 7→ (x + 1)2 − 2x− 1”,

because this asserts that the two terms are the same,

which is manifestly not the case. If this is not clear tou

consider the following examples:

Bill Clinton = William Jefferson Clinton

and

“Bill Clinton” = “William Jefferson Clinton”.

The first one says that that the values of the terms “Bill

Clinton” and “William Jefferson Clinton” are the same,

i.e., that the person whose name is “Bill Clinton” is the

same as the person whose name is “William Jefferson

Clinton”.

But the seond one says that the names “Bill Clinton”

and “William Jefferson Clinton” are the same, i.e. that

they conist of exactly the same letters in the same order.

nd this is clearly false. (For example, the name “William

Jefferson Clinton” contains a W and a J , but the name

“Bill Clinton” does not. �
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9.1.11 Bound (dummy, closed) variables in sentences

Sentences are very similar to terms. Like terns, sen-

tences have values. The one big difference between

terms and sentences is that the value of a term is

a thing and the value of a sentence is a truth

value, i.e., “true” or “false”.

Example 35.

1. The expression “2 + 2” is a term. Its value is the

number 4.

2. The expressions “2 + 2 = 4” and “2 + 2 = 5” are

sentences. They are both propositions, because they

contain no open variables. So they both have a truth

value. The value of “2 + 2 = 4” is “true”. The value

of “2 + 2 = 5” is “false”.

3. The expression “(∀n ∈ Z)(2|n =⇒ 4|n2)” is a sen-

tence. It contains the variable n . But this variable

is dummy (closed, bound), because it satisfies all the

three signs for dummy variables that we saw before:

(I) It is possible to substitute for the letter n any

other letter, without changing the value of the
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expression. Indeed, the sentences

(∀m ∈ Z)(2|m =⇒ 4|m2) , (9.131)

(∀q ∈ Z)(2|q =⇒ 4|q2) , (9.132)

(∀u ∈ Z)(2|u =⇒ 4|u2) , (9.133)

are all equivalent to “(∀n ∈ Z)(2|n =⇒ 4|n2)”.
(II) If you ask somebody to execute the computa-

tion described by this sentence, then this per-

son does not need to be told what the value of

the variable n, is, because the computation it-

self generates the value or values it needs for

the variable. (Indeed, to execute the computa-

tion described by the sentence “(∀n ∈ Z)(2|n =⇒
4|n2)”, the person doing the computation has to

do the following:

(a) look at all the integers, and for each integer

do the following:

i. call the integer n,

ii. determine if “2|n =⇒ 4|n2 is true,
(b) then look at all the results of the computa-

tions, for all the integers. If the are all “true”

write “true”. If one of the results is “false”,

write ‘false”.

The key point here is that the person do-

ing the computation does need to ask
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“who is n?” because they themselves

will generate the values of n to be looked

at.

(III) The sentence “(∀n ∈ Z)(2|n =⇒ 4|n2)” is

equivalent to another sentence not involving

the variable n at all. Indeed: “(∀n ∈ Z)(2|n =⇒
4|n2)” is equivalent to ”if an integer is even then

its square is divisible by 4”.

Since the only variable that occurs in this sentence is

bound, the sentence contains no open variables. So it

is a proposition. It has a definite truth value, which

turns oiut to be “true”.

4. The expression “(∀n ∈ Z)(a|n =⇒ b|n2)” is a sen-

tence. It contains the variables n, a, b . But b vari-

able is dummy (closed, bound), because it satisfies

all the three signs for dummy variables that we saw

before:

(I) It is possible to substitute for the letter n any

other letter, without changing the value of the

expression. Indeed, the sentences

(∀m ∈ Z)(a|m =⇒ b|m2) , (9.134)

(∀q ∈ Z)(a|q =⇒ b|q2) , (9.135)

(∀u ∈ Z)(a|u =⇒ b|u2) , (9.136)
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are all equivalent to “(∀n ∈ Z)(a|n =⇒ b|n2)”.
(II) If you ask somebody to execute the computa-

tion described by this sentence, then this per-

son does not need to be told what the value of

the variable n, is, because the computation it-

self generates the value or values it needs for

the variable. (Indeed, to execute the computa-

tion described by the sentence “(∀n ∈ Z)(a|n =⇒
b|n2)”, the person doing the computation has to

do the following:

(a) look at all the integers, and for each integer

do the following:

i. call the integer n,

ii. determine if “a|n =⇒ b|n2 is true,
(b) then look at all the results of the computa-

tions, for all the integers. If the are all “true”

write “true”. If one of the results is “false”,

write ‘false”.

The key point here is that the persons do-

ing the computation does need to ask

“who is n?” because they themselves

will generate the values of n to be looked

at.

This is to be contrasted with a and b. The per-
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son doing the computation cannot do anything

without asking first “‘who are a and b?”. So a

and b are free variables.

(III) The sentence “(∀n ∈ Z)(a|n =⇒ b|n2)” is

equivalent to another sentence not involving

the variable n at all. Indeed: “(∀n ∈ Z)(a|n =⇒
b|n2)” is equivalent to ”if an integer is divisible

a, then its square is divisible by b”. And you can

see that this sentence contains a and b but not

n.

5. The expression

p ∈ Z ∧ p > 1 ∧ (∀j ∈ IN)(∀k ∈ IN)
(

jk = p =⇒ (j = 1 ∨ k = 1)
)

(9.137)

is a sentence. It contains three variables, namely,

p, j, and k. The variable p is free, but j and k are

bound. So it should be possible to find an equivalent

sentence that does not contain j and k at all. And,

indeed, here is the sentence: “p is a prime number”.

This is not a proposition: its truth value depends on

p. The sentence is true for p if p is a prime number,

and is false if p is not a prime number.

6. The sentence

(∀p ∈ Z)

(

p > 1∧(∀j ∈ IN)(∀k ∈ IN)
(

jk = p =⇒ (j = 1∨k = 1)
)
)

(9.138)

contains three variables, namely, p, j, and k. They

are all bound. So the sentence is a proposition, and
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has a definite truth value. The sentence says “every

integer is prime”, which is of course false.

Important remark. Many students, when asked

to define “prime number”, answer by writing56 (9.138).

This, of course, is wrong. The students want to say

“p is prime if and only if (9.137) holds”, but instead

they end up saying “every integer is prime”, without

understanding the difference. Please do not do

that in your exam. �

Example 36. In each of the following sentences, the

variable n is bound:

• “(∀n ∈ Z)n2−n is even”. (In this case, the sentence

itself says: ”give n all possible integer values; for each

such value, compute n2 − n, see if it is even, and if

the answer is “yes” for all value of n, then say “true”;

otherwise say “false”.)

• “(∃n ∈ Z)n2 = 9”. (In this case, the sentence itself

says: ”give n all possible integer values; for each such

value, compute n2, and see if it is equal to 9; and if

the answer is “yes” for at least one value of n, then

say “true”; otherwise say “false”.)
56If you don’t believe me, I can show you exams in which several students wrote exactly

that. I don’t understand why this happens, but it does.
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• “
∑m

n=1 n
3 =

(
m(m+1)

2

)2

”. (In this case, the sentence

says: give n all possible integer values between 1 and

m; for each such value, compute n3; then add all the

results, and see it the sum is equal to
(
m(m+1)

2

)2

; if it

is, say “true”; otherwise say “false”. NOTE: In order

to execute these instructions, you need to know who

m is. So m is not a bound variable; the sentence

does not generate a value for m. We have to tell the

sentence who m is. So m is a free variable.)

• “(∀m ∈ IN)
∑m

n=1 n
3 =

(
m(m+1)

2

)2

”. (In this case,

the sentence says: givem all possible natural number

values; for each such value, do what was described

in the previous example, to decide if “
∑m

n=1 n
3 =

(
m(m+1)

2

)2

” is true or not. If if the answer is “true”

for all values of m, then say “true”; otherwise say

“false”.) So in this sentence m is also a bound vari-

able.

Example 37. The same letter variable can occur in a

sentence as both bound and free. So we really should

not talk about a variable being free or being bound in

a sentence: we should tall about an occurrence of a

variable being free or bound.
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For example, let S be the sentence

(∀n ∈ Z)2|n ∧ n = 7

This very weird sentence says “every integer is even, and

n is equal to 7.” The letter n occurs three times in it, so

there are three occurrences of n in S. The first

two are bound, and the third one is free. �

9.1.12 A convention about naming sentences: the expression P (x)

Sentences, like anything else, can be given letter names.

And for sentences we will usually use capital letters. So,

for example, a sentence could be called A, or B, or P ,

or Q, or X . But it will be convenient to sometimes use

more complicated names, such as P (x), or P (x, y).

And we will adopt the following very useful convention:

We are alloweda to call a sentence P (x), if x is free (i.e.,
not bound) in the sentence, that is, if the sentence does
not contain an x-quantifier or any other expression (such
as
∑

x=1N , or
∏N

x=1) that assigns values to x.
Similarly, we are allowed to call a sentence P (x, y), if
the variables x and y are free (i.e., not bound) in the
sentence, that is, if the sentence does not contain an x-
quantifier or a y-quantifier or any other expression (such

as
∑N

x=1, or
∑N

y=1, or
∏N

x=1,
∏N

y=1), that assigns values
to x or y.

aI am saying “we are allowed to” rather “we have to”. If a sentence has
x as an open variable, we don’t have to call it P (x). We can call it P ,
if we want to.
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Example 38.

• The following sentences can be called P (x):

1. 2 + 2 = 4,

2. x > 5,

3. (x + 2)2 = 7x− 3,

4. (y − x)2 ≥ 0,

5. y + 3 + y2,

6. (∀y ∈ IR)(y − x)2 ≥ 0,

7. (∀y ∈ IR)y2 ≥ 0,

8. (x + y)2 = x2 + 2xy + y2,

9. (∃y ∈ IR)x + y = 0,

10. (∀y ∈ IR)(∃z ∈ IR)y + z = x.

• and the following sentences cannot be called P (x):

1. (∀x ∈ IR)(x + 1)2 = x2 + 2x + 1,

2.
∑5

x=1 x
2 = 55,

3. (∀x ∈ IR)x.0 = 0.

• The following sentences can be called P (x, y):

1. 2 + 2 = 4,

2. x > 5,

3. (x + 2)2 = 7x− 3,
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4. (y − x)2 ≥ 0,

5. y + 3 + y2,

6. (x + y)2 = x2 + 2xy + y2.

• and the following sentences cannot be called P (x, y):

• (∀y ∈ IR)(y − x)2 ≥ 0,

• (∀y ∈ IR)y2 ≥ 0,

• (∀y ∈ IR)x + y = 0,

• (∀x ∈ IR)(x + 1)2 = x2 + 2x + 1,

• ∑5
x=1 x

2 = 55,

• (∃y ∈ IR)x + y = 0,

• (∀y ∈ IR)(∃z ∈ IR)y + z = x.

(NOTE: If it bothers you that we are allowing using the

name P (x) for “2 + 2 = 4” and “y + 3 + y2”, even

though these sentences have no x in them, the reason is

very simple: all that matters is that x is not bound in

these sentences. Whether it appears in them or not is

irrelevant.)
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9.1.13 Some problems

Problem 37. Prove each of the following propositions:

1. (∀n ∈ IN)
(
∑n

k=1 k = n(n+1)
2 =⇒∑n+1

k=1 k = (n+1)(n+2)
2

)

.

2. (∀n ∈ IN)
(
∑n

k=1 k
2 = (2n+1)n(n+1)

6 =⇒∑n+1
k=1 k

2 = (2n+3)(n+1)(n+2)
6

)

.

3. (∀n ∈ IN)

(

∑n
k=1 k

3 =
(
n(n+1)

2

)2
=⇒∑n+1

k=1 k
3 =

(
(n+1)(n+2)

2

)2
)

.

4. (∀n ∈ IN)(n < 2n =⇒ n+ 1 < 2n+1) .

5. (∀n ∈ IN)
(

n2 < 2n + 2 =⇒ (n+ 1)2 < 2n+1 + 2
)

.

6. (∀n ∈ IN)
(

n3 < 2n + 257 =⇒ (n+ 1)3 < 2n+1 + 257
)

.
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9.2 Substitution

Substitution

• If P (x) is a sentence and t is a term, then the

sentence obtained from P (x) by substituting

t for x is called P (t).

Example. If P (x) is the sentence “2 + 2 =

2 + x”, and t is the term “1 + 1”, then P (t)

is the sentence “2 + 2 = 2 + (1 + 1)”.

• We only allow the substitution of t

for x in P (x) when t is is free in P (x),

in the sense that P (x) does not con-

tain a quantifier or any other ex-

pression that assigns values to any

of the variables occurring in t.

Example. If P (x) is the sentence “ (∃y ∈ IR)y = x” (which is a sentence

that contains x as an open variable, so we are allowed to call this sentence

“P (x) ”), and t is the term “ y ”, then we are not allowed to substitute

t for x in P (x) and call the resulting sentence P (y). �

In the following example, I will show you why the restric-

tion on term substitution that we have just imposed in

the box on “Substitution” is necessary.

Example 39. One of the rules of logic is Rule ∀use,
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which says that

(∀use) If we have proved (∀x ∈ S)P (x), and t is a

term, then we can go to P (t).

Suppose we allowed this for any sentence P (x) and any

term t, with no restictions. Then we would be able to

take P (x) to be the sentence “ (∃y ∈ IR)y = x ” and t to

be the term “y + 1”.

The sentence “ (∀x ∈ IR)P (x) ” says

(∀x ∈ IR)(∃y ∈ IR)y = x .

It is easy to see that this sentence is in fact a true propo-

sition. And it is easy to prove it. (Proof: Let x be an

arbitrary real number. Pick y to be x. Then y is a witness

for (∃y ∈ IR)y = x. So by Rule ∃prove we have proved

(∃y ∈ IR)y = x for arbirary x ∈ IR. Hence by Rule ∀prove
we have proved that (∀x ∈ IR)(∃y ∈ IR)y = x.)

Now that we have proved “ (∀x ∈ IR)P (x) ”, if we

had no restriction on substitutions, we would be able to

substitute the term t for x in P (x), thus getting the

sentence P (t), that is, “ (∃y ∈ IR)y = y + 1 ”. But

this sentence is clearly false. So we do not want to be

able to prove it from a true sentence. The only way to

solve this problem is to avoid this kind of substitution.

�
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This is why, in order to avoid the problem that we pre-

sented in Example 39, we impose the restriction explained

earlier: in a sentence P (x) we can only substi-

tute for x a term t that does not contain any

variables that are bound in P (x).

So, for example, we can conclude from the sentence

“(∀x ∈ IR)(∃y ∈ IR)y 6= x” that “(∃y ∈ IR)y 6= 5”, or

“(∃y ∈ IR)y 6= x”, or “(∃y ∈ IR)y 6= x2 + z + 35”, but

not “(∃y ∈ IR)y 6= y”.

9.3 Forming sentences: the grammar of formal lan-
guage

The English language has a grammar, i.e., a set of rules

that restrict what combinations of words are acceptable

(“grammatically correct”) sentences. For example, “cows

eats grass” is not a grammatically correct English sen-

tence, because the subject is the noun “cows”, which is

plural, and the verb is “eats”, which is singular57

English grammar is very complicated, with lots of rules,

an enormous number of exceptions, and many cases where

it is unclear whether something is a grammatically cor-
57English grammar is crazy! Most nouns form their plural by adding an “s” at end, so

the plurals of “cow”, “duck”, “table” are “cows”, “ducks”, “tables”. But for most verbs
it’s the other way around: the singular ends with an “s” (as in “eats”, “swims”, “walks”)
and the plural is without the “s” (as in “eat”, “swim”, “walk”), so “cows eat grass” and
“ducks swim” are grammatically correct, but “cows eats grass” and “ducks swims” are
not. Go figure!
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rect sentence. (For example, people argue about whether

a sentence such as “He is determined to completely de-

stroy the evidence”, containing a split infinitive, is correct

or not.)

Formal mathematical language has a very simple gram-

mar. Here is the part of formal language grammar that

has to do with the formation of sentences. (There is an-

other part that deals with the formation of atomic sen-

tences. That will be discussed later.)

• Sentences are formed by combining atomic sentences,

connectives, and parentheses.

• Atomic sentences are sentences.

• If A, B are sentences, then we can form the sentences

A ∧B, A ∨B, A =⇒ B, and A⇐⇒ B.

• If A is a sentence, then we can form the sentence

∼ A, the negation of A,

• If A is a sentence and Q is a quantifier, then we

can form the sentence QA, known as an existential

quantification of A, if Q is an existential quantifier,

and as a universal quantification of A, if Q is a

universal quantifier58

58Quantifers were discussed in Section 9.4.2, on page 203. Recall that: the symbols
“∀ ” and “∃ ” are the quantifier symbols. Using these symbols, we can form expressions
such as “ (∀x) ” and “ (∃x) ”, called unrestricted quantifiers, and “ (∀x ∈ S) ” and
“ (∃x ∈ S) ”, called restricted quantifiers.
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• When a sentence A is combined with other sentences

or connectives to form another sentence, then: if A

is of the form P =⇒ Q, or P ∧ Q, or P ∨ Q, or

P ⇐⇒ Q, then A has to be enclosed in parentheses

before we form the combination.

Example 40. Let us say that “if n is an integer then if n

is even then n+1 is odd”. To say this, we use the atomic

sentences “2|n” (“n is even”) and “2|n + 1” (“n + 1 is

even”) and the connectives “∼” and “(∀n ∈ Z)”. We

negate “2|n+1” to form the sentence “∼ 2|n+1”, which

says “n+1 is odd”. Then we combine “2|n” and “∼ 2|n+
1” using the connective “=⇒”, and form the sentence

“2|n =⇒∼ 2|n + 1” (“if n is even then n + 1 is odd”).

Finally, in order to assert that “2|n =⇒∼ 2|n+1” is true

for every integer n, we quantify “2|n =⇒∼ 2|n + 1” by

writing the quantifier “(∀n ∈ Z)” to its left. But before

we do that, since the sentence “2|n =⇒∼ 2|n + 1” is

of the form A =⇒ B, we enclosed it in parentheses, by

writing “(2|n =⇒∼ 2|n + 1)” . The final result is the

sentence

(∀n ∈ Z)(2|n =⇒∼ 2|n + 1) .

This sentence says precisely what we want, i.e., that the

statement “if n is even then n+1 is odd” is true for every

integer n.
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Example 41. Suppose we want to say

if a natural number p has the prop-

erty that whenever two integers a, b

are such that p divides ab it follows

that p divides a or p divides b, then

p is a prime number or p = 1

in formal language.

We observe first that sentence clearly says that some-

thing is true for every natural number p, so the sentence

is of the form “ (∀n ∈ IN)A ”. Now, A is of the form

B =⇒ C, where B is the sentence “p has the property

that whenever two integers a, b are such that p divides

ab it follows that p divides a or p divides b”, and C is

the sentence “p is a prime number or p = 1”.

Then, if formal language, A says

(∀a ∈ Z)(∀b ∈ Z)
(

p|ab =⇒ (p|a ∨ p|b)
)

,

and B says

p = is a prime number ∨ p = 1 .

So our sentence says

(∀p ∈ IN)

(

(∀a ∈ Z)(∀b ∈ Z)
(

p|ab =⇒ (p|a∨p|b)
)

=⇒ (p is a prime number∨p = 1)

)

.

This is not yet a completely formal sentence, because it

has the words “is a prime number”. In order to get a
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completely formal sentence, we can substitute for “p is a

prime number” the meaning of “p is a prime number” in

formal language, that is,

(∀k ∈ IN)
(

k|p =⇒ (k = 1 ∨ k = p)
)

.

The result is

(∀p ∈ IN)

(

(∀a ∈ Z)(∀b ∈ Z)
(

p|ab =⇒ (p|a ∨ p|b)
)

=⇒
(

(∀k ∈ IN)
(
k|p =⇒ (k = 1 ∨ k = p)

)
∨ p = 1

)
)

.

Notice that this sentence contains several letter variables,

namely, p, a, b, and k, but they are all bound variables,

so the sentence is a proposition. And we can see this by

rephrasing the sentence without using any letter variables

at all. as follows:

if a natural number has the property that

whenever it divides the product of two

integers it follows that it divides one of

them, then the natural number is either

one or a prime number.
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9.4 How sentences are constucted

9.4.1 The seven logical connective symbols

There are seven logical connectivesa. They are:

1. ∼ : negation (”it’s not the case that”),

2. ∧ : conjunction (“and”),

3. ∨ : disjunction (“or”),

4. =⇒ : implication (“implies”, “if · · · then”),
5. ⇐⇒ : biconditionsl (”if and only if”),

6. universal quantifiers,

7. existential quantifiers.
aA Logical connective is a symbol that is used to combine sentences to form

new sentences.

9.4.2 The quantifiers

• A quantifier is an expression

(∀x) or (∀x ∈ S) or (∃x) or (∃x ∈ S) .

where x is a variable and S is a set.

• The symbol “∀” is called the universal quantifier symbol.

• The symbol “∃” is called the existential quantifier symbol.

• “(∀x)” is an unrestricted universal quantifier,
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• “(∀x ∈ S)” is a restricted universal quantifier.

• “(∃x)” is an unrestricted existential quantifier,

• “(∃x ∈ S)” is a restricted existential quantifier,

9.4.3 Sentence types

Every mathematical sentence is of one,

and only one, of the following eight

types:

1. atomic,

2. negation (“∼ A”),

3. conjunction (“A ∧ B”),

4. disjunction (“A ∨B”),

5. implication (“A =⇒ B”),

6. biconditional (“A⇐⇒ B”),

7. universal (“(∀x)P (x)” or “(∀x ∈ S)P (x)”)

8. existential (“(∃x)P (x)” or “(∃x ∈ S)P (x)”).

9.5 Forming sentences

• Sentences are formed by combining atomic sentences,

connectives, and parentheses.

• Atomic sentences are sentences.
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• If A, B are sentences, then we can form the sentences

A ∧B, A ∨B, A =⇒ B, and A⇐⇒ B.

• If A is a sentence, then we can form the sentence

∼ A, the negation of A,

• If A is a sentence and Q is a quantifier, then we

can form the sentence QA, known as an existential

quantification of A, if Q is an existential quantifier,

and as a universal quantification of A, if Q is a

universal quantifier.

• When a sentence A is combined with other sentences

or connectives to form another sentence, then: if A

is of the form P =⇒ Q, or P ∧ Q, or P ∨ Q, or

P ⇐⇒ Q, then A has to be enclosed in parentheses

before we form the combination.

Example 42. Let us say that “if n is an integer then if n

is even then n+1 is odd”. To say this, we use the atomic

sentences “2|n” (“n is even”) and “2|n + 1” (“n + 1 is

even”) and the connectives “∼” and “(∀n ∈ Z)”. We

negate “2|n+1” to form the sentence “∼ 2|n+1”, which

says “n+1 is odd”. Then we combine “2|n” and “∼ 2|n+
1” using the connective “=⇒”, and form the sentence

“2|n =⇒∼ 2|n + 1” (“if n is even then n + 1 is odd”).

Finally, in order to assert that “2|n =⇒∼ 2|n+1” is true
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for every integer n, we quantify “2|n =⇒∼ 2|n + 1” by

writing the quantifier “(∀n ∈ Z)” to its left. But before

we do that, since the sentence “2|n =⇒∼ 2|n + 1” is

of the form A =⇒ B, we enclosed it in parentheses, by

writing “(2|n =⇒∼ 2|n + 1)” . The final result is the

sentence

(∀n ∈ Z)(2|n =⇒∼ 2|n + 1) .

This sentence says precisely what we want, i.e., that the

statement “if n is even then n+1 is odd” is true for every

integer n.

9.5.1 When do we put parentheses?

When a sentence A is combined with other sen-

tences or connectives to form another sentence,

then: if A is of the form P =⇒ Q, or P ∧ Q, or

P ∨Q, or P ⇐⇒ Q, then A has to be enclosed in

parentheses before we form the combination.

Example 43. Suppose you want to say that

If an integer n is even, then n2 is divisible by 4.

You start with the atomic sentences “ 2|n ” (“n is even”)

and “ 4|n2 ” (“n2 is divisible by 4 ”).

Then you combine these sentences using the implica-
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tion connective, and get

2|n =⇒ 4|n2 , (9.139)

that is, “if n is even, then n2 is divisible by 4 ”.

Finally, it is clear that the sentence is intended to be

an assertion for every integer n, so you quantify it with

a universal quantifier. But before you quantify, you have

to remember that (9.139) is an implication, that is, a sen-

tence of the form A =⇒ B. So before you quantify

it, you have to enclose it in parentheses.

The final result is the proposition

(∀n ∈ Z)(2|n =⇒ 4|n2) . (9.140)

What would have happened if you had not put the

parentheses? You would have ended up with

(∀n ∈ Z)2|n =⇒ 4|n2 , (9.141)

which is a completely different sentence! Sentence (9.141)

says that the sentence “(∀n ∈ Z)2|n ” implies the sen-

tence “ 4|n2 ”. In other words, (9.141) says: “if every

integer is even, then n is divisible by 4”. This is not even

a proposition, because the third “n” is an open variable.

�

9.6 The 14 logical rules

Here is the list of the fourteen logical rules.
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1
Rule for using a conjunction (Rule ∧use)

If P , Q are sentences, and you have proved P ∧ Q, then you are
allowed to go to P , and you are also allowed to go to Q.

2
Rule for proving a conjunction (Rule ∧prove)

If P , Q are sentences, and you have proved P and have proved Q,
then you are allowed to go to P ∧Q,

3
Rule for using an implication (Rule =⇒use, a.k.a. Modus

Ponens)

If P , Q are sentences, and you have proved P =⇒ Q and have
proved P , then you are allowed to go to Q.

4
Rule for proving an implication (Rule =⇒prove)

If P , Q are sentences, and you have proved Q assuming P , then
you are allowed to go to P =⇒ Q.

5
Rule for using a biconditional (Rule ⇐⇒use)

If P , Q are sentences, and you have proved P ⇐⇒ Q, then you can
go to P =⇒ Q and to Q =⇒ P .

6
Rule for proving a biconditional (Rule ⇐⇒prove)

If P , Q are sentences, and you have proved P =⇒ Q and Q =⇒ P ,
then you are allowed to go to P ⇐⇒ Q.

7
Rule for using a disjunction (Rule ∨use, a.k.a. the proof

by cases rule)

If P , Q, R are sentences, and you have proved P ∨ Q, P =⇒ R,
and Q =⇒ R, then you can go to R.
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8
Rule for proving a disjunction (Rule ∨prove)

Suppose P and Q are sentences. Then, if you have proved ∼ P =⇒
Q or ∼ Q =⇒ P then you can go to P ∨Q.

9

The proof by contradiction rule

(I) If, assuming A, we prove C, which is a contradiction, then we
can go to ∼ A.

(II) If, assuming ∼ A, we prove C, which is a contradiction, then
we can go to A.

10

Rule for using universal sentences (Rule ∀use, a.k.a. the
“universal specialization rule”)

If P (x) is a sentence and t is a term that does not contain any
variables that are bound in P (x), then

• if you have proved (∀x)P (x), you can go to P (t);

• If you have proved that (∀x ∈ S)P (x), and that t ∈ S, then
you can go to P (t).

11

Rule for proving universal sentences (Rule ∀prove, a.k.a.
the “universal generalization rule”)

(I) If, starting with “Let x be arbitrary”, you prove P (x), then
you are allowed to go to (∀x)P (x).

(II) If, starting with “Let x ∈ S be arbitrary”, or “Let x be an
arbitrary member of S”, you prove P (x), then you are allowed
to go to (∀x ∈ S)P (x).

12

Rule for using existential sentences (Rule ∃use, a.k.a. the
“existential specialization rule”)

If P (x) is a sentence, and the letter a is not in use as the name of
anything, then:

• If you have proved (∃x)P (x), then you can introduce a witness
for (∃x)P (x), and call it a, so that this new object will satisfy
P (a).

• In addition, if S is a set, and you have proved that (∃x ∈
S)P (x), then you can stipulate that a ∈ S as well.
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13

Rule for proving existential sentences, (Rule ∃prove, a.k.a.
the “existential generalization rule”)

Suppose P (x) is a sentence and w is a term that does not contains
any variables that are bound in P (x). Then

(I) If w is a witness for (∃x)P (x) (i.e., if P (w)), then you can go
to (∃x)P (x).

(II) If w is a witness for (∃x ∈ S)P (x) (i.e., if w ∈ S and P (w)),
then you can go to (∃x ∈ S)P (x).

14
“Substitution of equals for equals” (Rule SEE)

If P (x) is a sentence, s and t are terms, and you have proved s = t
or t = s, and you have also proved P (s), then you can go to P (t).

9.7 Some problems, with solutions

Problem 38. For the sentence

(∀n ∈ Z)(∃m ∈ Z)m > n , (9.142)

i. Translate the sentence into reasonable English.

ii. List all the variables that occur in the sentence, and indicate which ones
are free (i.e. open) and which ones are bound (i.e., dummy, or closed). If a
variable occcurs in the sentence more than once, it may happen that some
of the occurrences are free and others are boiund. If this happens, say it.

iii. Indicate whether the sentence is a proposition (i.e., has no open variables)
or not.

iv. If the sentence is a proposition, then

a. indicate whether it is true or false,

b. prove the assertion that you made to answer part a.

Solution.

i. Sentence (9.142) says: “for every integer n there exists an integer m such
that m > n”.

ii. The variables occurring in (9.142) are m and n. Both are bound. The
sentence has no free variables.

iii. The sentence is a proposition.



Math 300, Fall 2019 211

iv.a The sentence is true.

iv.b Proof of (9.142):

Let n ∈ Z be arbitrary.

We want to prove “(∃m ∈ Z)m > n”, and for that purpose we are
going to find a witness.

Chooe w = n+ 1.

Why do I choose w this way? Because it works. How do I know it
works? In this case, it is quite obvious: I need an integer greater than
n, so n+ 1 is a natural choice.

Then w ∈ Z and w > n.

So w is a witness for “(∃m ∈ Z)m > n”.

Hence (∃m ∈ Z)m > n. [Rule ∃prove]
So we have proved “(∃m ∈ Z)m > n” for arbitrary n ∈ Z.

Hence (∀n ∈ Z)(∃m ∈ Z)m > n . [Rule ∀prove] Q.E.D.

Problem 39. For the sentence

(∃m ∈ Z)m > n , (9.143)

perform exactly the same tasks i., ii., iii., and iv. (a. and b.) as in Problem 38.

Solution.

i. Sentence (9.143) says: “there exists an integer m such that m > n”.

ii. The variables occurring in (9.143) are m and n. The variable m is bound,
and m is free.

iii. The sentence is a not a proposition.

iv.a,b Since the sentence is not a proposition, questions [iv.a] and [iv.b] do not
apply.

Problem 40. For the sentence

(∃m ∈ Z)(∀n ∈ Z)m > n , (9.144)

perform exactly the same tasks i., ii., iii., and iv. (a. and b.) as in Problem 38.

Solution.

i. Sentence (9.144) says: “there exists an integer m such that m is larger than
every integer”.

ii. The variables occurring in (9.144) are m and n. Both are bound. The
sentence has no free variables.
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iii. The sentence is a proposition.

iv.a The sentence is false.

iv.b Proof that (9.144) is false:

We want to prove that ∼ (∃m ∈ Z)(∀n ∈ Z)m > n.

We will do it by contradiction.

Assume that (∃m ∈ Z)(∀n ∈ Z)m > n.

Pick a witness w, so w ∈ Z and (∀n ∈ Z)m > n. [Rule ∃use]
Then w > w + 1. [Rule ∀use].
But (∀n ∈ Z)n ≤ n+ 1.

So w ≤ w + 1. [Rule ∀use]
Hence ∼ w > w + 1.

So w > w + 1∧ ∼ w > w + 1 [Rule ∧prove]

And “w > w + 1∧ ∼ w > w + 1” is a contradiction.

So we have proved a contradiction assuming that (∃m ∈ Z)(∀n ∈ Z)m > n.

Therefore ∼ (∃m ∈ Z)(∀n ∈ Z)m > n . [Proof by contradiction rule] Q.E.D.

Problem 41. For the sentence

(∀n ∈ Z)(2|n =⇒ 4|n2), (9.145)

perform exactly the same tasks i., ii., iii., and iv. (a. and b.) as in Problem 38.

Solution.

i. Sentence (9.145) says: “the square of every even integer is divisible by 4”.

ii. The only variable occurring in (9.145) is n. And it is bound. The sentence
has no free variables.

iii. The sentence is a proposition.

iv.a The sentence is true.

iv.b Proof of (9.145):

We want to prove the universal sentence (9.145), and we are going to do it using
Rule ∀prove.

Let n be an arbitrary integer.
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We want to prove that 2|n =⇒ 4|n2. And for that purpose we are going to
use Rule =⇒prove.

Assume tbat 2|n.
Then (∃k ∈ Z)n = 2k.

Write n = 2k, k ∈ Z. [Rule ∃use]
Then n2 = (2k)2 = 4k2.

Furthermore, k2 ∈ Z. [Reason: k ∈ Z and (∀k ∈ Z)k2 ∈ Z.]

So k2 is a witness for (∃k ∈ Z)n2 = 4k.

Therefore (∃k ∈ Z)n2 = 4k. [Rule ∃prove]
So 4|n2. [Definition of “|”]

We have proved “4|n2” assuming “2|n”.

Hence 2|n =⇒ 4|n2. [Rule =⇒prove]

We have proved “2|n =⇒ 4|n2” for arbitrary n ∈ Z.

Hence (∀n ∈ Z)(2|n =⇒ 4|n2) [Rule ∀prove]
Q.E.D.

Problem 42. For the sentence

(∀n ∈ Z)2|n =⇒ 4|n2 , (9.146)

perform exactly the same tasks i., ii., iii., and iv. (a. and b.) as in Problem 38.

Solution.

i. Sentence (9.146) says: “if every integer is even then n2 is divisible by 4”.

ii. The only variable occurring in (9.142ax) is n. This variable occurs in (9.146)
three times; the first two occurrences are bound, and the third one is free.

iii. The sentence is a not a proposition.

iv.a,b Since the sentence is not a proposition, questions [iv.a] and [iv.b] do not
apply.

Problem 43. For the sentence

(∀n ∈ Z)(2|n ∧ 4|n2), (9.147)

perform exactly the same tasks i., ii., iii., and iv. (a. and b.) as in Problem 38.



Math 300, Fall 2019 214

Solution.

i. Sentence (9.147) says: “for every integer n, n is even and n2 is divisible by
4”.

ii. The only variable occurring in (9.145) is n. And it is bound. The sentence
has no free variables.

iii. The sentence is a proposition.

iv.a The sentence is false.

iv.b Short proof that (9.147) is false:

If “(∀n ∈ Z)(2|n∧4|n2)” was true, then “2|n∧4|n2” would be true for every
n ∈ Z.

But “2|n ∧ 4|n2” is false for n = 1.

So “(∀n ∈ Z)(2|n ∧ 4|n2)” is false.

Q.E.D.

Problem 44. For the sentence

(∀n ∈ Z)(2|n ∨ 4|n2), (9.148)

perform exactly the same tasks i., ii., iii., and iv. (a. and b.) as in Problem 38.

Solution.

i. Sentence (9.148) says: “for every integer n, n is even or n2 is divisible
by 4”.

ii. The only variable occurring in (9.145) is n. And it is bound. The
sentence has no free variables.

iii. The sentence is a proposition.
iv.a The sentence is false.

iv.b Short proof that (9.148) is false:

If “(∀n ∈ Z)(2|n∨ 4|n2)” was true, then “2|n∨ 4|n2” would be true for
every n ∈ Z.

But “2|n ∨ 4|n2” is false for n = 1.

So “(∀n ∈ Z)(2|n ∨ 4|n2)” is false.

Q.E.D.

Problem 45. For the sentence

(∀n ∈ Z)(2|n ⇐⇒ 4|n2), (9.149)

perform exactly the same tasks i., ii., iii., and iv. (a. and b.) as in Problem 38.
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Solution.

i. Sentence (9.145) says: “for every even integer n, n is even if and only if n2

is divisible by 4”.

ii. The only variable occurring in (9.145) is n. And it is bound. The sentence
has no free variables.

iii. The sentence is a proposition.

iv.a The sentence is true.

Short proof of (9.149):

We want to prove the universal sentence (9.149). According to Rule ∀prove, we can
do this by proving “(2|n ⇐⇒ 4|n2)” for an arbitarry integer n.

Let n be an arbitrary integer.

We want to prove the biconditional sentence “2|n ⇐⇒ 4|n2”. According to
Rule ⇐⇒prove, we can do this by proving the implications “2|n =⇒ 4|n2”
and “4|n2 =⇒ 2|n”.

Short proof of “2|n =⇒ 4|n2”.

We have already proved that (∀n ∈ Z)(2|n =⇒ 4|n2) in our solution of
problem 41.

So “2|n =⇒ 4|n2” follows by Rule ∀use.

Short proof of “4|n2 =⇒ 2|n”.

Assume 4|n2.

We will prove “2|n” by contradiction.

Assume ∼ 2|n.
Then n is odd.

So n2 is odd. [Reason: the product of two odd integers is odd]

That is, ∼ 2|n2.

But 4|n2, so n2 is even.

That is, 2|n2.

Hence 2|n2∧ ∼ 2|n2, which is a contradiction.

Since we have proved a contradiction assuming ∼ 2|n, we can conclude
that 2|n.
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Since we have proved 2|n assuming 4|n2, we can conclude, thanks to
Rule =⇒prove, that 4|n2 =⇒ 2|n.

Since we have proved “2|n =⇒ 4|n2” and “4|n2 =⇒ 2|n”, we can conclude,
thanks to Rule ⇐⇒prove, that 2|n ⇐⇒ 4|n2.

We have proved “2|n ⇐⇒ 4|n2” for arbitrary n ∈ Z.

Hence (∀n ∈ Z)(2|n ⇐⇒ 4|n2) [Rule ∀prove]
Q.E.D.

Problem 46. Let A, B, C be propositions. Prove, using the rules of logic, that

(
A =⇒ (B =⇒ C)

)
⇐⇒

(

(A ∧B) =⇒ C
)
. (9.150)

Solution.

We want to prove a biconditional sentence. For that purpose. we use Rule ⇐⇒prove:
to prove P ⇐⇒ Q, prove P =⇒ Q and Q =⇒ P .

Proof of “
(
A =⇒ (B =⇒ C)

)
=⇒

(

(A ∧B) =⇒ C
)

”.

Assume A =⇒ (B =⇒ C) . We want to prove (A ∧B) =⇒ C.

Assume A ∧B . We want to prove C.

It follows from A ∧B that A. [Rule ∧use]

It follows from A and A =⇒ (B =⇒ C) that B =⇒ C. [Rule =⇒use]

It follows from A ∧B that B, [Rule ∧use]

It follows from B and B =⇒ C that C . [Rule =⇒use]

Since we have proved C assuming A∧B, we conclude that (A ∧B) =⇒ C .

[Rule =⇒prove]

Since we have proved (A ∧B) =⇒ C assuming A =⇒ (B =⇒ C), we can go to

(

A =⇒ (B =⇒ C)
)

=⇒
(
(A ∧B) =⇒ C

)
, (9.151)

completing the proof of “
(

A =⇒ (B =⇒ C)
)

=⇒
(
(A ∧B) =⇒ C

)
”.
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Proof of “
(

(A ∧B) =⇒ C
)

=⇒
(

A =⇒ (B =⇒ C)
)

”.

Assume (A ∧B) =⇒ C . We want to prove A =⇒ (B =⇒ C).

Assume A . We want to prove B =⇒ C.

Assume B . We want to prove C.

Since we have A and B, we can go to A ∧B. [Rule ∧prove]

Since we have A ∧B and (A ∧B) =⇒ C, we can go to C .
[Rule =⇒use]

Since we have proved C assuming B, we can go to B =⇒ C .
[Rule =⇒use]

Since we have proved B =⇒ C assuming A, we can go to A =⇒ (B =⇒ C) .

[Rule =⇒use]

Since we have proved A =⇒ (B =⇒ C) assuming (A ∧B) =⇒ C, we can go to

(
(A ∧B) =⇒ C

)
=⇒

(

A =⇒ (B =⇒ C)
)

, (9.152)

completing the proof of “
(
(A ∧B) =⇒ C

)
=⇒

(

A =⇒ (B =⇒ C)
)

”.

Since we have proved both implications (9.151) and (9.152), we can conclude from
Rule ⇐⇒prove that

(

A =⇒ (B =⇒ C)
)

⇐⇒
(
(A ∧B) =⇒ C

)
, (9.153)

Q.E.D.

Problem 47. Let P (x), Q(x), be one-variable predicates, and let S be a set.

1. Prove, using the rules of logic, the sentence

(∀x ∈ S)(P (x) ∧Q(x)) ⇐⇒
(

(∀x ∈ S)P (x) ∧ (∀x ∈ S)Q(x)
)

(9.154)

(Here is an example: suppose S is the set of all people, “P (x)” stands for
“x likes tea” and “Q(x)” stands for “x likes coffee”. Then the sentence
“(∀x ∈ S)(P (x) ∧ Q(x))” says “everybody likes tea and coffee”, and the
sentence “(∀x ∈ S)P (x) ∧ (∀x ∈ S)Q(x)” says “everybody likes tea and
everybody likes coffee”. It is clear that both sentences say the same thing,
so it is obvious that they are equivalent, so that the sentence (9.154) is true.)
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2. Prove that the sentence

(∀x ∈ S)(P (x) ∨Q(x)) ⇐⇒
(

(∀x ∈ S)P (x) ∨ (∀x ∈ S)Q(x)
)

(9.155)

cannot be proved using the rules of logic. (HINT: Find an example of a pair
of predicates P (x), Q(x) for which (9.155) is false.)

Solution. First, we prove (9.154).

Sentence (9.154) is a biconditional, of the form P ⇐⇒ Q. So, in order to prove it,
we will use Rule ⇐⇒prove, and prove both P =⇒ Q and Q =⇒ P .

Proof of “(∀x ∈ S)(P (x) ∧Q(x)) =⇒
(

(∀x ∈ S)P (x) ∧ (∀x ∈ S)Q(x)
)

”.

Assume
(∀x ∈ S)(P (x) ∧Q(x)) . (9.156)

We want to prove (∀x ∈ S)P (x) ∧ (∀x ∈ S)Q(x).

For this purpose, we will use Rule ∧prove, and prove the sentences (∀x ∈
S)P (x) and (∀x ∈ S)Q(x).

Proof of (∀x ∈ S)P (x):

Let u be an arbitrary member of S.

Then P (u) ∧Q(u). [Rule ∀use, from (9.156)]

Therefore P (u). [Rule ∧use, from P (u) ∧Q(u).

So we have proved P (u) for an arbitary u ∈ S, and then (∀x ∈ S)P (x) .

[Rule ∀prove]
Proof of (∀x ∈ S)Q(x):

Let u be an arbitrary member of S.

Then P (u) ∧Q(u). [Rule ∀use, from (9.156)]

Therefore Q(u). [Rule ∧use, from P (u) ∧Q(u).

So we have provedQ(u) for an arbitary u ∈ S, and then (∀x ∈ S)Q(x) .

[Rule ∀prove]

We have proved (∀x ∈ S)P (x) and (∀x ∈ S)Q(x). Therefore

(∀x ∈ S)P (x) ∧ (∀x ∈ S)P (x) , (9.157)

by Rule ∧prove.
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Since we have proved 9.157) assuming (9.156), we can go to

(∀x ∈ S)(P (x) ∧Q(x)) =⇒
(

(∀x ∈ S)P (x) ∧ (∀x ∈ S)Q(x)
)

, (9.158)

completing the proof of (9.158).

Proof of “
(

(∀x ∈ S)P (x) ∧ (∀x ∈ S)Q(x)
)

=⇒ (∀x ∈ S)(P (x) ∧Q(x))”

Assume
(∀x ∈ S)P (x) ∧ (∀x ∈ S)Q(x) . (9.159)

We want to prove (∀x ∈ S)(P (x) ∧Q(x)).

Let u be an arbitrary member of S.

It follows from (9.159) by Rule ∧use that (∀x ∈ S)P (x).

And it also follows that (∀x ∈ S)Q(x).

Since (∀x ∈ S)P (x), and u ∈ S, it follows by Rule ∀use that P (u).

Since (∀x ∈ S)Q(x), and u ∈ S, it follows by Rule ∀use that Q(u).

Since we have proved P (u) and Q(u), it follows by Rule ∧prove that

P (u) ∧Q(u) .

Since we have proved P (u) ∧ Q(u) for arbitrary u in S, it follows by Rule
∀prove that

(∀x ∈ S)(P (x) ∧Q(x)) . (9.160)

Since we have proved (9.160) assuming (9.159), it follows from Rule =⇒prove that

(

(∀x ∈ S)P (x) ∧ (∀x ∈ S)Q(x)
)

=⇒ (∀x ∈ S)(P (x) ∧Q(x)) . (9.161)

completing the proof of (9.161).

Since we have proved (9.158) and (9.161), it follws by Rule ⇐⇒prove that

(∀x ∈ S)(P (x) ∧Q(x)) ⇐⇒
(

(∀x ∈ S)P (x) ∧ (∀x ∈ S)Q(x)
)

, (9.162)

Q.E.D.

We now prove that (9.155) cannot be proved. We do this by exhibitng examples
of a set S and predicates P (x), Q(x) for which (9.155) is false.

Let S be the set of all people. Let “P (x)” stand for “x likes tea” and “Q(x)”
stand for “x likes coffee”. Then the sentence “(∀x ∈ S)(P (x) ∨ Q(x))” says “ev-
erybody likes tea or coffee”, and the sentence “(∀x ∈ S)P (x)∨ (∀x ∈ S)Q(x)” says
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“everybody likes tea or everybody likes coffee”. It is clear that both sentences
say totally different things. The sentence “everybody likes tea or everybody likes
coffee” is certainly false, because it is a disjunction “everybody likes tea ∨ every-
body likes coffee”, and both disjuncts (“everybody likes tea” and “everybody likes
coffee”) are false, so the disjunction is false.
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10 A more detailed introduction to logic

10.1 First-order predicate calculus

The language most mathematicians use to talk about

mathematical objects (numbers of various kinds, sets,

functions, lists, points, lines, planes, curves of various

kinds, spaces where we can do geometry, graphs, and

millions of other things) is a first-order predicate

calculus.

So let us explain what this means.

• The language is a “predicate calculus” because we

can use it to express predicates.

So let us review what “predicates” are.

10.1.1 Predicates

Remember that

A predicate is a sentencea involving one or more

(or zero) variables, in such a way that the sentence

has a definite truth valueb for each choice of values

of the variables.
a“Sentence” means the same as “statement”, or “assertion”.
bThe truth value of a sentence is “true” if the sentence is true and “false”

if the sentence is false.

For example:
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• “Alice likes Mark” is a zero-variables predicate. It is

either true or false.

• “x likes Mark” is a one-variable predicate. It is true

or false depending on who x is. For example, suppose

that Alice likes Mark but Andrew does not like Mark.

Then “x likes Mark” is true when x =Alice but “x

likes Mark” is false when x =Andrew.

If we call this predicate P (x), then P (Alice) is true

and P (Andrew) is false.

• “x likes y” is a two-variables predicate. It is true or

false depending on who x and y are. For example,

suppose that Alice likes Mark, Andrew does not like

Mark, Andrew likes Alice, and Mark does not like

Andrew. Then “x likes y” is true when x =Alice and

y =Mark, and when x =Andrew and y =Alice, but

“x likes y” is false when x =Andrew and y =Mark.

If we call this predicate P (x, y), then P (Alice,Mark)

is true but on the other hand P (Mark,Andrew) is

false.

• If S is the set of all people, then “(∀x ∈ S)x likes y”

says “everybody likes y”. This is a one-variable pred-

icate. We could call this predicate Q(y), and then
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we could define Q(y) as follows:

if y ∈ S then Q(y) means (∀x ∈ S)P (x, y) ,

(10.163)

or, in purely formal language:

(∀y ∈ S)
(

Q(y) ⇐⇒ (∀x ∈ S)P (x, y)
)

(10.164)

• “x likes y more than x likes z” is a three-variables

predicate.

• “2 + 2 = 4” and “2 + 2 = 5” are zero-variables

predicates. They are either true or false. (And, of

course, “2 + 2 = 4” is true and “2 + 2 = 5” is false.)

• “x > 0” and “2|n” are one-variable predicates. They
are true or false depending on who x (or n) is. For

example, “x > 0” is true x = 3 but is false for

x = −5. And “2|n” is true for n = 4 but is false for

n = 5.

• “x > y” and “m|n” are two-variables (i.e., binary)

predicates. They are true or false depending on who

x and y (orm and n) are. For example, “the sentence

x > y” is true for x = 5 and y = 4, but is false for

x = 5 and y = 6. And “m|n” is true for m = 3 and

y = 6, but is not true for m = 3 and y = 7.
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• “x+y = z”, “x+y > z”, and “n|m+ q2” are three-

variables predicates. The predicate “x + y = z”

is,true for x = 2, y = 3 and z = 5, but is false for

x = 2, y = 3 and z = 4. The predicate “x + y > z”

is true for x = 2, y = 3 and z = 4. but is false for

x = 2, y = 3 and z = 5. The predicate “n|m + q2”

is true for n = 5, m = 9, and q = 6, but is false

n = 5, m = 7, and q = 6.

• “x+2y2− z > u” and “a = bq+ r and 0 ≤ r < |b|”
are four-variables predicates. The predicate “x +

2y2 − z > u” is true for x = 2, y = 4. z = 3, u = 4,

but is false for x = 2, y = 1. z = 3, u = 3, The

predicate “a = bq + r and 0 ≤ r < |b|” is true for

a = 23, b = 5, q = 4 and r = 3, but is false for

a = 23, b = 5, q = 4 and r = 2.

10.2 Free and bound variables, quantifiers, and the
number of variables of a predicate

As was explained in the previous section, in a predicate

such as “x > y”, the variables x, y are free variables,

that is, variables that are free to be given any value we

want. We can plug in values for x and y, and for each

choice of values the resulting sentence has a definite truth

value, that is, is true or false.
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You should think of a predicate as a processing device,
with several “input channels”. The input channels are
the open variables. Each input channel is open, in
the sense that the entrance to the channel is open so
you can can put things in, or free, in the sense that we
are free to put things in there. Once you have put in a
value for, say, the variable x, then x is no longer open:
it becomes closed, or bound.

Once you have put in values in all the input channels, the

device processes these inputs, and produces a answer:

true, or false.

If, on the other hand, the predicate “x > y” appears

in a text after a statement such as

Let x = 5, y = 3.

then the variables x and y are no longer free: they are

bound variables59, because they are “attached” to

particular values.

We now look at another, very important way to turn

free variables into bound variables.

Let us consider, for example, the predicates

(∀y ∈ IR)x + 2y2 − z > u (10.165)
59Bound variables are also called closed variables, because they are not open: the

“input channel” through which we can input values for the variables is closed.
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and

(∃q ∈ Z)(∃r ∈ Z)(a = bq + r , and 0 ≤ r < |b|) .
(10.166)

You may think that these are four-variables predicates,

because each one of them contains four variables. (Pred-

icate (10.165) contains the variables x, y, z and u. Pred-

icate (10.166) contains the variables a, b, a and r.)

But this is not right:

(10.165) is a three-variables predicate, and

(10.166) is two-variables predicate..

Let me explain.

10.2.1 An example: a predicate with three free variables and one
bound variable

We first look at the predicate

(∀y ∈ IR)x + 2y2 − z > u . (10.167)

• The predicate (10.167) is built from the predicate

“x + 2y2 − z > u” by quantifying it, i.e., putting

a universal quantifier (∀y ∈ IR) in front.

• The unquantified predicate “x + 2y2 − z > u” con-

tains the variables x, y, z, u. These are four open

variables.

• So, if you are asked the “truth question”
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Is “x + 2y2 − z > u” true or false?

then you have to reply with a question of your own:

Who are x, y, z and u?

• But in the quantified predicate (10.167) the vari-

able y is quantified.

• So, if you are asked the “truth question”

Is “(∀y ∈ IR)x + 2y2 − z > u” true or false?

then you have to reply with the question:

Who are x, z and u?

• In the predicate “x+2y2−z > u”, the four variables

x, y, z and u are open variables, that is, “slots”, or

“input channels”, where you can put in (or “plug in”)

values for each of the variables.

• When you fill in the four slots by plugging in val-

ues for the variables, you get a proposition, i.e., a

sentence that has a definite truth value.
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A proposition is a sentence with no open vari-

ables
So a proposition is just true or false, whereas a predicate
with open variables is true or false depending on the
values of the variables.
Example:

1. The sentence “m ≥ n” has two open variables. It
is true if, for example, m = 3 and n = 1, and it is
false if, for example, m = 3 and n = 4.

2. The sentence “(∀m ∈ IN)m ≥ n” is true if, for
example, n = 1, and it is false if, for example, n =
2. So this sentence has one open variable, namely,
n.

3. The sentences

(∃n ∈ IN)(∀m ∈ IN)m ≥ n

and
(∀n ∈ IN)(∀m ∈ IN)m ≥ n

do not have any open variables. So they are propo-
sitions. The first one is true. (Reason: Take n = 1.
Then for arbitrary m ∈ IN m ≥ 1.) The second one
is false. (Reason: Take m = 1, n = 2. Then it is
not true that m ≥ n.)

• So, for example, if you plug in the values x = 2,
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y = 4, z = 3, u = 4, into the sentence

x + 2y2 − z > u

you get the proposition

19 > 4, ,

which is true.

• But in the quantified predicate “(∀y ∈ IR)x+ 2y2 −
z > u”, there is no y-slot. The three variables x,

z and u are open variables, that is, slots or input

channels where you can put in values. But y is not

an open variable.

• When you fill in the slots by plugging in values for

the three open variables, you get a proposition.

• So, for example, if you plug in the values x = 2,

z = −3, u = 4, into the sentence

(∀y ∈ IR)x + 2y2 − z > u

then you get the sentence

(∀y ∈ IR)2 + 2y2 + 3 > 4

which is equivalent to the sentence

(∀y ∈ IR)2y2 + 5 > 4 .
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And this sentence is true. (Proof: Let y ∈ IR be

arbitrary. Then 2y2 ≥ 0. But 5 > 4. So 2y2+5 > 4.

Hence “2y2 + 5 > 0” is true for arbitrary y ∈ IR.

Therefore “(∀y ∈ IR)2y2 + 5 > 4” is true.)

• The key point here is that the sentence “(∀y ∈
IR)x + 2y2 − z > u” does not have a y-slot

where you can plug in a value of y. That’s

because the sentence itself decides which value

or values of y to plug in. The quantifier (∀y ∈
IR) says: “let y be an arbitrary real number”. And

then, with the values of x, z and u supplied by you,

the truth value of the resulting sentence is deter-

mined. There is no need to ask “who is

y?”

Another way to see this is as follows: when you uni-

versally quantify a sentence by putting in front of it the

universal quantifier “(∀y ∈ IR)”, this adds to the sentence

a “generator of y-values”, that is, a new component that

tells the sentence what value of y to use. More precisely,

the universal quantifier “(∀y ∈ IR)” says “Let y be an

arbitrary real number”. And this closes the y-input

channel, so that it is no longer possible to plug a y-value

into the sentence from outside.
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  x+2y −z >  u 2

u

z

y

x

T or F

u=4

z=3

x=2

y=4 T x+2y −z >  u 
2

The sentence x+ 2y2 − z > u is a processing device that has four

input channels: the x-channel, the y-channel, the z-channel, and the
u-channel. When values for the four variables are inputted into the sen-
tence, the sentence produces a truth value. The four variables x, y, z, u
are open, or free. They are open, because the input channels are open
so that values of the variables can be put into them. They are free,
because the variables are not tied to any particular value.
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The quantified sentence (∀y ∈ IR)x+ 2y2 − z > u is a combination of

two interconnected processing units: the original unquantified sentence
“x + 2y2 − z > u”, and the quantifier “(∀y ∈ IR)”. The quantifier
generates a value for the quantified variable y (by saying “let y be an
arbitrary real number”) and, by doing so, it closes the y input channel,
so that y is no longer free; we cannot choose a value for y and plug it
in. The other three channels remain open. So in this sentence x, z and
u are open variables. but y is closed, or bound.

The other three letter variables (x, z and u) remain open.

So we can plug in values for them in order to obtain

propositions that have a definite truth value.

Summarizing:

• Even though the predicate “(∀y ∈ IR)x+ 2y2 − z >

u” appears to contain four letter variables, only three

of these variables (x, z and u) are open. The other

variable, y, is bound, or closed.
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• This means that the predicate “(∀y ∈ IR)x + 2y2 −
z > u” is a three variables, or three argu-

ments, predicate. Therefore:

– For each choice of values for x, z and u, the pred-

icate becomes a proposition, i.e. a sentence with

a definite truth value.

– If we want to give a name to this predicate, then

we can of course call it P , but if we want to

indicate the names of the free variables, we should

call it P (x, z, u).

– But we must not call it P (x, y, z, u), be-

cause if we give it such a name we would erro-

neously be suggesting that this predicate has a

“y-channel” where we can input values for the

variable y.

• For example, “(∀y ∈ IR)x + 2y2 − z > u” is true

for x = 4, z = 2, u = 1. (Proof: We want to

prove that (∀y ∈ IR)4 + 2y2 − 2 > 1, that is, that

(∀y ∈ IR)2 + 2y2 > 1. Let y ∈ IR be arbitrary.

Then y2 ≥ 0, so 2y2 ≥ 0, so 2 + 2y2 ≥ 2, and

2 > 1, so 2 + 2y2 > 1. Since “2 + 2y2 > 1” has been

proved to be true for arbitrary real y, it follows that

(∀y ∈ IR)2 + 2y2 > 1. Q.E.D.)
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• The predicate “(∀y ∈ IR)x + 2y2 − z > u” is false

for x = 4, z = 2, u = 8. (Proof: We want to prove

that “(∀y ∈ IR)4+2y2−2 > 1” is not true, i.e., that

“(∀y ∈ IR)2 + 2y2 > 8” is not true. Take y = 0.

Then “2+ 2y2 > 8” is not true, because “2+ 0 > 8”

is not true. So “(∀y ∈ IR)4 + 2y2 − 2 > 1” is not

true.Q.E.D.)

• The “truth question”, i.e., the extra question we need

to ask is order to be able to tell if “(∀y ∈ IR)x+2y2−
z > u” is true or false, is the question: “who are

x, z and u?”

• in order to have enough information to

determine if the sentence “(∀y ∈ IR)x+2y2−
z > u” is true or false, we do not have

to ask “who is y?”, because once you are

given the values of x, z and u, the quanti-

fied sentence itself determines if it is true

or false, because it is up to the sentence

to decide if it’s true for all y or not, and

it’s not up to you to choose a value for y.
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10.2.2 A second example: a predicate with two free variables and
two bound variables

We now look at the predicate

(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|) . (10.168)
As I said before, on page 226, (10.166) is a two-

variables predicate..

• Predicate (10.168) contains the variables a, b, q and

r. But q and r are quantified. So, if you are

asked the “truth question”

Is “(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|)”
true or false?

then you have to reply with a question of your own:

Who are a and b?

The variables a and b in (10.168) are “slots”, or “in-

put channels”, where you can put in (or “plug in”)

a value for each of the variables, and then you get a

proposition.

• So, for example, if you plug in the values a = 23,

b = 11, into the sentence

(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|)



Math 300, Fall 2019 236

then you get the sentence

(∃q ∈ Z)(∃r ∈ Z)(23 = 11q + r ∧ 0 ≤ r < 11) .

And this sentence is true. (Proof: To prove an exis-

tential statement we use rule ∃use: we exhibit values
of q and r for which the proposition “23 = 11q +

r ∧ 0 ≤ r < 11” is true. Take q = 2, r = 1. Then

23 = 11q + r and 0 ≤ r < 11. Hence “23 = 11q +

r∧ 0 ≤ r < 11” is true for some q, r ∈ Z. Therefore

“(∃q ∈ Z)(∃r ∈ Z)(23 = 11q + r ∧ 0 ≤ r < 11” is

true.)

• The key point here is that the sentence

(∃q ∈ Z)(∃r ∈ Z)(23 = 11q + r ∧ 0 ≤ r < 11)

does not have a q-slot or an r-slot where

you can plug in values for q and r. That’s

because the sentence itself decides which value

or values of q and r to plug in. The sentence

itself60 decides which values of q and r it has to look
60Remember: you must think of a sentence as a processing device. The unquantified

sentence “a = bq+r∧0 ≤ r < |b|” does the following: once it has been fed values for a, b, q
and r, it finds out if “a = bq+r∧0 ≤ r < |b|” is true or not; if it is true is says “yes”; if it is
false it says “no”. The quantified sentence “(∃q ∈ Z)(∃r ∈ Z)(23 = 11q+ r ∧ 0 ≤ r < 11)”
does a much more complicated job: once it has been fed values for a and b, the sentence
looks at all possible values of q and r, and sees whether it can find one choice of values of q
and r for which “23 = 11q+ r∧0 ≤ r < 11” is true; and then, if it find such values, it says
“yes”; and if it cannot find any values of q and r for which “23 = 11q+ r ∧ 0 ≤ r < 11” is
true, it says “no”.
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at, and then, with the values of a and b supplied

by you, the truth value of the resulting sentence is

determined.

• Another way to see this is as follows: the sentence

“a = bq + r ∧ 0 ≤ r < |b|” has four input chan-

nels that are open, or free, so you can put into each

channel a value of the corresponding variable.

But when you existentially quantify the sentence twice

by putting in front of it the two existential quanti-

fiera “(∃q ∈ Z)” and “(∃r ∈ Z)”, this adds to the

sentence a “generator of q-values” and a “generator

of r-values”, that is, two new components that tell

the sentence what values of q and r to look at. More

precisely, the existential quantifiers “(∃q ∈ IR)” and

“(∃r ∈ IR)” do the following:

– They look for a q-value and an r-value that make

the sentence “a = bq + r ∧ 0 ≤ r < |b|” true.

– If they find such values, then they send to the

sentence the message “yes, we have found val-

ues that make you true”, and then the sentence

produces the final verdict “yes, true”.

– If they do not find such values, then they send

to the sentence the message “no, we have not
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found values that make you true”, and then the

sentence produces the final verdict “no, not true”.

 T or F

T0<r<|b|a=bq+r

a=bq+r 0<r<|b|

a

a=23

q

r

b

q=4

r=3

b=5

The sentence a = bq + r ∧ 0 ≤ r < |b| is a processing device that has

four input channels:the a-channel, the q-channel, the r-channel, and
the b-channel. When values for the four variables are inputted into
the sentence, the sentence produces a truth value. The four variables
a, q, r, b are open, or free. They are open, because the input channels
are open so that values of the variables can be put into them. They
are free, because the variables are not tied to any particular value.
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The quantified sentence (∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|) is

a combination of three interconnected processing units: the original
unquantified sentence “a = bq + r ∧ 0 ≤ r < |b|)”, and the two
quantifiers “(∃q ∈ Z”, “(∃r ∈ Z”. The quantifiers generate values
for the quantified variablea q, r. (They look for values of q, r that
will make “a = bq + r ∧ 0 ≤ r < |b|)” true. If they find them,
then they send one pair of such values to the main processing unit
“a = bq+ r ∧ 0 ≤ r < |b|)”, which then says “yes, true”. If they do not
find them, then they send some values to the main processing unit, but
these values will not work, so the main processing unit wil say “no, not
true”.) By doing so, the quantifiers close the q and r input channels,
so that q and f are no longer free; we cannot choose values for q and
r and plug them in. The other two channels remain open. So in this
sentence a and b are open variables. but q and r are closed, or bound.

The other two letter variables (a and b) remain open.

So we can plug in values for them in order to obtain

propositions that have a definite truth value.

Summarizing:
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• Even though the predicate

(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|)
appears to contain four letter variables, only two of

these variables (a and b) are open. The other vari-

ables, q and r, are bound, or closed.

• This means that the predicate

(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|)
is a two variables, or two arguments, predi-

cate. Therefore:

– For each choice of values for a and b, the predi-

cate becomes a proposition, i.e. a sentence with

a definite truth value. (And the Division Theo-

rem tells us that the truth value is “true” for all

choices of integers a and b such that b 6= 0, that

is, that the proposition61

(∀a ∈ Z)(∀b ∈ Z)
(

b 6= 0 =⇒

(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|)
)

(10.169)

is true.
61Notice that (10.169) is a proposition, i.e., a predicate with no open variables at all (or,

if you prefer, with zero open variables), because in (10.169) all four variables that occur
are quantified, so a, b, q and r are closed variables. For the sentence (10.169), if you are
asked “is this true”, you do not need to ask any “truth question”, because you do not
need values of any variables to determine if the sentence is true.
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– Suppose we want to give a name to the two-

variables predicate

(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|) .
We can, of course, call it P . But if we want to

indicate the names of the free variables, we should

call it P (a, b).

– Butwe must not call it P (a, b, q, r), because

if we give it such a name we would erroneously be

suggesting that this predicate has a “q-channel”

and an “r-channel”, where we can input values

for the variables q, r.

• The “truth question”, i.e., the extra question we need

to ask is order to be able to tell if “(∃q ∈ Z)(∃r ∈
Z)(a = bq + r ∧ 0 ≤ r < |b|)” is true or false, is the

question: “who are a and b?”

• in order to have enough information to

determine if the sentence “(∃q ∈ Z)(∃r ∈
Z)(a = bq + r ∧ 0 ≤ r < |b|)” is true or false,

we do not have to ask “who are q and r?”,

because once you are given the values of

a and b, the quantified sentence itself de-

termines if it is true or false, because it

is up to the sentence to decide if the re-

quired values of q and r exists or not, and
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it’s not up to you to choose valuea for q

and r.

10.2.3 Another example, illustrating the fact that only open vari-
ables really matter

Some natural numbers are products of two prime num-

bers; for example, 4 = 2 × 2, 6 = 2 × 3, 35 = 5 × 7,

and so on, Other natural numbers are not products of

two prime numbers; for example, 18 = 2× 3× 3, and the

Fundamental Theorem of Arithmetic tells us that that

there is no other way to write 18 as a product of primes,

so in particular 18 is not the product of two primes.

So we can consider the predicate “n is a product of two

prime numbers”. And we can call this predicate A(n).

(We could just have called is “A”, but we choose the name

“A(n)” to emphasize the fact that this predicate has the

open variable n.) Then, according to the conventions

we made before about naming predicates, A(6) is the

proposition “6 is the product of two primes”, and A(7) is

the proposition “7 is the product of two primes”, so A(6)

is true, and A(7) is false.

You can think of the predicate A(n) as a “black box”:

you input a value of n, the predicate does some work, and

produces an answer: “true” or “false”. (For example, for

n = 6 A(n) is true, and for n = 7 A(n) is false.)
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But we can also look inside the box, and analyze in

more detail how this predicate works. That is, we can

observe that A(n) says that

There exist prime numbers p, q such that n = pq.

So now our predicate has three variables, p, q, and n!

How come? Has the number of variables of A(n) sud-

denly changed? HasA(n) become a three-variables predi-

cate? You may think so, because now A(n) seems to have

three variables: p, q and n.

But the answer is: No! A(n) is still a one-variable

predicate! The variables p and q are bound, because

they are quantified. Precisely, A(n) says, in semiformal

(almost formal) language:

(∃p ∈ IN)(∃q ∈ IN)(p is prime ∧ q is prime ∧ n = pq) .

(10.170)

So, even though A(n) appears to have three variables,

namely, p, q and n, two of them are internal vari-

ables62, within the sentence (10.170). The sentence it-

self generates the values of p and q that it needs in order

to answer its true-false question, and when the sentence

ends p and q are free variables again. And, in particular,
62If you think of the sentence “(∃p ∈ IN)(∃q ∈ IN)(p is prime)” as a processing unit, you

will see that it has two existential quantifiers that generate values of p and q. But outside
the processing unit all one sees is that certain values of n are fed in and certain ‘true”s
and “false”s come out. The variables p and q are part of the internal operation of the
device.
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outside the sentence

(∃p ∈ IN)(∃q ∈ IN)(p is prime ∧ q is prime ∧ n = pq)

the variables p and q have no value.

Another way to see that p and q have no value, is to

observe that A(n) can equally well be written as

(∃x ∈ IN)(∃y ∈ IN)(x is prime ∧ y is prime ∧ n = xy) ,

(10.171)

or as

(∃u ∈ IN)(∃v ∈ IN)(u is prime ∧ v is prime ∧ n = uv) .

(10.172)

Sentences (10.170), (10.171), and (10.172)

say exactly the same thing. The only difference

is in the names of the variables that, inside the box, the

sentence uses to process the inputs and produce an out-

put.

From outside the box, we do not see these variables.

That’s why the letters p, q in (10.170), as well

as the letters x, y in (10.171), and the letters

u, v in (10.172), are internal variables, that

have no value outside the sentence.

And this is not the end of the story. “p is prime” is

itself a complex predicate. In fact, “p is prine” stands for

p > 1∧ (∀k ∈ IN)
(

k|p =⇒ (k = 1∨k = p)
)

. (10.173)
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This means that A(n) can also be written as

(∃p ∈ IN)(∃q ∈ IN)

((

p > 1 ∧ (∀k ∈ IN)
(

k|p =⇒ (k = 1 ∨ k = p)
)
)

∧
(

q > 1 ∧ (∀k ∈ IN)
(

k|q =⇒ (k = 1 ∨ k = q)
)
)

∧ n = pq

)

.(10.174)

Now one may think that A(n) is a four-variables predi-

cate, because it involves the variables n, p, q and k. But

by now you know better: the new variable k is also bound,

so the only open variable in (10.174)) is still n. That

means that even if you write it in the form

(10.174), A(n) is still a one-variable predi-

cate.

Actually, the story doesn’t end here either. “k|p” is

also a complex preddcate with an internal structure of its

own: is stands for “(∃j ∈ Z)p = kj”. So, if we substitute

this for “k|p” in (10.174), we get an even more detalied
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version of A(n), namely,

(∃p ∈ IN)(∃q ∈ IN)
((

p > 1 ∧ (∀k ∈ IN)
(

(∃j ∈ Z)p = kj =⇒ (k = 1 ∨ k = p)
)
)

∧
(

q > 1 ∧ (∀k ∈ IN)
(

(∃j ∈ Z)q = kj =⇒ (k = 1 ∨ k = q)
)
)

∧n = pq

)

. (10.175)

Now A(n) apears to involve five variables: n, p, q, k and

j. But this time you will have no problem figuring out

that A(n) is still a one-variable predicate, be-

cause the only open variable in (10.175) is

still n, and all the other variables are bound.

Problem 48. Draw a diagram of the sentence (10.175)

as a processing unit, similar to the diagrams that appear

on pages 232 and 239.

Make sure that your diagram shows that there is only

only one input channel. �

10.2.4 Dummy variables

So far, we have seen that variables that appear in a

sentence but are quantified are “internal variables”, or
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“closed variables”, or “bound variables”. If you think of

a sentence as a “processing unit”, or “processing device”,

that takes in certain inputs and produces “true-false” out-

puts, then the closed (or bound, or internal) variables are

variables that the sentence itself generates and uses to do

its processing work. So the sentence does not need to be

fed the values of these variables, and does not produce

values of those variables that an outside obsevrer can see.

There is another way in which a variable appearing in a

sentence can be a closed (or bound, or internal) variable.

The sentence may contain a part that generates values of

some variable in order to do a computation.

Consider. for example, the sentence
n∑

k=1

(a + rk) = b , (10.176)

This sentence contains five letter variables, namely, a, r, b, k,

and n.

Which ones of these five variables are open?

The best way to answer this question is by thinking of

(10.176) as a processing device, opening it up to look into

its internal structure, and figuring out what the device

does.

Suppose you ask the device the truth question:

Is it true that
∑n

k=1(a + rk) = b?
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Then the device will not know what to do, because in

order to get started the device needs to be given the values

of a, b, r, and n. (Maybe we should think of (10.176)

as an inteligent device, that can ask questions. Then if

you ask the truth question, the device will answer with a

question: who are a, b, r and n?)

Suppose you do feed the device by inputting values for

a, b,r and n. Then the device will do the following:

1. First, the CPU (central procssing unit) will report to

the summation component Σ—that is, the compo-

nent that computes the summation
∑n

k=1(a + rk)—

the values of a, b, r and n that it has received from

you.

2. Then Σ will perform the following calculation:

(a) First, it will write the list of all values of k, from

1 to n. (This is something it can do, because it

knows who n is, since it has received this infor-

mation from the CPU.)

(b) Then it will compute a+rk for each of the values

of k in the list. (Again, Σ knows how to do this,

because it knows who a and r are.)

(c) Then it will take all those values of a + rk that

it has computed, and add them.
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(d) Finally, it will report the result to the CPU. (Maybe,

in order to facilitate communication between Σ

and the CPU, they will introduce letter variables.

For example, they may decide to call the result

of the summation s, and then Σ will report the

value of s to the CPU. But we need not concern

ourselves with the variable s, because that’s an

internal variable used within the device for the

various parts to communicate with each other.)

3. The CPU will then compare the result reported by

the summation unit with b, and determine if they are

equal.

4. If they are equal, the CPU will report to you the

answer “true”.

5. If they are not equal, the CPU will report to you the

answer “false”.

The main point of this is that k is an internal vari-

able used by the sentence to perform its cal-

culation. The values of k are generated by the

sentence itself. So the sentence need not be

given the value of k. And that’s why

1. If asked the truth question, the sentence will ask

“who are a, b, r and n””.
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2. The sentence will not ask “who is k?”, because the

sentence itself generates the values of k it

needs.

3. k is not an open variable in (10.176)

4. The open variables of (10.176) are a, b, r and n.

Let’s just look at one more example. Let us analyze the

following four sentences

(∀n ∈ IN)
(

(∃m ∈ IN)

m∑

k=1

k3 = n =⇒ (∃p ∈ IN)n = p2
)

,

(10.177)

(∀n ∈ IN)
(

(∃m ∈ IN)

m∑

k=1

k3 = n =⇒ (∃p ∈ IN)n = p3
)

,

(10.178)

(∀n ∈ IN)(∃m ∈ IN)
( m∑

k=1

k3 = n =⇒ (∃p ∈ IN)n = p2
)

(10.179)

and

(∀n ∈ IN)(∃m ∈ IN)
( m∑

k=1

k3 = n =⇒ (∃p ∈ IN)n = p3
)

(10.180)

Each of these sentences contains four variables, namely,

n, m, k, and p.
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And I am sure that this time you can see right away

what is going on: all four variables are closed.

Three of them (n,m, and p) are quantified. and the vari-

able k is also closed because the sentence itself generates

the values of k that it needs to perfom its calculations.

So the sentences (10.177), (10.178), (10.179),

and (10.180), are propositions.

And then of course each of the sentences is true or

false. Which leads me to a natural question, that I will

ask you to answer.

Problem 49. Which of the propositions (10.177), (10.178),

(10.179), (10.180), are true, and which ones are false?

NOTE: All these propositions are of the form (∀n ∈
IN)P (n), where P (n) is a one-variable predicate having

n as the open variable.

If you want to prove that a sentence of this form is

true, then you need a reasoned argument, starting with

“Let n be an arbitrary natural number.” (You may also

try a proof by induction, but in this case I would not

recommend that.) If you want to prove that it is false,

then you need a counterexample, i.e., an example of an

n for which the one-variable sentence P (n) is false.

HINT: The answer to this problem is actually very easy.

All you have to do is use the result of one of your ear-
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lier homework problems. (I can narrow this down a bit

further: it’s one of the problems in the third set of

lecture notes.) Using this, plus a little bit of logic (for

example, truth values of implications), each of the four

propositions should just require a couple of lines on your

part.) �

A variable such as the k in
∑n

k=1 t(k) (where t(k) is

some expression containing k, such as k, or k2, or rk, or

a + rk), is called a “dummy variable”.

Let us define this term precisely. (The definition I am

about to give is taken from Wolfram MathWorld.)

Definition 14. A dummy variable is a variable that

appears in a calculation only as a placeholder

and which disappears completely in the final

result. �

And every dummy variable is bounded.

Example 44. Naturally, summations are not the only

type of expressions where some of the variables are bound

variables

Examples of dummy variables are:

1. the k in a summation such as
∑n

k=1 t(k),

2. the k in a product such as
∏n

k=1 t(k),
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3. the k in the name of a list, such as (pk)
n
k=1,

4. the x in the name {x : P (x)} of a set,

5. the x in an integral such as
∫ b

a f (x)dx.

6. the x in a limit such as limx→a f (x). �

Example 45. Let us look at the sentence

(∃a ∈ IR)(∃b ∈ IR)
(

{u ∈ IR : a ≤ u ≤ b} 6= ∅∧
∫ b

a

x2dx = c
)

.

(10.181)

This sentence contains the letter variables a, b, u, x, and

c.

Of these five letters, four are bound variables:

1. the variables a and b are bound because they are

quantified;

2. the variable u is bound because it is a dummy vari-

able, used as part of the name {u ∈ IR : a ≤ u ≤ b}
of a set;

3. the variable x is bound because it is a dummy vari-

able, used as a variable of integration.

It follows from this analysis that

1. Sentence (10.181) defines a one-variable

predicate.
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2. The open variable in sentence (10.181) is

c.

3. If you think of sentence (10.181) as a processing de-

vice, then this device will take values of c as inputs,

and produce a true-false answer as output.

4. If you ask the “truth question” is (10.181) true?,

then the device (10.181) cannot answer because it

does not know who c is. So the device will answer

your question with another question: who is c?

5. But, in order to be able to answer the truth question,

the device does not need to ask “who is a?”, or “who

is b?” or “who is u?”, or “who is x?”. The device

itself will generate the values of a, b, u and x it needs,

and these values will be part of the calculations that

(10.181) performs, and will not be seen by the outside

world.

10.2.5 How to tell if a variable is dummy

Here are two ways to see that a variable is dummy.

1. The variable is dummy if “it isn’t really there”, in

the sense that we can eliminate it completely. For

example,
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(a) The set {u ∈ IR : a ≤ u ≤< b} is an object

very well known to all of us: it is none other

than the closed interval [a, b]. So we can say the

same thing as (10.181) by writing “[a, b]” instead

of “{u ∈ IR : a ≤ u ≤< b}”. And we get

(∃a ∈ IR)(∃b ∈ IR)
(

[a, b] 6= ∅ ∧
∫ b

a

x2dx = c
)

,

(10.182)

which says exactly the same thing as (10.181).

but now there is no “u” anymore.

(b) The definite integral
∫ b

a x
2dx is a number that

is completely determined by a and b. We do not

need to ask “who is x?” in order to determine this

number. Actually, the integral can be computed,

and the result is 1
3(b

3 − a3). So we can say the

same thing as (10.182) by writing “13(b
3 − a3)”

instead of “
∫ b

a x
2dx”, and we get

(∃a ∈ IR)(∃b ∈ IR)
(

[a, b] 6= ∅∧ 1

3
(b3−a3) = c

)

,

(10.183)

or, more nicely,

(∃a ∈ IR)(∃b ∈ IR)
(

[a, b] 6= ∅ ∧ b3 − a3 = 3c
)

,

(10.184)

which say exactly the same thing as (10.182). but
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now there is no “x” anymore.

2. A variable is dummy if it can be replaced by any

other variable (except with variables that are already

being used for something else) without changing the

meaning of the sentence. For example,

(a) If instead of the expression “{u ∈ IR : a ≤ u ≤
b}” we use a different letter and write some-

thing like “{v ∈ IR : a ≤ v ≤ b}”, or “{z ∈ IR :

a ≤ z ≤ b}”, or maybe “{α ∈ IR : a ≤ α ≤ b}”,
or “{⋄ ∈ IR : a ≤ ⋄ ≤ b}”, nothing changes. So,

for example, we can rewrite (10.181) as

(∃a ∈ IR)(∃b ∈ IR)
(

{q ∈ IR : a ≤ q ≤ b} 6= ∅∧
∫ b

a

x2dx = c
)

,

(10.185)

which says exactly the same thing as (10.181).

but now there is no u anymore.

(b) If we replace the definite integral
∫ b

a x
2dx by the

expression
∫ b

a h
2dh, or

∫ b

a σ
2dσ, or

∫ b

a m
2dm, noth-

ing changes. So, for example, we can rewrite

(10.185) as

(∃a∈ IR)(∃b∈ IR)
(

{q∈ IR : a≤q≤b} 6=∅∧
∫ b

a

k2dk = c
)

,

(10.186)
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which says exactly the same thing as (10.181).

but now there is no u and no x anymore.

Summarizing: Sentence (10.181) defines a one-variable

predicate, with the open variable c. So we can

call this predicate P (c).

And then we may ask: can we tell what this predicate

P (c) is? Can we find a simpler expression for P (c)?

It turns out that, in this case, the answer is “yes, we

can”:

P (c) just says “c ≥ 0” .

Proof. We want to prove that (∀c ∈ IR)(P (c) ⇐⇒ c ≥
0).

Let c ∈ IR be arbitrary.

We want to prove that P (c) ⇐⇒ c ≥ 0.

For that purpose, we will prove the implications P (c) =⇒
c ≥ 0 and c ≥ 0 =⇒ P (c).

Proof that P (c) =⇒ c ≥ 0.

Assume P (c).

This means that

(∃a ∈ IR)(∃b ∈ IR)
(

[a, b] 6= ∅ ∧ b3 − a3 = 3c
)

.

Pick real numbers a, b such that a, b] 6= ∅ and

b3 − a3 = 3c.
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Since a, b] 6= ∅, it follows that a ≤ b. (Reason:

if a > b then the set [a, b], i.e., the set {u ∈ IR :

a ≤ u ≤ b}, would be empty.)

Since a ≤ b, we have a3 ≤ b3.

So b3 − a3 ≥ 9.

So 3c ≥ 0.

Hence c ≥ 0 .

Proof that c ≥ 0 =⇒ P (c).

Assume that c ≥ 0.

Let a = 0, b = 3
√
3c.

Then b ≥ 0.

So the closed interval [a, b] (i.e., the interval [0, b])

is nonemtpy.

And b3 − a3 = 3c.

Hence [a, b] 6= ∅ ∧ b3 − a3 = 3c.

So

(∃a ∈ IR)(∃b ∈ IR)
(

[a, b] 6= ∅ ∧ b3 − a3 = 3c
)

.

That is, P (c) holds.

Since we gave proved that P (c) =⇒ c ≥ 0 and that

c ≥ 0 =⇒ P (c), we can conclude that P (c) ⇐⇒
c ≥ 0.
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Since we have proved that P (c) ⇐⇒ c ≥ 0 for arbitrary

real c, we have proved that (∀c ∈ IR)
(

P (c) ⇐⇒ c ≥ 0).

Q.E.D.

10.3 First-order predicate calculus

The language we use in mathematics is a predicate

calculus because it enables us to predicates. And it

is first-order because we can quantify variables, and

write things such as “(∀x ∈ P )x likes Mark” (meaning,

if P is the set of all people, “everybody likes Mark”), but

we cannot quantify over predicates. That is,

• We cannot say things such as “‘for every predicate

P (x) and every predicate Q(x) if (∀x)P (x) is true
and (∀x)Q(x)) is true, then if (∀x)(P (x) ∧Q(x)) is
true.”

• We can say this for a particular pair of predicates

P (x), Q(x) (for example, we can say “if everybody

likes coffee and everybody likes milk then everybdoy

likes coffee and milk”, or we can say “if everybody

studies and everybody reads books then everybdoy

studies and reads books”), but we cannot say the

same thing for arbitrary predicates P (x), Q(x).

It turns out that there are “second order” languages,
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in which you can say things like “‘for every predicate

P (x) and every predicate Q(x) if (∀x)P (x) is true and

(∀x)Q(x)) is true, then if (∀x)(P (x) ∧ Q(x)) is true.”

But the language we are using here is a first-order

language, in which those things cannot be said.

10.4 Logical connectives

In firts-order predicate calculus, one or more sentences

can be combined to form other sentences. The symbols

used to combine sentences are called the logical con-

nectives. And there are exactly seven of them

10.4.1 The seven logical connectives

And here they are, in all their glory:
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The seven logical connectives

1. The negation symbol∼

(meaning “no”, “it’s not the case that”).

2. The conjunction symbol,

∧
(meaning “and”).

3. The disjunction symbol,

∨
(meaning “or”).

4. The implication symbol,

=⇒
(meaning “implies”, or “if . . . then”).

5. The biconditional symbol,

⇐⇒
(meaning “if and only if”).

6. The existential quantifier symbol,

∃
(meaning “there exists . . . such that”, or “it

is possible to pick . . . such that”).

7. The universal quantifier symbol,

∀
(meaning “for all”,or “for avery”, or “for an

arbitrary”).
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10.4.2 How the seven logical connectives are used to form sen-
tences

These seven symbols are used to form new sentences as

follows:

1. The negation symbol ∼ is a one-argument con-

nective: it can be put in front of a sentence A to

form the sentence ∼ A (meaning “no A”, or “it’s not

the case that A”). For example: “∼ 3|5” means “3

does not divide 5”.

2. The conjunction symbol ∧ is a binary connec-

tive, or two-argument connective: it can be

put between two sentences A, B to form the sen-

tence A ∧ B, (meaning “A and B”). For example:

“(∼ 3|5) ∧ 3|6” means “3 does not divide 5 and 3

divides 6”.

3. The disjunction symbol ∧ is a binary connective,

or two-argument connective: it can be put be-

tween two sentencesA, B to form the sentenceA∨B,

(meaning “A or B”). For example: “x > 0∨x < 0”

means “x > 0 or x < 0”.

4. The implication symbol =⇒ is a binary connec-

tive, or two-argument connective: it can be

put between two sentences A, B to form the sen-
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tence A =⇒ B, (meaning “A implies B”, or “if A

then B”). For example: “x 6= 0 =⇒ x2 > 0” means

“if x > 0 then x2 > 0”.

5. The biconditional symbol ⇐⇒ is a two-argument

connective, that is binary connective: it can

be put between two sentences A, B to form the sen-

tence A⇐⇒ B, (meaning “A if and only if B”). For

example: “(2|n∧ 3|n) ⇐⇒ 6|n” means “2 divides n

and 3 divides n if and only if 6 divides n”.

6. The existential quantifier symbol ∃ has a more com-

plicated grammar:

(a) Using ∃ we can form existential quantifiers.

(b) There are two kinds of existential quantifiers:

i. Unrestricted existential quantifiers are

expressions

(∃x),
that is: left parenthesis, ∃, variable, right paren-
thesis.

ii. Restricted existential quantifiers are

expressions

(∃x ∈ S),
that is: left parenthesis, ∃, variable, ∈, name

of a set, right parenthesis.
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(c) Then we can take a sentence A (or A(x)) and put

a restricted or unrestricted existential quantifier

in front, forming the sentences (∃x)A (“there ex-

ists x such that A”, or “it is possible to pick x

such that A”) and (∃x ∈ S)A (“there exists x

belonging to S such that A”, or “it is possible to

pick x belonging to S such that A”).

7. The universal quantifier symbol ∀ has a grammar

similar to that of the existential quantifier symbol:

(a) Using ∀ we can form universal quantifiers.

(b) There are two kinds of universal quantifiers:

i. Unrestricted universal quantifiers are

expressions

(∀x),
that is: left parenthesis, ∀, variable, right paren-
thesis.

ii. Restricted universal quantifiers are ex-

pressions

(∀x ∈ S),
that is: left parenthesis, ∀, variable, ∈, name

of a set, right parenthesis.

(c) Then we can take a sentence A (or A(x)) and put

a restricted or unrestricted universal quantifier in
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front, forming the sentences (∀x)A (“for all x,

A”, or “A i strue for arbitrary x”) and (∀x ∈
S)A (“for all x belonging to S, A”, or “A is true

for arbitrary x in S”).

10.5 Conjunctions (“∧”, i.e., “and”)

The symbol

∧
is the conjunction symbol, and means “and”.

Hence,

• If P is the sentence

Today is Friday

and Q is the sentence

Tomorrow is Saturday

then “P ∧Q” stands for the sentence

Today is Friday and tomorrow is Saturday.

• A sentence of the form P ∧Q is a conjunction.

• In a conjunction P ∧Q, the sentences P , Q are the

conjuncts.
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10.5.1 Proving a conjunction: a stupid but important rule

The rule for proving a conjunction (Rule ∧prove)

If P , Q are sentences, and you have proved P and

you have proved Q, then you are allowed to go to

P ∧Q.
IMPORTANT REMARK. You may wonder “what

is the point of such a rule?” But you cannot dispute that

it is a reasonable rule! Of course, if you know that “today

is Friday” and you also know that “tomorrow is Satur-

day”, then you will have no doubt that “today is Friday

and tomorrow is Saturday” is true. So you should have

no problem accepting (and remembering) this rule. You

may not understand why it is needed. So let me tell you

why. Suppose it was a computer doing proofs, rather than

a human being like you. Suppose the computer is told

that today is Friday and then it is told that tomorrow is

Saturday. How will the computer know that it can write

“today is Friday and tomorrow is Saturday”. It won’t,

unless you tell it. Computers do not ”know” anything

on their own. If you want the computer to “know” that

once it knows that “today is Friday” and also that “to-

morrow is Saturday”, then it can write “today is Friday

and tomorrow is Saturday”, then you have to tell the

computer. In other words, you have to input Rule ∧prove
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into the computer. Proofs are mechanical manipulations

of strings of symbols, and should therefore be doable by

a computer. So Rule ∧prove is needed.
And now let’s go back to you, the human being. How

do you know that, once you find out that “today is Fri-

day” and also that “tomorrow is Saturday”, then you can

say (or write) “today is Friday and tomorrow is Satur-

day”. You know this because you know Rule

∧prove. You know this rule so well, it is embedded so

deeply in your mind, that you don’t even realize that the

rule is there. But the rule is there!

Here is another way to think about this. Suppose you

didn’t know any English at all. Then you would not know

what the word “and” means, and you would not know

that, if you have two sentences P and Q, then you can

say or write “P and Q”. As you learn English, at some

point you would learn the meaning of the word “and” and

then you would learn that when you have two sentences

P and Q, then you can say or write “P and Q”. (And I

would even argue that this rule about that use of “and”

is in fact what “and” means, but I will not pursue this

now.) The point is: there are rules for using the word

“and”, and those rules have to be learned, and they only

look obvious to you because you already learned them a

long time ago and have grown accustomed to them.
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What we are doing in Logic is elucidating the laws

of thought, making them explicit, bringing them

to the surface, as it were, so that we can, for ex-

ample, pass them on from our minds to a computer: the

computer does not “know” any of the things that you

know, unless you tell the computer those things. And

this applies even to the rules that you know so well that

they are deeply embedded in your subconscious, so you

take them for granted without even realizing that there

is something to be known there.

Once you understand this, you will also see that it is

not an accident that modern Logic developed

first, at the end of the 19th century and the

beginning of the 20th century, and computers

came into being soon afterwards. �

10.5.2 Using a conjunction: another stupid but important rule

The rule for using a conjunction (Rule ∧use)

If P , Q are sentences, and you have proved P ∧Q,
then you are allowed to go to P , and you are also

allowed to go to Q.

IMPORTANT REMARK. This looks like a very

stupid rule. But you should reread the “Important Re-

mark” on Page 266, where we talked about another “stupid
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rule”, namely, Rule ∧prove. That remark also applies to

Rule ∧use. �

10.6 Disjunctions (“∨”, i.e., “or”)

The symbol

∨
is the disjunction symbol, and means “or”.

So, for example,

• If P is the sentence

today is Friday

and Q is the sentence

today is Saturday

then “P ∨Q” stands for the sentence

today is Friday or today is Saturday.

• A sentence of the form P ∨Q is a disjunction.

• In a disjunction P ∨ Q, the sentences P , Q are the

disjuncts.
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10.6.1 Using a disjunction: the “proof by cases” rule

The rule for using a disjunction, that we are going to

call “Rule ∨use”, as you may have guessed, is extremely

important. It is also called the “proof by cases rule”, and

is one of the most widely used rules in theorem proving.

Before I state the rule, let us look at an example.

Example 46. Suppose you want to prove that

(∀x ∈ IR)(x 6= 0 =⇒ x2 > 0) . (10.187)

Then you could reason as follows. Since x 6= 0, there

are two possibilities: 0 < x or x < 0. So

0 < x ∨ x < 0 . (10.188)

Sincde we have the disjunction (10.188), we are in a po-

sition to use Rule ∨use. To do this, we consider each of

the two possibilities “0 < x” and “x < 0” separately.

First we assume that 0 < x.

Then we use the fact that we can multiply both sides

of an inequality by a positive number63. Since 0 <

x (because we are assuming that 0 < x), we can

multiply both sides of “0 < x” by x, and get x.0 <

x.x.
63This is one of the axioms of real number theory, that we will discuss later. The axiom

says: (∀x ∈ IR)(∀y ∈ IR)(∀z ∈ IR)
(

(x < y ∧ 0 < z) =⇒ xz < yz
)

.
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But x · 0 = 0 by a well-known theorem64

And x · x = x2. (This is because the definition of x2

says that x2 = x · x.)
So 0 < x2 .

Next we assume that x < 0.

Then we use the axiom that says that we can add a

real number to both sides of an inequality and the

result is an inequality going in the same direction65.

So we add −x to both sides of “x < 0” and get

0 < −x.
Then we use the axiom about multiplication of both

sides of an inequality by a positive number. Since

−x is positive, because we have proved that it is

(under the assumption that x < 0), we can multiply

both sides of “0 < −x” by −x, and get (−x).0 <
(−x).(−x).
But x · 0 = 0.

And (−x) · (−x) = x · x.
So 0 < x · x.

64The theorem says that (∀x ∈ IR)x.0 = 0.
65Precisely, the axiom says: (∀x ∈ IR)(∀y ∈ IR)(∀z ∈ IR)(x < y =⇒ x+ z < y + z

)

.
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And x · x = x2, by the definition of “square”.

So 0 < x2 in this case as well.

So we have analyzed each of the two possibilities 0 <

x and x < 0, and in each case we arrived a the same

conclusion, namely, that 0 < x2.

Hence we have proved that 0 < x2 .

What we have done in this example is this: we knew

that a disjunction A ∨ B was true. (In our example, A

was “0 < x” and B was “x < 0”.) Then we proved that

a ceartain conclusion C must hold if A is true, and also

if B is true. (In our example, C was “0 < x2”.) Then we

concluded that C must be true. And the reason is quite

simple: one of A, B is true, and in either case C is true,

so C is true.

This is exactly what the proof by cases rule says.

The rule for using a disjunction (Rule ∨use,

a.k.a. the proof by cases rule)

If P andQ are sentences, and you have proved P∨
Q in a previous step, and then you prove another

sentence R both assuming P and assuming Q,

then you can go to R.
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10.6.2 Proving a disjunction

The rule for proving a disjunction (Rule ∨prove)

Suppose P and Q are sentences, and you want

to prove P ∨ Q. Here is what you can do. You

look at the two possible cases, when P is true and

when P is false. If P is true then of course P ∨Q
is true, so we are O.K. So all we have to do is look

at the other case, when P is false, and prove that

in that case Q is true.

So here is the rule:

I. If, assuming that P is false, you can
prove Q, then you can go to P ∨Q.

II. If, assuming that Q is false, you can
prove P , then you can go to P ∨Q.

Example 47. Let us prove that

(∀n ∈ Z)(3|n ∨ 3|n2 − 1) . (10.189)

Proof.

Let n be an arbitrary integer.

We want to prove that 3|n ∨ 3|n2 − 1.

Assume that ∼ 3|n, that is, 3 does not divide n.

We want to prove that 3|n2 − 1.



Math 300, Fall 2019 274

Clearly, n2 − 1 = (n− 1)(n + 1).

Furthermore, it is well known that if k, k+1 and

k+2 are any three consecutive integers, then one

of them must be divisible by 3.

Applying this with k = n− 1, we see that one of

the integers n− 1, n, n + 1 is divisible by 3.

But we are assuming that n is not divisible by 3.

Hence one of the numbers n−1, n+1 is divisible

by 3.

So the product (n− 1)(n + 1) is divisible by 3.

That is, n2 − 1 is divisible by 3.

So we have proved that 3|n2 − 1, assuming that ∼
3|n.
By Rule ∨prove, it follows that 3|n ∨ 3|n2 − 1.

We have proved that 3|n∨3|n2−1 for an arbitrary integer

n.

Therefore (∀n ∈ Z)3|n ∨ 3|n2 − 1. Q.E.D.

10.7 Implications (“=⇒”, i.e., “if . . . then”)

Implication: The symbol

=⇒
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is the implication symbol, and means “implies”.

A sentence “P =⇒ Q” is read as

P implies Q

or as

If P then Q .

Then

• If P is the sentence

Today is Friday

and Q is the sentence

Tomorrow is Saturday

then “P =⇒ Q” stands for the sentence

If today is Friday then tomorrow is Saturday.

• A sentence of the form P =⇒ Q is an implication,

or a conditional sentence.

• In a conditional sentence P =⇒ Q, P is the pre-

miss (or antecedent), and Q is the conclusion

(or consequent.
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10.7.1 The rule for using an implication (Rule =⇒use, a.k.a. “Modus
Ponens”)

We now come to one of the most important rules in Logic:

the rule for using an implication. For us, this rule will

be called— guess what!—“Rule =⇒use”, but it also has a

couple of much more impressive names: Modus Ponens,

and implication elimination66

The rule for using an implication

(Rule =⇒use, a.k.a. Modus Ponens)

Suppose P , Q are sentences. Suppose you have the sen-

tences P =⇒ Q” and “P” in previous steps of your

proof. Then you can go to Q.

Example 48. Suppose you know that “If you are a stu-

dent then you are entitled to a discount” and you also

know that you are a student. Then you can conclude

that you are entitled to a discount.

10.7.2 The “for all...implies” combination

One of the most important and widely used combina-

tions of moves in proofs is what we may call the “for

all...implies” combination.

It works like this:
66“Modus Ponens” is an abbreviation of “modus ponendo ponens”, which is Latin for

“the way that affirms by affirming”.
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• First, you bring into your proof a statement S of

the form “for every x of some kind, if something

happens then something else happens”. That is,

(∀x)(A(x) =⇒ B(x)), or

(∀x ∈ S)(A(x) =⇒ B(x)) . (10.190)

• Then, you bring into your proof an object a for which

you know that this object satisfies Property A, that

is, you know that

A(a) . (10.191)

• Then you derive the conclusion that B(a) is true, in

two steps:

Step 1: Use the specialization rule to go from

(10.190) to

A(a) =⇒ B(a) . (10.192)

Step 2: Use Modus Ponens to go from (10.192)

and (10.191) to

B(a) . (10.193)

This combination is used all the time in proofs. The

reason is that many theorems in Mathematics are of the

form: “whenever something is true of an object, then

something else is also true of that object”, that is

(∀x)(A(x) =⇒ B(x)) . (10.194)
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And what you often do in proofs is take one of those

theorems and apply it to a particular situation. And this

is exactly what the “for all...implies” combination does.

Here are some examples:

1. Take the statement that “Every positive real number

has a real square root”, which translates into

(∀x ∈ IR)(x > 0 =⇒ (∃y ∈ IR)y2 = x) .

This is exactly of the form (10.194), with “x > 0” in

the role of A(x), and “(∃y ∈ IR)y2 = x” in the role

of B(x).

Then you can prove that 2 has a square root, by

applying the “for all ... implies” combination, with

a = 2, and getting “(∃y ∈ IR)y2 = 2”.

2. Suppose you know that “If x is a positive real number

then x + 1
x ≥ 2”, that is, in formal language,

(∀x ∈ IR)(x > 0 =⇒ x +
1

x
≥ 2) .

(We will prove this later.) Suppose you have a real

number a, and have proved that a is positive (that

is, a > 0). Then you can draw the conclusion that

a+ 1
a ≥ 2 by using the “for all...implies” combination,

as follows:
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1. (∀x ∈ IR)(x > 0 =⇒ x + 1
x ≥ 2) [Fact proven

before]

2. a > 0 .[Known]

3. a > 0 =⇒ a + 1
a ≥ 2 .[Rule ∀use, from Step 1]

4. a + 1
a ≥ 2 .[Rule =⇒use, from Steps 2,3]



Math 300, Fall 2019 280

10.7.3 Proving an implication (Rule =⇒prove)

The rule for proving an implication

(Rule =⇒prove)

Suppose P , Q are sentences. Suppose you start a

proof with “Assume P”, and you prove Q. Then

you can go to P =⇒ Q.

Example 49. Say you are a Martian who just

landed on Earth, you know nothing about the days

of the week, and you want to prove that to your

own satisfaction that “If today is Friday then to-

morrow is Saturday”. To apply Rule =⇒prove, you

would begin by “assuming that today is Friday.”

This means that you would imagine that today is

Friday, and see what would happen in that case.

For example, you could go to a public library and

look at lots of newspapers published on a Friday,

and you would see that every time such a paper

talks about the following day it says something

like “tomorrow is Saturday.” Then you would be

reasonably confident that the sentence “If today is

Friday then tomorrow is Saturday” is true. And it

would not matter whether today is Friday or not.

�
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10.7.4 The connectives “∧” and “=⇒” are very different

Students sometimes think that “If P then Q” is basically

the same as “P and Q”, or “P then Q”. But this is very

wrong and it important that you should understand the

difference between “P and Q” and “If P then Q”.

Take, for example, the sentences

Today is Friday and tomorrow is June 12.

and

If today is Friday then tomorrow is June 12.

Using “P” to represent the sentence “Today is Friday”

and “Q” to represent the sentence “Tomorrow is June

2”, the first sentence is P ∧ Q, and the second one is

P =⇒ Q.

What conditions have to be satisfied for P ∧ Q to be

true? What conditions have to be satisfied for P =⇒ Q

to be true?

The sentence P ∧Q is true if both P and Q

are true. In our example, the only way the sentence

“Today is Friday and tomorrow is June 12” can be true

is if today is Friday and tomorrow is June 12, So the

sentence “Today is Friday and tomorrow is

June 12” is true if today is Friday June 11,

and in no other case.
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On the other hand, The sentence P =⇒ Q when

Q is true, and also when P is false. And if

neither one of these conditions hold (that is,

if Q is false and P is true) then P =⇒ Q is

false. So, in our example, the only possible situation

when “If today is Friday then tomorrow is June 12” would

be false is if today is Friday but tomorrow is not June

12. So the sentence “If today is Friday then

tomorrow is June 12” is true if today is not

Friday, is also true if tomorrow is June 12,

and is false if today is Friday but tomorrow

is not June 12.

We can summarize these observations by means of

the following “truth tables” for the connectives “∧” and

“=⇒”:

P Q P ∧Q
T T T

T F F

F T F

F F F

P Q P =⇒ Q

T T T

T F F

F T T

F F T

The first table gives you the truth value67 of P ∧ Q
67Every sentence, when used correctly, has a truth value: the truth value is T is the

sentence is true, and F is the sentence is false. For example: the truth value of “3 > 5”
is F, the truth value of “3 < 5” is T. How about the truth value of “x < 5”. If you tell
me that x < 5 without having told me who x is, then I do not knwo the truth value of
“x < 5”. But this would be an incorrect us of “x < 5”. If you were writing a proof, then
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in terms of the truth values of P and Q, and the second

table gives you the truth value of P =⇒ Q in terms of

the truth values of P and Q.

Notice that what makes the truth tables for

“wedge” and “=⇒” is the last two lines. In

particuler:

P =⇒ Q is always true when Q is true,

no matter whether P is true or false.

and

P =⇒ Q is always true when P is false,

no matter whether Q is true or false.

So for example, the following sentences are true:

• If the Earth is a planet then 3 is a prime number.

• If the Earth is a comet then 3 is a prime number.

• If the Earth is a comet then 6 is a prime number.

The first one and the second one are true because the con-

clusion (that is, “3 is a prime number) is true. . (It does

you could never have “x < 5” as one of the steps, unless you have told the reader before,
in some previous step, who x is, and once you have done that, the truth value of “x < 5”

would be known. For example, if you said in a previous step “Let x = 1+
√
5

2
”, then I

would know that “x < 5” is true. (Proof:
√
5 < 5. So 1 +

√
5 < 6. So 1+

√
5

2
< 3. Hence

1+
√
5

2
< 5. So x < 5.)
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not matter, for the second sentence, that the premiss—

“the Earth is a comet”— is false.)

And the second one and third one are true because

the premiss (“the Earth in a comet” is false. (It does

not matter whether for the second sentence, that the

conclusion—“6 is a prime number”— is false.)

On the other hand, the sentence “If the Earth is a

planet then 6 is a prime number” is false, because the

premiss (“The Earth is a planet”) is true, but the con-

clusion (“6 is a prime number”) is false.

10.7.5 Isn’t the truth table for =⇒ counterintuitive?

Students often ask questions about the implication con-

nective =⇒ Q and in partuclar about the truth table for

the implication.

One often raise question is “how can ‘P =⇒ Q’ be

true if P and Q have nothing to do with each other?”.

For example, we said that the sentence “If the Earth is

a planet then 3 is a prime number” is true, but what does

the fact that the Earth is a planet have to do with 3 being

a prime number? That sounds like a good question, but

let us think about it. I suggest that you do do this:
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Think of “P =⇒ Q” as saying “it does

not happen that P is true without Q also

being true”.

In other words: what “P =⇒ Q” does is exclude the

possibility that you might ever run into a “bad situation”,

menaing, “a situation where P is true butQ is not”. And

this is the only possibilty excluded the implication. So,

in particular,

• if P is false then you will not be in a bad situation,

so “P =⇒ Q” is true.

• if Q is true then you will not be in a bad situation,

so “P =⇒ Q” is true.

Once you understand this, you will see that it does not

matter very much whether P andQ have something to do

with each other. Maybe Pand Q are totally unrelated,

but if, for example, they both happen to be true then

“P =⇒ Q” is true. And also, “P =⇒ Q” will be true if

both P and Q are false, or if P is false and Q is true.

Example 50. Suppose a street sign says:

IF YOU ARE DRIVING AT MORE

THAN 25MPH YOU WILL GET A

FINE.
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Supoose you want to prove to a friend of yours that the

municipal government that put up the sign isn’t really

enforcing its own rule. What do you have to do to prove

this?

Let “P” represent the premiss, i.e., “you are driving at

more than 25mph”, and let “Q” represent the conclusion,

that is, “you will get a fine”. Then the street sign asserts

the implication “P =⇒ Q”.

Certainly,

• If you find someone driving at 20mph, that will do

nothing to prove your case. That’s because in

that case the implication “P =⇒ Q” is true,

according to the truth table for the impli-

cation. It does not matter whether that driver

got a fine or not68.

• If you find someone who got a fine, that will do noth-

ing to prove your case. That’s because in that

case the implication “P =⇒ Q” is true, ac-

cording to the truth table for the implica-

tion. It does not matter whether that driver was

driving at more than 25mph or not.69.
68The driver may have been given a fine for some other reason, e.g., using a cell phone

while driving.
69The driver may have been driving at 20mph but may have been given a fine for some

other reason, e.g., using a cell phone while driving.
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• The only way to prove that the injunction in the

street sign is not being enforced is to find cases of

drivers that were driving at more than 25mph but

did not get a fine. That’s because the onlt case

when the implication “P =⇒ Q” is false,

according to the truth table for the impli-

cation, is when the premiss is true but the

conclusion is false.

Example 51. Alice is a cashier at a department store,

and she has to follow the rule that

IF A CUSTOMER PAYS CASH FOR

A PURCHASE THEN ALICE HAS

TO PUT THE MONEY SHE COL-

LECTED IN A DRAWER.

Suppose you are a detective and you want to prove

that Alice is not obeying the rule. What do you have to

do?

• If you find a situation when there was not customer

at all, or there was customer that did not pay cash,

then that will do nothing prove your case. That’s

because in that case the implication “P =⇒
Q” is true, according to the truth table for
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the implication. It does not matter whether

Alice put money is the drawer or not70.

• If you find a situation where Alice put cash in the

drawer even though she did not collect any money

from a customer, then that will do nothing to prove

your case. That’s because in that case the

implication “P =⇒ Q” is true, according

to the truth table for the implication. It

does not matter that there was no customer poaying

cash71.

• The only way you can prove that Alice is violating the

rules is by showing that a customer paid cash but Al-

ice did notput themoney in the drawer.That’s be-

cause the only case when the implication

“P =⇒ Q” is false, according to the truth

table for the implication, is when the pre-

miss is true but the conclusion is false.

Example 52. Suppose you have a natural number n,

but you do not know which number it is. (For example,

maybe someone gave you a sealed envelope containing
70Why would Alice have put money in the drawer if she did not collect any cash from

the customer? Who knows?
71Again, why would Alice put money in the drawer even if she did not collect the money

from a customer? Who knows? And who cares? The point is: even if she put money
in the drawer when there had been no customer that paid her the money, so
P was false but Q was true, she did not violate the rules.
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a card where the number is written. So the number is

there, it’s a fixed number, but you just do not knwo which

specific number it is.)

Suppose you are asked to prove that

(*) If n is even then n2 is divisible by 4.

Then you could ask: could (*) possibly be false? Could

there be a possible value of n for which (*) is false. (Re-

member that you do not know who n is. So if you want

be able to assert for sure that (*) is true you have to con-

sider all possible values of n. If you find one value of n for

which (*) is not true, then you cannot be sure that n is

true, because the number that you have in the envelope

could be the one you have found, the one for which (*)

is false. But if you can make sure that no such number

exists, then you can be sure that (*) is true, even though

you do not know who n is.)

What would have to happen for (*) to be false? Well,

according to our truth table, the only case when the im-

plication (*) is false is when the premiss is true but the

conclusion is not. So to make sure that (*) is true, you

have to consider numbers n that are even, because if n

is not even then (*) is true. You indicate that you are

going to do that by writing:

Assume that n is even.
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(In other words: you are allowed to assume that

n is even because if n is not even then (*) is

automatically true thanks to the truth table

for the implication.)

And then you move on to prove that n2 is divisible by

4. (Since n is even, we can pick a natural number k such

that n = 2k. Then b2 = 4k2, so n2 is divisible by 4.)

And now you can be sure that (*) is true. The number

n is even or odd, but in either case (*) is true, even

though in each case it’s true for a different reason: if n is

not even, then (*) is true because of the truth table for

the implication, and if n is even then (*) ia true because

in that case we have proved that the conclusion (that is,

“n2 is divisible by 4”) must be true.

Finally, we have prove that (*) must be true for any

natural number, because we have proved for n, but n

could be any number. So we can conclude that

(∀n ∈ IN)
(

n is even =⇒ n2 is divisible by 4
)

,

or, if you prefer,

(∀n ∈ IN)
(

2|n =⇒ 4|n2
)

.

So we can structure our proof as follows:

THEOREM. (∀n ∈ IN)
(

2|n =⇒ 4|n2
)

.
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PROOF We want to prove that (∀n ∈ IN)
(

2|n =⇒
4|n2

)

.

Let n ∈ IN be arbitrary.

We want to prove that 2|n =⇒ 4|n2.
Assume that 2|n.
Then (∃k ∈ IN)n = 2k.

Pick one such k and call it k∗.

Then k∗ ∈ IN and n = 2k∗.

Then n2 = (2k∗) · (2k∗) = 4k2∗.

Let q = k2∗.

Then n2 = 4q.

So (∃k)n2 = 4k.

Hence 4|n2.
We have proved that 4|n2 assuming that 2|n. Hence

2|n =⇒ 4|n2 .

We have proved that 2|n =⇒ 4|n2 for an arbitrary n.

Therefore

(∀n ∈ IN)
(

2|n =⇒ 4|n2
)

.

Q.E.D.
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I hope that these remarks will suffice to clarify they

way implication works. Implication will be discussed in

great detail later.

10.8 Biconditionals (“⇐⇒”, i.e., “if and only if”)

The biconditional is the symbol

⇐⇒.

It is a binary connective, like ∧, ∨, and =⇒. That means

that⇐⇒ can be used to connect two sentences.

If P and Q are sentences, the sentence “P ⇐⇒ Q” is

read as

P if and only if Q

or

P is equivalent to Q .

And mathematicians often use “iff” as shorthand for “if

and only if”, so they write “P iff Q.”

P iff Q .

The precise meaning of “equivalence” will be explained

later. But, if you want to know right away what it means,

it’s very simple:
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When you know that P is equivalent to Q then you can
pass freely from P to Q. That is, if you know that P is
true then you can write Q, and if you know that Q is
true then you can write P .

So for all practical purposes if “P ⇐⇒ Q” is true then

P and Q are interchangeable.

10.8.1 The meaning of “if and only if”

You should think of “P iff Q” as meaning

(P ⇐⇒ Q) ∧ (Q ⇐⇒ P ) .

That is, “P ⇐⇒ Q” means72

If P then Q and if Q then P ,

or

P implies Q and Q implies P .
72This note is only for philosophically minded nitpickers. What does “means” mean?

The point of view adopted here is that the meaning of a word, phrase or symbol consists
of the rules for the use of that word, phrase or symbol. For example, the meaning of “and”
is the specification that if P , Q are two sentences, then (i) if you have “P and Q” you can
go to P and you can go to Q, and (ii) if you have P and you have Q then you can go to “P
and Q.” That is, the meaning of “and” is captured by Rules ∧use and ∧prove. Naturally,
this does not cover all the uses of “and” in our culture, such as, for example, to indicate
a progression (as in “this is getting better and better”), or to indicate a causal relation,
(as in “do that and I’ll hit you”), or the literary use full of nuances (as ‘in ‘tomorrow and
tomorrow and tomorrow”). And, most importantly for us, it does not cover the use of
“and” to connect nouns, as in “slings and arrows”. But it’s what “and” means in logic and
mathematics. If you want to program a computer so that it will know what “and” means,
you have to tell the computer how to use “and”. And this amounts to programming the
computer to use rules ∧use and ∧prove. And you don’t need to tell the computer anything
else. A similar situation arises with the biconditional. A computer that “knows” the rules
⇐⇒ use and ⇐⇒ prove “knows” all it needs to know to work with the biconditional, and
for that reason I believe that knowing the meaning of “⇐⇒ ” amounts to knowing the two
rules for working with it.
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In order to make this true, we will choose the rules for

proving and using biconditional sentences as follows:

• To prove “P ⇐⇒ Q” you do exactly the same thing that

you would do to prove (P ⇐⇒ Q) ∧ (Q ⇐⇒ P ) .

• To use “P ⇐⇒ Q” you do exactly the same thing that you

would do to use (P ⇐⇒ Q) ∧ (Q ⇐⇒ P ) .

So, for example, suppose you want to prove that

(∀x ∈ IR)
(

x2 = 4 ⇐⇒ (x = 2 ∨ x = −2)
)

. (10.195)

Then you would start by introducing into your proof an

arbitrary real number called x, and then you would prove

that

(x2 = 4 ⇐⇒ (x = 2 ∨ x = −2) . (10.196)

And to prove (10.196), which is an “iff” sentence, you

would prove both implications x2 = 4 =⇒ (x = 2 ∨ x =

−2) and (x = 2 ∨ x = −2) =⇒ x2 = 4.

(The proof of these two sentences is very simple: to prove

that x2 = 4 =⇒ (x = 2∨x = −2), you use the fact that a

positive real number r cannot have more than two square

roots73. Since 2 and −2 are two distinct square roots of
73This was proved in the notes for Lectures 2,3,4 but, just in case, here is a quick proof:

suppose r has three distinct square roots a, b, c. Then a2 = r, b2 = r and c2 = r. Hence
a2 − b2 = 0. So (a − b)(a + b) = 0. Therefore a − b = 0 or a + b = 0. Since a and b are
different, it cannot be the case that a − b = 0, so a + b must be zero, and then b = −a.
Now we can use exactly the same argument with c instead of b, and conclude that c = −a.
But then c = b, contradicting the fact that b 6= c.
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4, there cannot be a third square root. So, if x2 = 4, so

x is a square root of 4, it follows that x must be 2 or −2.

So x2 = 4 =⇒ (x = 2 ∨ x = −2). To prove the other

implication, i.e., that (x = 2∨ x = −2) =⇒ x2 = 4, just

observe that if x = 2 then x2 = 4, and if x = −2 then

x2 = 4 as well,)

10.8.2 The rules for proving and using biconditionals

Now let us state explicitly the rules for proving and using

biconditional sentences.

As I explained in the previous subsection, these rules

are designed so as to make “P ⇐⇒ Q” mean precisely what we

want it to mean, that is “(P =⇒ Q) ∧ (Q =⇒ P )”.

The rules are as follows.
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Rule ⇐⇒ prove

If P , Q are sentences, and you have proved the

sentences

P =⇒ Q

and

Q =⇒ P ,

then you can go to

P ⇐⇒ Q .

Rule ⇐⇒ use

If P , Q are sentences, and you have proved the

sentence

P ⇐⇒ Q ,

then you can go to

P =⇒ Q

and you can also go to

Q =⇒ P .
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10.9 The other six rules

So far I have given you eight rules, two for each of the

connectives ∧, ∨, =⇒, and ⇐⇒.

In addition, there are six more rules that we have al-

ready discussed:

1. Rule ∀prove, the rule for proving a universal sentence.
(This rule is sometimes called “universal generaliza-

tion”.)

2. Rule ∀use, the rule for using a universal sentence.

(This rule is sometimes called the “specialization rule”.)

3. Rule ∃prove, the rule for proving an existential sen-

tence.. (This rule is sometimes called the “existential

generalization rule”.)

4. Rule ∃use, the rule for using a universal sentence.

(This rule is sometimes called the “existential spe-

cialization rule”.)

5. The proof by contradiction rule.

6. Rule SEE, substitution of equals for equals (also called

“Rule =use”).

So we now have all fourteen rules!
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10.10 Are the logical rules hard to understand and to
learn and remember ?

Most of the logical rules are very simple and

easy to remember. For example,

• The rules for using and proving ∧ sentences are so
stupid that you might object to having them be-
cause they are so obvious, but you certainly cannot
find it hard to understand them.

• The rules for using and proving universal sentences
are also natural:

– if you know that all the items in this store cost
1 dollar, and you pick an item in this store,
you can be sure that it costs 1 dollar. That’s
all that Rule ∀use says.

– if you prove that a schmoo must be green, with-
out using any information about that schmoo
other than the fact that it is a schmoo, then you
can conlude that all schmoos are green. And
that’s= all that Rule ∀prove says.

• And the rules for using and proving existential sen-
tences are natural as well:

– if you know that somewhere in this store there
is a schmoo, then you can go and get a schmoo
and call it any way you want, for example “my
woderful schmoo”. That’s all that Rule ∃use
says.

– if you find a schmoo, then you can conclude
that schmoos exist. And that’s all that Rule
∃prove sats.
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10.10.1 Proofwriting and rules for proofs

Writing proofs is like playing chess, checkers, or some
other board game.

• There are rules that tell you which moves are al-
lowed. (Notice that the rules for proofs never say
“you have to do this”. They say “you are al-

lowed to do this”. It’s exactly like the moves you
are allowed to make in a board game.)

• You have to obey the rules all the time.

• If you cheat, by violating the rules once, then you
are out of the game.

• If you know how to play, you will never make a
move that violates the rules.

• Once you know the moves, then the hard part be-
gins: you have to figure out how to choose which
moves to make in order to win. And that is
where proofwriting becomes difficult and challeng-
ing: some people are better than others at figuring
out how to win.

• From 1637 until 1995, many mathematicians tried
very hard to prove Fermat’s last theorem. Finally,
Andrew Wiles suceeded in doing it in 1995.

• But the proofs we do in this course are not that
hard.
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11 Induction

11.1 Introduction to the Principle of Mathematical In-
duction

You know that the following is true:

(*) Every integer is even or odd, and not both.

How can we prove statement (*) ?

First, we have to make it clear what we mean by “even”

and “odd”.

Definition 15.

1. An integer n is even if n is divisible by 2, that is, if

there exists an integer k such that n = 2k.

2. An integer n is odd if n− 1 is even, that is, if there

exists an integer k such that n = 2k + 1. �

Now that we know what it means for an integer to be

“even” or “odd”, we can try to prove some facts about

even and odd integers. Here are some simple examples of

theorems about even and odd numbers that are easy to

prove:

Theorem 13. If m and n are even integers, then m+

n is even. (That is, “the sum of two even integers is

even”.)
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Theorem 14. If m and n are odd integers, then m+n

is even. (That is, “the sum of two odd integers is

even”.)

Theorem 15. If m and n are integers, m is even and

n is odd, then m+n is odd. (That is, “the sum of an

even integer and an odd integer is odd”.)

Theorem 16. If m and n are integers, and m or n is

even, then m.n is even. (That is, “the product of an

even integer and an integer is an even integer”.)

Theorem 17. If m and n are odd integers, then m.n

is odd. (That is, “the product of two odd integers is

odd”.)

Theorem 18. The integer 1 is odd and is not even.

Theorem 19. If an integer n is even, then the inte-

gers n + 1 and n− 1 are odd.

Theorem 20. If an integer n is odd, then the integers

n + 1 and n− 1 are even.

All these theorems are very easy to prove. I will do

two of the proofs, and I will ask you to do all the others.

Proof of Theorem 14:

Let m, n be integers.
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Assume m and n are odd.

We want to prove that m + n is even.

Since m is odd, we can pick an integer j such

that m = 2j + 1.

Since n is odd, we can pick an integer k such that

n = 2k + 1.

Then m + n = (2j + 1) + (2k + 1), so m + n =

2j + 2k + 2 and then m + n = 2(j + k + 1).

Hence (∃i ∈ Z)m + n = 2i.

So m + n is even. Q.E.D.

Proof of Theorem 18: First, we show that 0 is even. To

prove this, we observe that 0 = 2.0, so (∃k ∈ Z)0 = 2k,

and then 0 is even.

It then follows immediately that 1 is odd, because the

definition of “odd integer” says that “n is odd” means

“n− 1 is even”, so in particular “1 is odd” means “1− 1

is even”, and this is true, because 1 − 1 = 0, and 0 is

even.

Finally, we have to show that 1 is not even. For this

purpose, we have to show that there is no integer k such

that 2k = 1. But there is only one real number k such

that 2k = 1, and that number is 1
2, which is not an

integer. So there is no integer k such that 2k = 1. Hence

1 is not even. Q.E.D.
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Problem 50. Prove Theorems 13, 15, 16, 17, 19, and

20.

WARNING: We have not proved yet that “odd”

is equivalent to “not even”. This will be proved later,

in Theorem 25 in Section 11.3.3. But until we have

proved it we cannot use it. So, for example, you

are not allowed to prove that an integer n is even by

contradiction, by saying “suppose n is not even, then n

is odd.” You cannot do that because we have not proved

yet that “n is not even” is equivalent to “n is odd”. �

What we actually want is to prove (*), i.e., to show

that every integer is even or odd and not both.

Let us call an integer “good” if it is even or odd and

not both even and odd. So we want to prove that

(**) Every integer is good.

We are going to prove first that every natural number

is good, and then we will take the extra step of proving

that every natual number is good.

So let us start by trying to prove that every natural

number is good.

We already know that 1 is good. How about 2?

Theorem 21. The number 2 is even and not odd. So

2 is good.
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Proof. 1 is odd, so by Theorem 20, 1 + 1 is even, so 2 is

even.

On the other hand, 2 cannot be odd, because if 2 was

odd then 2− 1 would be even by Theorem 20.

So 2 is even and not odd, and then 2 is good.Q.E.D.

How about 3?

Theorem 22. The number 3 is odd and not even. So

3 is good.

Proof. 2 is even. So by Theorem 19, 2 + 1 is odd, so 3 is

odd.

On the other hand, 3 cannot be even, because if 3 was

even then 3 − 1 would be odd by Theorem 19, i.e., 2

would be odd.

So 3 is odd and not even, and then 3 is good.Q.E.D.

It is clear that we could go on the same way, and prove

that 4 is good, 5 is good, 6 is good, and so on. And then

we would conclude that every natural number is good.

However, saying “and so on” is not a rigorous way to

prove that every natural number is good.

The key idea is this: we are going to prove that good-

ness is a property that is passed on from each

natural number n to the number following it,

i.e., n + 1.

Precisely, we are going to prove:
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Theorem 23. If n is natural number and n is good,

then n + 1 is good.

Once we have proved Theorem 23, since we have al-

ready proved Theorem 18, which says that 1 is good, we

will be able to reason as follows:

We know that

1. 1 is good.

2. Goodness is passed on from each natural

number n to its successor n + 1. (That is: if

n ∈ IN and n is good, then n + 1 is good.)

Then:

1. 2 is good, because 1 is good and 1 passes on the goodness property to 2,

2. 3 is good, because 2 is good and 2 passes on the goodness property to 3,

3. 4 is good, because 3 is good and 3 passes on the goodness property to 4,

4. 5 is good, because 4 is good and 4 passes on the goodness property to 5,

. . .

and so on,

so every natural number is good.

But it would be much better not to rely on vague phrases

like “and so on”, and to have instead a precise, rigorous

way of doing the proof.

The key point is that all the natural numbers

are eventually arrived at by counting, so that,

if we know that something is true for n = 1, and when

we count (that is, go from 1 to 2, then from 2 to 3, then

from 3 to 4, “and so on”, each time passing from a natural
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number n to its successor n + 1), then at each step the

goodness property will be passed on from n to n+1, and

eventually every natural number n will be reached by our

counting process, so n will be good.

This means that

Every property that is true of the number 1 and

is passed on from each natural number to its suc-

cessor must be true of all natural numbers.

And this is exactly what the Principle of Math-

ematical Induction (PMI) says.

Example 53. Suppose you decide to paint natural num-

bers green according to the following rule: first, you paint

the number 1 green. And then every time you paint a

number n green, you go to its successor n + 1 and paint

it green. Then the PMI guarantees that every natural

number is painted green. �

Example 54. Suppose there is an infinitely long queue

of people standing in line: person No. 1, then person

No. 2, then person No. 3, then person No. 4, and so

on74. Suppose you have a flyer with an announcement

that you want all the people in the queue to read. (For
74Sure, I am talking about an infinitely long queue, with infinitely many people. And

you may object that this is impossible in reality. I have two answers to that. ANSWER
NO. 1: This may be impossible in reality, but you can certainly imagine it! It may
be impossible in reality for a person to jump 50 feet high, but you can certainly imagine
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example, a message saying something like “if you come

to my restaurant after the show you will get a great meal

with a 20% discount”). Suppose you want everybody to

read the flyer, but you have only one copy. Then all you

have to do is

(1) Give the flyer to person No. 1,

and

(2) Make sure that each person passes on the flyer to the

person next in line after reading it75.

The PMI says the obvious thing: if you do (1) and (2)

then everybody will eventually get your flyer. �

11.2 The Principle of Mathematical Induction (PMI)

As explained in the previous section, the Principle

of Mathematical Induction (PMI) captures as a

precise mathematical statement the intuitively clear fact

that when we count we get all the natural num-

bers.
Wonder Woman doing it, so why not imagine an infinite queue? ANSWER 2: Suppose you
only have a finite queue, say 40 people. Then you can consider the following property P (n)
of a natural number: “person n got the message or there is no person n”. This makes sense
of every natural number n. If you guarantee that P (n) is true of every natural number
n, this will imply that persons 1, 2, 3, and so on up to person 40, will get the message.
Property P (n) will be true of every n but for different reasons: for n = 1, 2, 3, 4, · · · , up
to n = 40, it will be true because person n gets the message. And for larger n it will be
true because there is no person No. n.

75For example, you could include in the flyer, in big letters, the statement PLEASE
PASS THIS ON TO THE PERSON NEXT IN LINE TO YOU.
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Remark 9. There are other numbers (that is, people

have invented other numbers), such as zero, the nega-

tive numbers −1, −2, etc., fractions such as 2
3,

22
7 ,−5

2,

2.75, −5.16, and even “irrational numbers”, that cannot

be expressed as fractions. But we do not get these

numbers by the counting process.

So, if you prove by induction that a statement P (n)

is true for all natural numbers, then it does not follow

that it will be true for n = 0, because 0 is not a natural

number, so if you count 1, 2, 3, 4, . . . you will never get

to 0.

And it does not follow either that P (n) will be true

for n = 1
2, because

1
2 is not a natural number, so if you

count 1, 2, 3, 4, . . . you will never get to 1
2. �

Imagine that you have some statement P (n) about

natural numbers that could be true or not for each natural

number n. (For example, the statement P (n) could be

“n(n + 1) is even”, or “n is even or odd”, or “n is not

both even and odd”.) Suppose the following two facts

are true:

I. The statement P (n) is true for n = 1. (That is, P (1)

is true.)

II. Any time the statement P (n) is true for one partic-

ular n, it follows that it is true for n + 1. (That is:
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if P (n) is true then P (n + 1) is true.)

The PMI says that, under these circumstances, P (n)

must be true for every natural number n.

THE PRINCIPLE OF

MATHEMATICAL INDUCTION

Suppose P (n) is any sentence in which n is an open
variable.

Suppose, furthermore, that

I. P (1) is true.

II. Any time P (n) is true for one particular n, it follows
that P (n+ 1) is true.)

Then P (n) is true for every natural number n.

Let us say the same thing in formal language:
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THE PRINCIPLE OF

MATHEMATICAL INDUCTION

(FORMAL LANGUAGE VERSION)

Suppose P (n) is a sentence in which n is an open vari-

able. Then
(

P (1) ∧ (∀n ∈ IN)(P (n) =⇒ P (n + 1))
)

=⇒ (∀n ∈ IN)P (n) . (11.197)

11.3 The proof by induction that every natural num-
ber is even or odd and not both

We are going to use Theorems 18 (which says that 1 is

good) and 23 (which says that goodness is passed on from

each natural number n to its successor n + 1).

We have already proved Theorem 18, but we have not

proved Theorem 23, so we have to do it now.

Proof of Theorem 23.

Let n be an arbitrary natural number.

Assume that n is good .

We are going to prove that n + 1 is good.
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Since n is good, n is even or odd, and n is not

both even and odd.

Assume that n is even .

Then n is not odd, because n is good.

It then follows from Theorem 19 that n+1 is

odd.

It also follows from Theorem 19 that n+ 1 is

not even. (Reason: If n + 1 was even, then

(n+1)− 1 would be odd, that is, n would be

odd. But n isn’t odd76.)

So n + 1 is odd and n + 1 is not even.

So n + 1 is good .

So n is even=⇒ n + 1 is good .

Now assume that n is odd .

Then n is not even, because n is good.

It then follows from Theorem 20 that n+1 is

even.

It also follows from Theorem 20 that n + 1

is not odd. (Reason: If n + 1 was odd, then

(n+1)− 1 would be even that is, n would be

even. But n isn’t even77.)

So n + 1 is even n + 1 is not odd.
76Notice that this is a proof by contradiction
77Another proof by contradiction!
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So n + 1 is good .

So n is odd=⇒ n + 1 is good .

Since we have “n is even∨n is odd”, “n is even=⇒
n+1 is good”, and “n is odd=⇒ n+1 is good”,

it follows from Rule ∨prove that n + 1 is good .

Since we have proved “n + 1 is good” assuming “n

is good”, it follows from Rule =⇒prove that

n is good =⇒ n + 1 is good . (11.198)

Since we have proved (11.198) for an arbitrary natural

number n, it follows from Rule ∀prove that

(∀n ∈ IN)
(

n is good =⇒ n + 1 is good
)

. (11.199)

We are now ready, finally, to prove the theorem that we

had announced before, that every natural number is even

or odd and not both.

We will prove this by induction.
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THE FORMAT OF A PROOF BY

INDUCTION

A proof by induction of a statement

(∀n ∈ IN)XXXX should look like this:

Let P (n) be the predicate XXXX.

Basis step. Proof of P (1).

. . . . . . . . . . . . . . . . .

P (1) .

Inductive step. We prove that

(∀n ∈ IN)
(

P (n) =⇒ P (n + 1)
)

.

Let n ∈ IN be arbitrary. We want to prove

P (n) =⇒ P (n + 1).

Assume P (n). We want to prove P (n+1).

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .
P (n + 1).

So P (n) =⇒ P (n + 1). [Rule =⇒prove]

Hence (∀n ∈ IN)
(

P (n) =⇒ P (n + 1)
)

[Rule ∀prove]

We have completed the basis step and the inductive

step. Hence it follows from the PMI that (∀n ∈
IN)P (n).

That is, (∀n ∈ IN)XXXX . Q.E.D.
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11.3.1 A remark on the importance of parentheses

PARENTHESES MATTER!!!

The sentence

(∀n ∈ IN)(P (n) =⇒ P (n + 1)) . (a)

is not at all the same as the sentence

(∀n ∈ IN)P (n) =⇒ P (n + 1) . (b)

Sentence (a) says that the implication

“P (n) =⇒ P (n + 1)” (that is, “P is passed

on from n to n+ 1”) is true for every natural

number n. So (a) says “every natural number

passes on Property P to its successor”.

Sentence (b) is totally different. It says: “if it

is true that all natural numbers have P then

n + 1 has P”. This is in fact meaningless,

because n is an open variable.

11.3.2 Our first proof by induction: proof that every natural num-
ber is even or odd and not both

Theorem 24. If n is a natural number, then

1. n is even (that is, (∃k ∈ Z)n = 2k) or n is odd

(that is, (∃k ∈ Z)n = 2k + 1);
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2. n is not both even and odd.

Proof. As we have been doing in previous sections, let

us call an integer n “good” if n is even or odd and not

both even and odd.

Let P (n) be the sentence “n is good”.

We want to prove that (∀n ∈ IN)P (n).

Basis step. We have to prove P (1), i.e., that 1 is good.

But we already know, from Theorem 18 that 1 good. So

P (1) is true , and this completes the basis step.

Inductive step. We have to prove that (∀n ∈ IN)
(
P (n) =⇒

P (n + 1)
)
.

But we have alrady proved this, in Theorem 23, on page

305, which says precisely that goodness is passed on from

an integer n to its successor n + 1.

Since we have proved (P (1) and (∀n ∈ IN)
(
P (n) =⇒

P (n + 1)
)
, it follows from the PMI that

(∀n ∈ IN)G(n) , (11.200)

i.e., every natural number is good. Q.E.D.

Finally, we need to prove that every integer is good. It

is very easy to prove that if n ∈ Z and n is good then

−n is good. (YOU DO THIS.)

Now, let n be an arbitrary integer. Then either n ∈ IN

or −n ∈ IN or n = 0, by Basic Fact BFN4.
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If n ∈ IN then we already know that n is good.

If −n ∈ IN then −n is good, and then n is good as

well.

So we have proved that the nonzero integers are good.

If n = 0, then n is good as well because, for example, we

alreadyknow that −1 is good, and goodness is passed on

from each inetegr toits successor.

So we have proved that every integer is good. Q.E.D.

11.3.3 Proof that every integer is even or odd and not both

We now want to prove that every integer is good. That

is, we want to prove:

Theorem 25. If n is an integer, then

1. n is even (that is, (∃k ∈ Z)n = 2k) or n is odd

(that is, (∃k ∈ Z)n = 2k + 1);

2. n is not both even and odd.

In order to prove this, we need two very simple theorems.

Theorem 26. The integer 0 is even and not odd.

Theorem 27. If n is an integer then

1. If n is even then −n is even.

2. If n is odd then −n is odd.
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3. If n is even and odd and not both, then −n is even

or odd and not both.

Problem 51. Prove Theorems 26 and 27, using the

theorems already proved in this section. �

Proof of Theorem 25.

As we have been doing in previous sections, let us call an

integer n “good” if n is even or odd and not both even

and odd.

We want to prove that every integer is good.

Let n ∈ Z be arbitrary.

Then either n ∈ IN, or −n ∈ IN, or n = 0.

If n ∈ IN, then n is good by Theorem 24.

If −n ∈ IN, then −n is good by Theorem 24, and

this implies that n is good by Theorem 27.

If n = 0 then n is good by Theorem 26.

So n is good. Q.E.D.
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12 Examples of proofs by induction

12.1 Some divisibility theorems

Theorem 28. If n is natural number, then 8n− 5n is

divisible by 3.

Proof. We want to prove that

(∀n ∈ IN)3|8n − 5n . (12.201)

Let P (n) be the predicate “3|8n − 5n

.

We want to prove that (∀n ∈ IN)P (n).

We are going to prove this by induction.

Basis step:

We want to prove P (1).

P (1) aays “3|81 − 51”.

And 81 = 8, 51 = 5, so 81 − 51 = 3.

Therefore 3|81 − 51, so P (1) is true

Inductive step:

We want to prove (∀n ∈ IN)(P (n) =⇒ P (n + 1)).

Let n ∈ IN be arbitrary.

Assume P (n).
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Then 3|8n − 5n.

So we can write

8n − 5n = 3k , k ∈ Z .. (12.202)

Then

8× (8n − 5n) = 3× 8k . (12.203)

So

8n+1 − 8× 5n = 3× 8k , (12.204)

and then

8n+1 = 8× 5n + 3× 8k , (12.205)

But 8 = 5 + 3, so

8× 5n = 5× 5n + 3× 5n = 5n+1 + 3× 5n ,

(12.206)

so

8n+1 = 5n+1 + 3× 5n + 3× 8k , (12.207)

and then

8n+1 = 5n+1 + 3(5n + 8k) , (12.208)

so that

8n+1 − 5n+1 = 3(5n + 8k) , (12.209)
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Let j = 5n + 8k. Then j ∈ Z and

8n+1 − 5n+1 = 3j . (12.210)

Hence 3|8n+1 − 5n+1. That is, P (n + 1) .

Therefore P (n) =⇒ P (n + 1) (by Rule =⇒prove).

So (∀n ∈ IN)(P (n) =⇒ P (n + 1)) (by Rule ∀prove).
This completes the inductive step.

Since we have proved P (1) ∧ (∀n ∈ IN)(P (n) =⇒ P (n + 1)) ,

it follows from the PMI that (∀n ∈ IN)P (n), that is,.

(∀n ∈ IN)3|8n − 5n . Q.E.D.

Here are a few examples of theorems similar to Theo-

rem 28

Theorem 29. If n is natural number, then 11n − 4n

is divisible by 7.

Theorem 30. If n is natural number, then 22n − 10n

is divisible by 12.

Theorem 31. If n is natural number, then 31n − 18n

is divisible by 13.

Problem 52. Prove Theorem 29. �

Problem 53. Prove Theorem 30. �
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Problem 54. Prove Theorem 31. �

Problem 55. If, after reading the proof of Theorem 28 and
solving Problems 52, 53, 54, you get the feeling that these are
all the same thing, try to prove the following general theorem:

Theorem 32. If a, b are integers, then for every natural number
n, an − bn is divisible by a = b.

(This is done later, see Theorem 39 on page 349. But

you shoud try to prove it by yourself before you look at

the proof.) �

12.2 An inequality

Here is another example of a proof by induction.

Theorem 33. If n is a natural number, then 2n <

n! + 3 .

Proof. We want to prove that

(∀n ∈ IN)2n < n! + 3 . (12.211)

Let P (n) be the predicate “ 2n < n! + 3 ”.

We want to prove that (∀n ∈ IN)P (n).

We are going to prove this by induction.

Basis step:

We want to prove P (1).
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P (1) aays “ 21 < 1! + 3 ”.

And 21 = 2 and 1! + 3 = 4.

Therefore 21 < 1! + 3, so P (1) is true

Inductive step:

We want to prove (∀n ∈ IN)(P (n) =⇒ P (n + 1)).

Let n ∈ IN be arbitrary.

Assume P (n). We want to prove P (n + 1).

Since P (n) holds, we have

2n < n! + 3 . (12.212)

Therefore, multiplying both sides of (12.212)

by 2, we get

2n+1 < 2n! + 6 . (12.213)

On the other hand, n + 1 = n− 1 + 2, so

(n + 1)! = (n + 1)n! = (n− 1)n! + 2n! .

(12.214)

We are going to treat separately the cases n ≥
3 and n < 3.

Assume that n ≥ 3.

Then n−1 ≥ 2 and n! ≥ 6, so (n−1)n! ≥ 12

and a fortiori (n− 1)n! > 3.
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∗ Since (n + 1)! = (n − 1)n! + 2n!, and (n −
1)n! > 3, we have (n + 1)! > 2n! + 3, that is

2n! + 3 < (n + 1)! . (12.215)

Since 2n+1 < 2n! + 6, we have

2n+1 < 2n! + 6

= 2n! + 3 + 3

< (n + 1)! + 3 ,

so 2n+1 < (n + 1)! + 3.

That is, P (n + 1) holds.

We now consider the case when n < 3.

Assume that n < 3.

Then n = 1 or n = 2,

If n = 1 then P (n+ 1) says 22 < 2! + 3, that

is 4 < 5. So P (n + 1) is true.

If n = 2 then P (n+ 1) says 23 < 3! + 3, that

is 8 < 9. So P (n + 1) is true.

So in both cases P (n + 1) holds.

We have proved that P (n + 1) holds in both

case, when n ≥ 3 and when n < 3. So

P (n + 1).

Therefore P (n) =⇒ P (n + 1) (by Rule =⇒prove).
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So (∀n ∈ IN)(P (n) =⇒ P (n + 1)) (by Rule ∀prove).
This completes the inductive step.

Since we have proved P (1) ∧ (∀n ∈ IN)(P (n) =⇒ P (n + 1)) ,

it follows from the PMI that (∀n ∈ IN)P (n), that is,.

(∀n ∈ IN)2n < n! + 3 . Q.E.D.

Problem 56.

1. Prove that if n is a natural number then 3n < n! +

124.

2. Is it true that if n is a natural number then 3n <

n! + 123?

12.3 More inequalities, with applications to the com-
putation of some limits

Let us use induction to prove an inequality:

Theorem 34. If x is a positive real number, and n is

a natural number, then

(1 + x)n ≥ 1 + nx . (12.216)

Proof. We want to prove that

(∀x ∈ IR)(∀n ∈ IN)
(

x > 0 =⇒ (1 + x)n ≥ 1 + nx
)

.

(12.217)
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Let x be an arbitrary real number.

We want to prove that

(∀n ∈ IN)
(

x > 0 =⇒ (1+x)n ≥ 1+nx
)

. (12.218)

We prove this by induction.

Let P (n) be the predicate “x > 0 =⇒ (1 + x)n ≥
1 + nx”.

Base step. We have to prove P (1).

But P (1) says “x > 0 =⇒ 1 + x ≥ 1 + x”, and this

implication is obviously true, because its conclusion

is true.

So P (1) is true, and we are done with the base case.

Inductive step. We have to prove

(∀n ∈ IN)(P (n) =⇒ P (n + 1)) . (12.219)

Let n be an arbitrary natural number. We want

to prove that P (n) =⇒ P (n + 1).

Assume P (n).

Then

x > 0 =⇒ (1 + x)n ≥ 1 + nx . (12.220)
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We want to prove

x > 0 =⇒ (1 + x)n+1 ≥ 1 + (n + 1)x .

(12.221)

Assume x > 0.

Then it follows from (12.220) (by Rule =⇒use)

that

(1 + x)n ≥ 1 + nx . (12.222)

Multiplying both sides of (12.222) by 1 + x

(which is possible because 1 + x > 0), we get

(1 + x)n+1 ≥ (1 + x)(1 + nx) . (12.223)

But

(1 + x)(1 + nx) = 1 + x + nx + nx2

= 1 + (n + 1)x + nx2

≥ 1 + (n + 1)x .

(The fact that 1 + (n + 1)x + nx2 ≥ 1 +

(n + 1)x follows because nx2 ≥ 0 and then,

adding 1 + (n + 1)x to both sides, we get

1 + (n + 1)x + nx2 ≥ 1 + (n + 1)x.)

So

(1 + x)n+1 ≥ 1 + (n + 1)x . (12.224)
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Since we proved (12.224) under the assump-

tion that x > 0, it follows that

x > 0 =⇒ (1 + x)n+1 ≥ 1 + (n + 1)x .

(12.225)

That is, P (n + 1) holds.

Since we have proved P (n + 1) assuming P (n),

Rule =⇒prove allows us to conclude that P (n) =⇒
P (n + 1).

So we have proved P (n) =⇒ P (n + 1) for arbi-

trary n ∈ IN, Rule ∀prove allows us to conclude that

(12.219) holds.

This completes the inductive step.

Since we have also proved P (1), we can use the PMI

to conclude that (12.218) holds, i.e., that

(∀n ∈ IN)
(

x > 0 =⇒ (1+x)n ≥ 1+nx
)

. (12.226)

Since we have proved for an arbitrary real number x, we

can conclude that

(∀x ∈ IR)(∀n ∈ IN)
(

x > 0 =⇒ (1 + x)n ≥ 1 + nx
)

,

(12.227)

which is exactly what we wanted to prove. Q.E.D.
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Problem 57. In the proof of Theorem 34, we trans-

lated the statement to be proved into formal language

as Formula (12.217) and then followed the rules of logic,

plus the PMI, to prove it.

Suppose instead that we had translated the statement

of Theorem 34 in a different way, as

(∀n ∈ IN)(∀x ∈ IR)
(

x > 0 =⇒ (1 + x)n ≥ 1 + nx
)

.

(12.228)

1. Prove that this translation is equivalent

to Formula (12.217), as a matter of pure logic.

That is, prove that no matter what the 2-variable

predicate A(x, n) is, and what the sets S, T are, the

formulas

(∀x ∈ S)(∀n ∈ T )A(x, n)

and

(∀n ∈ T )(∀x ∈ S)A(x, n)

are equivalent. (Two formulas U, V are equivalent if

U ⇐⇒ V is true.)

2. Write a different proof of Theorem 34, using

the translation (12.228) instead of (12.217).

Problem 58. By looking carefully at the proof of The-

orem 34, prove the following stronger result:
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Theorem 35. If x ∈ IR and x ≥ −1, and n is a

natural number, then

(1 + x)n ≥ 1 + nx . (12.229)

With a little bit more work, it is possible to prove a

result stronger than Theorem 34:

Theorem 36. If x is a nonnegative real number, and

n is a natural number, then

(1 + x)n ≥ 1 + nx +
n(n− 1)

2
x2 . (12.230)

Proof.

YOU DO THIS ONE.

HINT. Just repeat the proof of Theorem 34 up to the

point when you multiply by 1+x, and at that point keep

the x2 term. �

Problem 59. Prove Theorem 36. �

12.3.1 An application of Theorem 36: computing limn→∞
n

√
n

In this section we use the notion of “limit of a sequence”. All you
need to know about limits of seuences is the following sandwich-
ing theorem”: If {an}∞n=1, {bn}∞n=1, and {cn}∞n=1, are sequences
of real numbers such that an ≤ bn ≤ cn for every n ∈ IN, and L
is a real number such that

lim
n→∞

an = L and lim
n→∞

cn = L ,
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then limn→∞ bn.

Let us prove that

lim
n→∞

n
√
n = 1 . (12.231)

Define

αn =
n
√
n− 1 .

To prove (12.231), we have to prove that

lim
n→∞

αn = 0 . (12.232)

It is clear that αn ≥ 0. (Reason: n
√
n ≥ 1, because

if n
√
n was < 1, it would follow that

(
n
√
n
)n

< 1, but
(

n
√
n
)n

= n, and n ≥ 1.)

Also, 1 + αn = n
√
n, so

(1 + αn)
n = n . (12.233)

Using the inequality of Theorem 36, we get

(1 + αn)
n ≥ 1 + nαn +

n(n− 1)

2
α2
n . (12.234)

So

n = (1 + αn)
n

≥ 1 + nαn +
n(n− 1)

2
α2
n

≥ n(n− 1)

2
α2
n .
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Hence

n ≥ n(n− 1)

2
α2
n ,

so

1 ≥ n− 1

2
α2
n ,

and then

α2
n ≤

2

n− 1
,

so

αn ≤
√

2

n− 1
.

Hence the numbers αn satisfy

0 ≤ αn ≤
√

2

n− 1
.

So the αn are ‘sandwiched” between two sequences that

converge to 0. Hence limn→∞ αn = 0 by the sandwiching

theorem.

Hence (12.231 is proved.

12.4 Some formulas for sums

In this section we use the notation “
∑n

k=1 ak” for “a1 +

a2+· · ·+an”. (A precise definition of “
∑n

k=1 ak”, without

using · · · , is given in section 12.5.3 on page 342.)
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Theorem 37. If n is an arbitrary natural number,

then
n∑

k=1

k =
n(n + 1)

2
. (12.235)

(That is, 1 + 2 + · · · + n = n(n+1)
2 .)

Proof. Let P (n) be the statement “
∑n

k=1 =
n(n+1)

2 ”.

We prove (∀n ∈ IN)P (n) by induction.

Base step. P (1) says “1 = 1(1+1)
2 ”, which is obviously

true. So P (1) is true.

Inductive step.

We prove (∀n ∈ IN)(P (n) =⇒ P (n + 1)).

Let n be an arbitrary natural number.

Assume that P (n) is true.

Then
∑n

k=1 k = n(n+1)
2 .
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Therefore
n+1∑

k=1

k = (

n∑

k=1

k) + (n + 1)

=
n(n + 1)

2
+ (n + 1)

= (n + 1)
[n

2
+ 1
]

= (n + 1)× n + 2

2

=
(n + 1)(n + 2)

2
.

So
n+1∑

k=1

k =
(n + 1)(n + 2)

2
.

That is, P (n + 1) holds.

We have proved P (n + 1) assuming P (n). Hence

P (n) =⇒ P (n + 1) .

We have preved P (n) =⇒ P (n + 1) for an arbitrary

natural number n. Therefore (∀n ∈ IN)(P (n) =⇒ P (n+

1)), which completes the inductive step.

Hence, by the PMI, (∀n ∈ IN)P (n), that is,

(∀n ∈ IN)

n∑

k=1

k =
n(n + 1)

2
.
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Q.E.D.

Using the same method, many other formulas for sums

can be proved. Here is an exmaple of a rather remarkable

one:

Theorem 38. If n is a natural number, then

n∑

k=1

k3 =
[n(n + 1)

2

]2

, (12.236)

that is:

13 + 23 + 33 + 43 + · · · + n3 =
[n(n + 1)

2

]2

.

Proof. YOU DO THIS ONE.

Problem 60.

1. Compute the sum
∑n

k=1 k
3 for n = 1, 2, 3, 4, 5 and

6.

2. Verify that in each case the sum you got is a perfect

square (i.e., the square of an integer).

3. Prove Theorem 38. �

Problem 61.

1. Compute the sum
∑n

k=1 k
2 for n = 1, 2, 3, 4, 5 and

6.
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2. Verify that in each case the sum you got agrees

with the formula
n∑

k=1

k2 =
n + 3n2 + 2n3

6
. (12.237)

3. Prove that Formula (12.237) holds for every natural

number n. �

Problem 62.

1. Compute the sum
∑n

k=1 k for n = 1, 2, 3, 4, 5 and

6.

2. Verify that in each case the sum you got agrees

with the formula
n∑

k=1

k =
n(n + 1)

2
. (12.238)

3. Prove that Formula (12.238) holds for every natural

number n. �

Problem 63.

1. Compute the sum
∑n

k=1(2k−1) for n = 1, 2, 3, 4, 5

and 6.

2. Verify that in each case the sum you got agrees

with the formula
n∑

k=1

(2k − 1) = n2 . (12.239)
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3. Prove that Formula (12.239) holds for every natural

number n. �

Problem 64. Figure out a formula for the sum

n∑

k=1

(2k − 1)2 , (12.240)

and prove that your formula holds for every natural

number n. �

Problem 65. Figure out a formula for the sum

n∑

k=1

(4k + 3)3 , (12.241)

and prove that your formula holds for every natural

number n. �

12.5 Inductive definitions

In an earlier set of lectures, we defined “x2”, for a real

number x, to mean “x.x”. And we can define “x3” to

mean “(x.x).x”, or, if you prefer, “x2.x”. But how can

we define “xn” for an arbitrary natural number n? One

possibility would be to write something like this

xn = x× x× · · · × x
︸ ︷︷ ︸

n times
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Similarly, we would like to define the “factorial” n! of a

natural number n by the formula

n! = 1× 2× 3× · · · × n .

And we would like to define summations such as

1 + 2 + 3 + · · · + n

or

12 + 22 + 32 + · · · + n2 ,

or products such that

2× 4× 6× 8× · · · × 200 .

With this notation, if we want to talk about the product
of the first 20 prime numbers, i.e., the number

2×3×5×7×11×13×17×19×23×29×31×37×41×43×47×53×59×61×67×71 ,

we could write

2× 3× · · · × 71 . (12.242)

But this is very unclear. I do not know what “· · · ” means,

precisely (and if you think you do, please tell me!). For

example, in the expression (12.242), how on Earth are we

supposed to know which numbers should go in place of

the · · · ? Take a simple example of a similar situation:

suppose I write

3× 5× 7× · · · × 71 . (12.243)
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Is this supposed to be “the product of all odd numbers

from 3 to 71”, or “the product of all prime numbers from

3 to 71”, or “the product of all the odd numbers from 3

to 71 that do not end in a 9”, or what?

Next, let us look at another example: suppose I write

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . . .

What is the next number, after 377? Well, if you have

guessed the pattern, then you will probably guess that

each number, after the first two, is the sum of the two

preceding ones, so what comes after 377 is 233+377, that

is, 610. But, why couldn’t the pattern be this:

• Start with 1, and then another 1.

• Then each number is obtained by adding the two

preceding ones.

• Yo go on like this until you get to 377, and then you

switch to a different rule: each number is obtained

by adding 100 to the previous one.

This is a perfectly legitimate rule for generating a se-

quence of numbers, and if you use this rule then the

numbers that come after 377 are 477, 577, and so on.

If you say “that’s not a true pattern”, then I will ask you

to tell me what you mean by “a true pattern”, and I will
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also ask “Why not? What do you mean by ‘pattern’ ? ”.

“Why is this not a true pattern?”.

One last example. If I write

27, 82, 41, 124, 61, 184, 92, 46, · · ·

what comes next? I’ll let you think about this one.

The fact is: in general, “· · · ” is meaningless. So in mathe-

matics we just do not use it.

And, in any case, once we develop fully our way of

writing all of mathematics formally (that is, with formu-

las and no words), the symbol “· · · ” will not be there in

the list of symbols we can use. So we do not want to use

“· · · ” at all.

What we are going to do instead is use inductive

definitions.

12.5.1 The inductive definition of powers of a real number

The way to define the power “xn” correctly is by means

of an inductive definition: we first define x1 to be x, and

then define xn+1 to be xn.x, for every n. That is, we

write:

Definition 16. (Inductive definition of positive

integer powers of a real number) For all a ∈ IR,
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we set

a1 = a ,

an+1 = an.a for n ∈ IN .

We also set a0 = 1. �

Using this definition, we can write down what an is for

any n.

Suppose, for example, that we want to know what a5

is. By the second line of our inductive definition of an,

a5 = a4.a.

This answers our question about a5, in terms of a4. And

what is a4? Again, using the second line of the inductive

definition, we find

a4 = a3.a.

So

a5 = ((a3).a).a.

And what is a3? Once again, we can use the second line

of the inductive definition, and find

a3 = a2.a

So

a5 = (((a2).a).a).a.
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One more step yields

a2 = a1.a ,

so

a5 = (((a1.a).a).a).a.

And, finally, the first line of the inductive definition, tells

us that a1 = a, so we end up with

a5 = (((a.a).a).a).a.

Furthermore, since multiplication of real numbers has the

associative property, we can omit the parentheses and

just write:

a5 = a.a.a.a.a.

12.5.2 The inductive definition of the factorial

The “factorial” of a natural number n is supposed to be

the product 1× 2× 3× · · · × n. That is, the factorial of

n is the product of all the natural numbers from 1 to n.

Here is the inductive definition:

Definition 17. The factorial of a natural number n is

the number n! given by

1! = 1 , (12.244)

(n + 1)! = n!× (n + 1) for n ∈ IN . (12.245)
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In addition, we define

0! = 1 ,

so n! is defined for every nonnegative integer n. �

Example 55. Let us compute 7! using the inductive def-

inition. Using (12.245) we get 7! = 7 × 6!. Then using

(12.245) again we get 6! = 6 × 5!, so 7! = 7 × 6 × 5!.

Continuing in the same way we get 5! = 5 × 4!, so 7! =

7×6×5×4!, and then 4! = 4×3!, so 7! = 7×6×5×4×3!.

Then 3! = 3 × 2!, so 7! = 7 × 6 × 5 × 4 × 3 × 2!. And

2! = 2× 1!, so 7! = 7× 6× 5× 4× 3× 2× 1!. Finally,

(12.244) tells us that 1! = 1, so we end up with

7! = 7× 6× 5× 4× 3× 2× 1 ,

which is of course what 7! is supposed to be. �

12.5.3 The inductive definition of summation.

Definition 18. Suppose we have a natural number n,

and a list

a = (a1, a2, . . . , an)

of n real numbers. We define the sum (or summation) of

the list a (also called the sum of the aj for j from 1 to
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n) to be the number
∑n

j=1 aj determined as follows:

1∑

j=1

aj = a1 ,

n+1∑

j=1

aj =
( n∑

j=1

aj

)

+ an+1 for n ∈ IN .

And we also define
∑0

j=1 aj = 0.
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Example 56. Let us compute
∑5

j=1 j
2. We have

5∑

j=1

j2 =
( 4∑

j=1

j2
)

+ 52

=

(
( 3∑

j=1

j2
)

+ 42

)

+ 52

=
( 3∑

j=1

j2
)

+ 42 + 52

=
( 2∑

j=1

j2
)

+ 3+42 + 52

=
( 1∑

j=1

j2
)

+ 22 + 3+42 + 52

= 12 + 22 + 3+42 + 52

= 1 + 4 + 9 + 16 + 25

= 55 .

12.5.4 Inductive definition of product.

Definition 19. For a natural number n, and a list a =

(a1, a2, . . . , an) of n real numbers, we define the product

of the aj for j from 1 to n to be the number
∏n

j=1 aj
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determined as follows:
1∏

j=1

aj = a1 ,

n+1∏

j=1

aj =
( n∏

j=1

aj

)

× an+1 for n ∈ IN .

And we also define
∏0

j=1 aj = 1.

Example 57. If you compare the inductive definition of

a product with the inductive definition of the factorial,

you can easily see that

n! =

n∏

j=1

j for every n ∈ IN .

12.5.5 A simple example of a proof by induction using inductive
definitions

Here is a simple example of a proof of an inequality by

induction. Notice how the proof uses the notion of “n-

th power” of a real number exactly in the form of the

inductive definition.

Proposition 1. For all n ∈ IN, n < 2n.

Proof.

Let P (n) be the statement “n < 2n ”.
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We are going to prove

(∀n ∈ IN)P (n) (12.246)

by induction

Basis step. P (1) is the statement “1 < 21”. But

21 = 2 by the inductive definition, so P (1) says “1 < 2”

which is clearly true. So P (1) is true.

Inductive step. We want to prove that

(∀n ∈ IN)(P (n) =⇒ P (n + 1)) . (12.247)

Let n be an arbitrary natural number.

We want to prove that P (n) =⇒ P (n + 1).

Assume P (n).

Then n < 2n.

So 2n < 2n × 2 = 2n+1.

But 1 ≤ n, because n is a natural number. (Pre-

cisely: if n = 1 then 1 = n, so 1 ≤ n. And if

n 6= 1 then ny Basic Fact BFZ9, n − 1 ∈ IN, so

1 < n, and then 1 ≤ n.)

So n + 1 ≤ n + n, i.e., n + 1 ≤ 2n.

Therefore n + 1 < 2n+1.

So P (n + 1) is true.
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Since we have proved P (n + 1) assuming P (n), we

can conclude that P (n) =⇒ P (n + 1).

Since we have proved P (n) =⇒ P (n + 1) for arbitrary

n, it follows that (12.247) holds.

So we have completed the basis step and the inductive

step, and then the PMI tells us that (12.246 holds, that

is, that (∀n ∈ IN)n < 2n. Q.E.D.

12.5.6 Another simple example of a proof by induction using in-
ductive definitions

Here is a slightly more involved example of a proof of

an inequality by induction. Notice how the proof uses

the notion of “n-th power” of a real number and the

notion of “factorial” exactly in the form of their inductive

definitions.

We would like to prove the inequality “2n < n!”. This,

however, isn’t true for every natural number n. (For

example, it is not true if n = 1 or n = 2 or n = 3.) But

it is true for n ≥ 4.

Proposition 2. For all n ∈ IN, if n ≥ 4 then 2n < n!.

Proof.

Let P (n) be the statement “ 2n < n! ”.

We are going to prove

(∀n ∈ IN)(n ≥ 4 =⇒ P (n)) . (12.248)
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by induction. And we will start the induction at 4 rather

than 1.

Basis step. P (4) is the statement “24 < 4!”. But

24 = 16, and 4! = 24. So P (1) says “16 < 24’, which is

clearly true. So P (4) is true.

Inductive step. We want to prove that

(∀n ∈ IN)
(

n ≥ 4 =⇒ (P (n) =⇒ P (n+1))
)

. (12.249)

Let n be an arbitrary natural number such that n ≥
4..

We want to prove that P (n) =⇒ P (n + 1).

Assume P (n).
Then 2n < n!.
So 2× 2n < 2n!.
But 2× 2n = 2n+1.
Hence 2n+1 < 2n!.
Also, 2 < n + 1.
So 2n! < (n + 1)n!.
But (n+ 1)n! = (n+ 1)! by the inductive defini-

tionof “factorial”.
Therefore 2n! < (n + 1)!.
So, finally, 2n+1 < (n + 1)!.
So P (n + 1) is true.

Since we have proved P (n + 1) assuming P (n), we

can conclude that P (n) =⇒ P (n + 1).
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Since we have proved P (n) =⇒ P (n + 1) for arbitrary

n, it follows that (12.249) holds.

So we have completed the basis step and the inductive

step, and then the PMI tells us that (12.248) holds, that

is, that (∀n ∈ IN)
(

n ≥ 4 =⇒ (2n < n!)
)

. Q.E.D.

12.5.7 Another simple example: divisibility by 3, 9, and 11

Let us prove

Theorem 39. If a, b are arbitrary integers, then for

every nonnegative integer78 n the integer an − bn is

divisible by a− b.

Example 58. Here are some examples of what the the-

orem says:

1. Take a = 8, b = 3. Then the theorem says that

8n − 3n is divisible by 5 for every n. (And you can

check this. For example, 83 = 512, and 33 = 27, so

83 − 33 = 512 − 27 = 495, which is indeed divisible

by 5.

2. Take a = 10, b = 1. Then the theorem says that

10n−1 is divisible by 9, and you can check this. (For

example, 101 − 1 = 9, 102 − 1 = 99, 103 − 1 = 999,

104 − 1 = 9, 999, and so on.)
78Recall that the nonnegative integers are the natural numbers as well as zero.
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3. Take a = 10, b = −1. Then the theorem says that

10n − (−1)n is divisible by 11. And you can check

this: 10−(−1) = 11, 102−(−1)2 = 99, 103−(−1)3 =

1, 001, 104 − (−1)49, 999, and all these are divisible

by 11. �

Proof.

Let a, b be arbitrary integers.

We will prove that

(∀n ∈ IN)a− b|an − bn , (12.250)

and also that “a− b|an − bn” is true for n = 0.

First we prove (12.250) by induction.

Let P (n) be the statement79 “a− b divides an−
bn”.

Basis Step. P (1) says “a − b divides a − b”,

which is obviously true.

This completes the basis step.

Inductive Step. We want to rpove

Inductive step. We want to prove that

(∀n ∈ IN)(P (n) =⇒ P (n + 1)) . (12.251)
79We do not have to worry about the quesion “who are a and b?”, because we have fixed

a and b earlier. They are fixed integers. Arbitrary, but fixed.
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Let n be an arbitrary natural number.

We want to prove that P (n) =⇒ P (n + 1).

Assume P (n).

Then a− b divides an − bn.

So we may pick an integer k such that

an − bn = (a− b)k . (12.252)

Then

an+1 − bn+1 = an+1 − abn + abn − bn+1

= aan − abn + abn − bbn

= a(an − bn) + (a− b)bn

= a(a− b)k + (a− b)bn

= (a− b)
(
ak + bn

)
.

Hence an+1 − bn+1 = (a− b)
(
ak + bn

)
.

Clearly, ak + bn is an integer80.

Therefore a− b divides an+1 − bn+1.

So P (n + 1) is true.

Since we have proved P (n+1) assuming P (n),

we can conclude that P (n) =⇒ P (n + 1).
80Strictly speaking even a stupid, trivial, obvious statement like this needs proof. On

the other hand, it is so obvous that nobody would actually insult the reader’s intelligence
by putting in the proof. On the other hand, at this point we are just getting started with
proofs, so you shousl knwo how to prove this. So I am going to ask you to write down the
proof, as a homework problem. Sorry!.
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Since we have proved P (n) =⇒ P (n + 1) for

arbitrary n, it follows that (12.251) holds.

So we have completed the basis step and the

inductive step, and then the PMI tells us that

(12.250 holds, that is, that if n is an arbitrary

natural number, then a− b divides an − bn.

This almost completes our proof. But there is a mi-

nor missing detail: we also have to prove that a− b

divides an − bn when n = 0.

But if n = 0 then an − bn is equal to zero, because

the inductive definition of the powers tells us that

a0 = 1 and b0 = 1.

And 0 is divisible by any integer.

So a− b divides an − bn also when n = 0.

We have now proved that a − b|an − bn for every

nonnegative integer n.

And this has been proved for arbitrary integers a, b. So

our proof is complete. Q.E.D.

Problem 66.

1. Provide a detailed proof of the step that we

skipped in the proof of Theorem 39, namely, that
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ak+ bn is an integer. (This will require proving that

if b ∈ Z then bn ∈ Z for every nonnegative integer

n, and the only way to do that is by induction, using

the inductive definition of the powers.)

2. Provide an alternative proof of Theorem 39,

in which you do not treat separately the cases n ∈ IN

and n = 0, but do the whole thing in one swoop,

using the PMI starting at 0 rather than at 1.

3. Explain how you would answer the following objec-

tion that somebody studying these notes might raise:

In the theorem, you do not assume that a 6= b, and

you talk about “divisibility by a− b”. But if a = b

then a− b is zero, and we cannot divide by zero,

so how come you allow a to be equal to b? How

can you say that “0 is divisible by 0”, given that
0
0 is not defined? �

Problem 67. One of the consequences of Theorem 39 is

that 10n− 1 is divisible by 9 for each nonnegative integer

n. So, for example, if you look at the number 438, and

let s = 4 + 3 + 8, so s = 15, it follows that 438 − s is
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divisible by 9, because:

438− s

= 4× 100 + 3× 10 + 4× 1− (4 + 3 + 8)

= 4× 102 − 4 + 3× 10− 3 + 4× 1− 1

= 4× (102 − 1) + 3× (10− 1) + 4× (1− 1) ,

which is clearly divisible by 9.

1. Explain how this fact leads to the following two

divisibility criteria:

Criterion for divisibilitly by 9: A natural

number n is divisible by 9 if and only if the sum of

its decimal figures is divisible by 9. (For example:

572, 265 is divisible by 9 because 5+7+2+2+6+

5 = 27, which is divisible by 9. And 772, 265 is

not divisible by 9 because 7+7+2+2+6+5 = 29,

which is not divisible by 9.)

Criterion for divisibilitly by 3: A natural

number n is divisible by 3 if and only if the sum of

its decimal figures is divisible by 3. (For example:

572, 265 is divisible by 3 because 5+7+2+2+6+

5 = 27, which is divisible by 3. And 772, 265 is

not divisible by 3 because 7+7+2+2+6+5 = 29,

which is not divisible by 3.)
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2. Explain, in a similar way, how the fact that 10n −
(−1)n is divisible by 11 leads to the following divisi-

bility criterion:

Criterion for divisibilitly by 11: A natural

number n is divisible by 11 if and only if the

alternating sum81 of its decimal figures is divisible

by 11. (For example: 572, 473 is divisible by 11

because 5 − 7 + 2 − 4 + 7 − 3 = 0, which is

divisible by 11. And 772, 463 is not divisible by

11 because 7 − 7 + 2 − 4 + 6 − 3 = 1, which is

not divisible by 11.) �

12.5.8 Some problems

Problem 68. Prove, using the inductive definition of

the powers an, that

1. (∀a ∈ IR)(∀b ∈ IR)(∀n ∈ IN)(ab)n = anbn,

2. (∀a ∈ IR)(∀m ∈ IN)(∀n ∈ IN)am+n = aman. �

Problem 69. Prove, using the inductive definition of

summation, that if n ∈ IN and (a1, a2, . . . , an) and

(b1, b2, . . . , bn), are finite lists of natural numbers of length
81That is, the sum with alternating signs: first figure minus second figureplus third

figure minus fourth figure, etc, etc.
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n, then

n∑

k=1

ak +

n∑

k=1

bk =

n∑

k=1

(ak + bk) . (12.253)
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13 Other forms of induction

13.1 Induction with a different starting point (some-
times called “generalized induction”)

The PMI says that, if a property is true of 1, and is passed

on to the right, so each natural number n passes it on to

its successor n+ 1, then the property will hold of all the

numbers that we reach by counting starting at 1.

It is clear that the same thing should be true if we start

counting at some other starting point s∗, that is, some

other integer such as, for example, 3, or 7, or 0, or −5,

or −372. The general result is the following rather trivial

theorem:

THE PRINCIPLE OF MATHEMATICAL INDUCTION

WITH A GENERAL STARTING POINT

Theorem 40. Let P (n) be a statement about a variable integer n. Sup-
pose we fix an integer s∗. Let Z≥s∗ denote the set of all integers n such
that n ≥ s∗. Suppose, furthermore, that

I. P (s∗) is true.

II. Any time P (n) is true for one particular n ∈ Z≥s∗, it follows that
P (n+ 1) is true.

Then P (n) is true for every integer n belonging to Zs∗.

And we can say the same thing in more formal lan-

guage:
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THE PRINCIPLE OF MATHEMATICAL
INDUCTION

WITH A GENERAL STARTING POINT

(FORMAL LANGUAGE VERSION)

Theorem 40. Let P (n) be a statement about a

variable integer n. Suppose we fix an integer s∗.
Let Z≥s∗ denote the set of all integers n such that

n ≥ s∗. Suppose, furthermore, that

P (s∗) (13.254)

and

(∀n ∈ Z≥s∗)
(
P (n) =⇒ P (n + 1)

)
. (13.255)

Then

(∀n ∈ Z≥s∗)P (n) . (13.256)

And we can say the same thing in even more formal

language:
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THE PRINCIPLE OF MATHEMATICAL
INDUCTION

WITH A GENERAL STARTING POINT

(VERY FORMAL LANGUAGE VERSION)

Theorem 40. Let P (n) be a statement about a

variable integer n. Let s∗ ∈ Z, and let

Z≥s∗ = {n ∈ Z : n ≥ s∗} . (13.257)

Then
(

P (s∗) ∧ (∀n ∈ Zs∗)
(
P (n) =⇒ P (n + 1)

))

=⇒ (∀n ∈ Zs∗)P (n) . (13.258)

Proof of Theorem 40.

Assume that P (n) is a 1-variable predicate and s∗ is

an arbitrary integer. We want to prove that if (13.254)

and (13.255) hold, then (13.256) holds.

So we assume that (13.254) and (13.255) hold, and we

try to prove that (13.256) holds.

We do the proof by “changing coordinates”. That is,

we relabel the integers so that s∗ becomes 1, s∗ + 1 be-

comes 2, and so on.
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.  .  .  .  .  .  ..  .  .  .  .  .  .

s
* n  =  m + s   − 1

*

m =  n − s  +1
*

1 2 3 4 5 6 7 8 9 10 11 12 130−1−2

−3−4−5−6 −2 −1 −1 2 3 4 5 6 7 8 90

m

n

Changing coordinates on Z so that

n = s∗ becomes m = 1

(In the picture, s∗ is −3.)

Precisely, we introduce a new variable m related to n by

m = n + 1− s∗ . (13.259)

(That is: n = s∗ corresponds to m = 1, n = s∗ +
1 corresponds to m = 2, and, in general, n = s∗ + k

corresponds to m = k.)

We can express n in terms of m as follows:

n = m + s∗ − 1 . (13.260)

We let Q(m) be P (n) expressed in terms of m. That

is, we let Q(m) stand for P (m + s∗ − 1). Then Q(1) is

P (s∗), Q(2) is P (s∗ + 1), Q(3) is P (s∗ + 2), and so on.
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We want to prove that P (s∗), P (s∗ + 1), P (s∗ + 2),

. . ., are all true. But this amounts to proving that Q(1),

Q(2), Q(3), . . . are true, i.e. that (∀m ∈ IN)Q(m).

We prove this by induction. Q(1) is true because Q(1)

is the same as P (s∗), which we are assuming is true.

And Q(m) =⇒ Q(m + 1) is true for every m ∈ IN,

because “Q(m) =⇒ Q(m+ 1)” is equivalent to “P (m+

s∗ − 1) =⇒ P (m+ s∗)”, which is also true because m+

s∗− 1 is to the right of s∗, so P (m+ s∗− 1) implies that

the successor m + s∗ also has property P .

So Q(m) satisfies all the conditions of the ordinary

PMI, and we can conclude that Q(m) is true for every

m ∈ IN. And this says that P (m + s∗ − 1) is true for

all m ∈ IN. Hence P (n) is true for all n such that n =

m + s∗ − 1 for some m ∈ IN. But “n = m + s∗ − 1 for

some m ∈ IN” is equivalent to “n ≥ s∗”
Hence P (n) is true for all n ∈ Zs∗, and our proof is

complete. Q.E.D.

Remark 10. Theorem 40 is a generalization of the PMI

in the following precise sense: according to our definition,

the set Z≥1 is precisely IN. So Theorem 40, if we take s∗
to be 1, is exactly the PMI. �

Example 59. Let us prove the following:

Theorem 41. If n is an integer such that n ≥ 4, then
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2n < n!.

Proof. We want to prove that

(∀n ∈ Z)(n ≥ 4 =⇒ 2n < n!) . (13.261)

Let P (n) be the predicate “ 2n < n! ”.

We want to prove that (∀n ∈ Z)(n ≥ 4 =⇒ P (n)).

We are going to prove this by induction, using the PMI

with a general starting point.

And we are going to take the starting point s∗ to be 4.

Basis step:

We want to prove P (4).

P (4) says “24 < 4!”.

And 24 = 16, 4! = 24, so 24 < 4!.

Therefore P (4) is true

Inductive step:

We want to prove that

(∀n ∈ Z)
(

n ≥ 4 =⇒
(
P (n) =⇒ P (n + 1)

))

. (13.262)

Let n ∈ Z be arbitrary.
We want to prove that

n ≥ 4 =⇒ (P (b) =⇒ P (n + 1)) . (13.263)
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Assume that n ≥ 4. We want to prove that

P (n) =⇒ P (n + 1).

Assume P (n). We want to prove P (n+1).

The inductive hypothesis P (n) tells us that

2n < n!.
Then

2n+1 < 2n! . (13.264)

But 2 ≤ n+1, so 2n! ≤ (n+1)n! = (n+1)!.

Then 2n+1 < (n + 1)!.
So P (n + 1) holds .

Therefore P (n) =⇒ P (n + 1) (Rule =⇒prove).

So n ≥ 4 =⇒ (P (n) =⇒ P (n + 1)) (Rule =⇒prove).

Hence (∀n ∈ Z)
(

n ≥ 4 =⇒ (P (n) =⇒ P (n + 1))
)

(by Rule ∀use).
This completes the inductive step.

Since we have proved that

P (4) ∧ (∀n ∈ Z)
(

n ≥ 4 =⇒ (P (n) =⇒ P (n + 1))
)

,

it follows from the PMI with general starting point that

(∀n ∈ Z)(n ≥ 4 =⇒ P (n)), that is,

(∀n ∈ Z)(n ≥ 4 =⇒ 2n < n!) . Q.E.D.
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13.2 Induction going forward and backward

The PMI says that, if a property P is true of 1, and is

passed on to the right, so each natural number n passes

it on to its successor n + 1, then the property will hold

of all the numbers that we reach by counting starting at

1. And the “generalized” form says that the same is true

for integers if you start at any integer s∗.
It is clear that if in addition to being passed on to the

right property P is also passed on to the left, (that is,

if the implication P (n + 1) =⇒ P (n) holds for every

n ∈ Z), then P (n) will be true for every integer n.
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INDUCTION GOING FORWARD AND

BACKWARD

Theorem 42. Let P (n) be a statement about

a variable integer n and let s∗ be an integer.

Suppose that

I. P (s∗) is true.

II. Any time P (n) is true for one particular

integer n, it follows that P (n + 1) is true.

III. Any time P (n+1) is true for one particular

integer n, it follows that P (n) is true.

Then P (n) is true for every integer n.

And we can say the same thing in more formal lan-

guage:
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INDUCTION GOING FORWARD AND
BACKWARD

(FORMAL LANGUAGE VERSION)

Theorem 42. Let P (n) be a statement about a

variable integer n and let s∗ be an integer. Sup-

pose that

P (s∗) (13.265)

and

(∀n ∈ Z)
(
P (n) ⇐⇒ P (n + 1)

)
. (13.266)

Then

(∀n ∈ Z)P (n) . (13.267)

And we can say the same thing in even more formal

language:

INDUCTION GOING FORWARD AND
BACKWARD

(VERY FORMAL LANGUAGE VERSION)

Theorem 42. Let P (n) be a statement about a

variable integer n. Let s∗ ∈ Z. Then
(

P (s∗) ∧ (∀n ∈ Z)
(
P (n) ⇐⇒ P (n + 1)

))

=⇒ (∀n ∈ Z)P (n) . (13.268)
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Problem 70. Prove Theorem 42. �

13.3 Examples of proofs using induction going forward
and backward

13.3.1 A very simple example

Here is a simple example of a proof using indcuction going

forwad and backward.

First let us review a fact that we already know:

(D3) if n ∈ Z, then n3 − n is divisible by 3.

(This is easy to prove: we have

n3−n = n(n2−1) = n(n−1)(n+1) = (n−1)n(n+1) ,

so n3−n is the product of three consecutive integers. One

of these integers must be divisible by 3, so the product is

divisible by 3. Actually, it is also true that n3 − n must

be even, that is, divisible by 2, and then, since 2 and 3 are

coprime, it follows that a stronger result is true: n3 − n

is divisible by 6.)

In view of (D3), we may conjecture that a similar state-

ment may be true for 4 instead of 3:

(D4) if n ∈ Z, then n4 − n is divisible by 4.

This, however, is not true. (Proof: (D4) is a universal

sentence; it says that for all integers n 4 divides n3 −
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n. To prove that (D4) is not true, it suffices to give a

counterexample. Let us just take n = 2. Then 24 = 16,

so 24 − 2 = 14, which is not divisible by 4.)

How about (D5)? This one turns out to be true, and we

can prove it using induction going backward and forward.

Theorem 43. If n is an integer, then n5−n is divis-

ible by 5.

Proof. We are going to use the binomial formula for the

fifth power of a sum:

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5 ,

(13.269)

which is valid for all integers a, b. (And also for real

numbers or, more generally, members of any commutative

ring with identity.)

Using this formula we can write, for n ∈ Z,

(n + 1)5 = n5 + 5n4 + 10n3 + 10n2 + 5n + 1

(n + 1)5 − n5 − 1 = 5n4 + 10n3 + 10n2 + 5n

= 5(n4 + 2n3 + 2n2 + n) ,

so (n + 1)5 − n5 − 1 is divisible by 5.

But

(n + 1)5 − (n + 1) = ((n + 1)5 − n5 − 1) + n5 − n .
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This implies that, for all n ∈ Z,

5|(n + 1)5 − (n + 1) ⇐⇒ 5|n5 − n . (13.270)

In other words, the predicate “5 divides n5−n” is passed
on forward (from n to n + 1) and backward (from n + 1

to n). This means that we are in a perfect situation to

do induction going forward and backward.

Let P (n) be the predicate “5 divides n5−n”. We will

prove the statement “(∀n ∈ Z)P (n)” by induction going

forward and backward. We choose the starting point s0
to be 0.

Basis step. P (0) says “5 divides 0”, which is true because

every integer divides 0. So P (0) is true .

Inductive step. We have to prove that

(∀n ∈ Z)
(
P (n) ⇐⇒ P (n + 1)

)

.

But Formula (13.270) says precisely that for every n ∈ Z

P (n) ⇐⇒ P (n + 1)

This completes the inductive step. Q.E.D.

Problem 71. Prove or disprove each of the follow-

ing statements:

1. If n is an integer, then n6 − n is divisible by 6.

2. If n is an integer, then n7 − n is divisible by 7.
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3. If n is an integer, then n8 − n is divisible by 8.

4. If n is an integer, then n9 − n is divisible by 9.

5. If n is an integer, then n10 − n is divisible by 10.

6. If n is an integer, then n11 − n is divisible by 11.

You may find the following binomial formulas useful:

(a + b)7 = a7 + 7a6b + 21a5b2 + 35a5b3 + 35a3b4

+21a2b5 + 5ab6 + b7

(a + b)11 = a11 + 11a10b + 55a9b2 + 165a8b3 + 330a7b4

+462a6b4 + 462a5b6 + 330s4b7

+165a3b8 + 55a2b9 + 11ab10 + b11 .

Remark 11. If you have done problem 71 you will have

discovered the cases p = 3, 6, 7 and 11 of Fermat’s

little theorem: If p is a prime numbet and n is an

arbitrary integer then np − n is divisible by p. (And

the case p = 2 is trivial, because if n ∈ Z then n2 − n is

always even.) �

13.3.2 Divisibility properties of products of consecutive integers

We now discuss several theorems on divisibility of a prod-

uct of consecutive integers:

1. It is easy to prove that a product n(n + 1) of two

consecutive integers must be divisible by 2.



Math 300, Fall 2019 371

2. We will then look at the product n(n + 1)(n + 2)

of three consecutive integers, and prove that such a

product is divisible by 6.

3. Then we will look at the product n(n+1)(n+2)(n+3)

of four consecutive integers, and prove that such a

product is divisible by 24.

4. Since 2 = 2 × 1 = 2!, 6 = 3 × 2 × 1 = 3!, and

24 = 4 × 3 × 2 × 1 = 4!, this will clearly be a good

indication that there is a general pattern, namely,

that for every natural number k the product of k

consecutive integers is divisible by k!. (Recall the

inductive definition of the factorial n! of a natural

number: 1! = 1 and (n + 1)! = n! × (n + 1) for

n ∈ IN.) In other words, the general result should be

that

(∀k ∈ IN)(∀n ∈ Z)k!
∣
∣
∣n(n+1)(n+2) · · · (n+k−1)

(13.271)

or, using a notation without the mysterious and in-

comprehensible symbol “· · · ”:

(∀k ∈ IN)(∀n ∈ Z)k!
∣
∣
∣

k∏

j=1

(n + j − 1) (13.272)

5. And we will indeed prove (13.272) eventually, but the

proof will be little but harder than other proofs we
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have done so far, because it will use a double in-

duction: we will prove (13.272) by induction with

respect to k, and for each k we will need induction

with respect to n.

First let us start with the trivial result for k = 2:

Theorem 44. If n is an integer, then n(n+1) is even,

i.e., divisible by 2. That is,

(∀n ∈ IN)2|n(n + 1) . (13.273)

Proof. As I said earlier, this result is trivial.

Let n be an arbitrary integer.

We know that n is either even or odd.

If n is even then n(n + 1) is even .

And if n is odd then n+1 is even so n(n + 1) is even .

So we have proved that n(n + 1) is even in both

cases, when n is even and when n is odd. And we

know that one of these two cases must occur. So

n(n + 1) is even .

So we have proved that n(n+ 1) is even for an arbitrary

integer n.

Hence (∀n ∈ Z)n(n + 1) is even . Q.E.D.
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We now want to prove that the product n(n+ 1)(n+ 2)

of three consecutive integers is divisible by 6. And the

strategy is going to be to prove the result by induction

going forward and backward.

Here is the result:

Theorem 45. If n is an integer, then n(n+1)(n+ 2)

is divisible by 6. That is,

(∀n ∈ Z)6|n(n + 1)(n + 2) . (13.274)

Proof. Let P (n) be the statement “ 6|n(n+ 1)(n+ 2) ”

We prove that (∀n ∈ Z)P (n) by induction going for-

ward and backward.

Basis step. If n = 0, then n(n + 1)(n + 2) = 0, so

P (0) is the statement “6|0”, which is obviously true. So

P (0) is true.

Inductive step. We want to prove that

(∀n ∈ Z)
(
P (n) ⇐⇒ P (n + 1)

)
. (13.275)

Let n be an arbitrary integer.

We want to prove that P (n) ⇐⇒ P (n + 1).

We already know that n(n + 1) is even. So we can

write

n(n + 1) = 2k , k ∈ Z .
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Then

(n + 1)(n + 2)(n + 3) = (n + 3)(n + 1)(n + 2)

= n(n + 1)(n + 2)

+3(n + 1)(n + 2)

= n(n + 1)(n + 2) + 3× 2k

= n(n + 1)(n + 2) + 6k .

If 6 divides n(n+1)(n+2), then (n+1)(n+2)(n+3)

is the sum of two integers that are divisible by 6. So

6 divides (n + 1)(n + 2)(n + 3).

If 6 divides (n+1)(n+2)(n+3), then n(n+1)(n+2)

is the difference of two integers that are divisible by

6. So 6 divides n(n + 1)(n + 2).

We have shown that

6|(n + 1)(n + 2)(n + 3) ⇐⇒ 6|n(n + 1)(n + 2) ,

i.e., that P (n) ⇐⇒ P (n + 1).

Since we have shown that P (n) ⇐⇒ P (n + 1) for an

arbitrary integer n, it follows that

(∀n ∈ Z)
(
P (n) ⇐⇒ P (n + 1)

)
,

and this completes the inductive step.

It the follows from Theorem 42 that P (n) is true for

all integers n. That is, (13.274) holds. Q.E.D.
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In the proof of Theorem 45 we used the fact that if

n ∈ Z then n(n+1) is divisible by 2. Similarly, to prove

that (∀n ∈ Z)24|n(n+1)(n+2)(n+3), the proof should

use the result that (∀n ∈ Z)6|n(n + 1)(n + 2).

Similar results can be proved for the products of four and

five consecutive integers.

Theorem 46. If n is an integer, then the product

n(n + 1)(n + 2)(n + 3) is divisible by 24. That is,

(∀n ∈ Z)24|n(n + 1)(n + 2)(n + 3) . (13.276)

Proof. YOU DO THIS ONE.

In the proof of Theorem 45 we used the fact that if

n ∈ Z then n(n + 1) is divisible by 2.

Similarly, to prove that

(∀n ∈ Z)24|n(n + 1)(n + 2)(n + 3) ,

the proof should use the result of Theorem 45, that is,

that (∀n ∈ Z)6|n(n + 1)(n + 2).

Problem 72. Prove Theorem 46. You are not al-

lowed to use Theorem 48.

NOTE: Theorem 46 is a special case of Theorem 48,

for k = 4. But I want you to prove Theorem 46 directly,

without using Theorem 48. �
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Theorem 47. If n is an integer, then the product

n(n+ 1)(n+ 2)(n+ 3)(n+ 4) is divisible by 120. That

is,

(∀n ∈ Z)120|n(n + 1)(n + 2)(n + 3)(n + 4) . (13.277)

Proof. YOU DO THIS ONE.

In the proof of Theorem 46 we used the fact that if

n ∈ Z then n(n + 1)(n + 2) is divisible by 6. Similarly,

to prove that (∀n ∈ Z)120|n(n+1)(n+2)(n+3)(n+4),

the proof should use the result that

(∀n ∈ Z)24|n(n + 1)(n + 2) .

Problem 73. Prove Theorem 47. You are not al-

lowed to use Theorem 48.

NOTE: Theorem 47 is a special case of Theorem 48,

for k = 5. But I want you to prove Theorem 47 directly,

without using Theorem 48. �

What we have done so far is clearly the beginning of a

proof by induction. We have proved the following:

(*) for k = 1, 2, 3, 4, 5 the product of k consecurive integers is
divisible by k!.

This makes it natural to make the following
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Conjecture. For every natural number k the product of k con-

secutive integers is divisible by k!.

But, of course, knowing that something is true for a

few values of k in no way proves that it is true for all k,

If we want to be sure that a statement about k is true

for all k, we have to prove it.

So let us prove it.

Theorem 48. If k is a natural number then every prod-
uct of k consecutive integers is divisible by k!.

Proof. As usual, our first task is to rewrite the statement

we want to prove in precise formal language. And for that

purpose we need to write a formula for the product of k

consecutive integers.

If we start with an integer n, then the k consecutive

integers starting at n are n, n+1, n+2, . . ., up to n+k−1.

And the product of these k integers is
∏k

j=1(n + j − 1).

(For example, for k = 3, the product is n(n+ 1)(n+ 2).

The first factor is n, that is n + j − 1 with j = 1, and

the last factor is n + 2, that is, n + j − 1 with j = 3.)

Let us call this product an,k, so

an,k =

k∏

j=1

(n + j − 1) , (13.278)
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or, if you prefer,

an,k = n×(n+1)×(n+2)×· · ·×(n+k−1) . (13.279)

So, for example,

a2,3 = 2× 3× 4 ,

a−5,7 = (−5)× (−4)× (−3)× (−2)× (−1)× 0× 1 ,

a4,9 = 4× 5× 6× 7× 8× 9× 10× 11× 12 .

Then what we want to prove is the following statement:

(∀k ∈ IN)(∀n ∈ Z) k!
∣
∣
∣ an,k . (13.280)

In order to prove this, we will use induction.

We let P (k) be the predicate “for every integer n, the

product of k consecutive integers starting with n is divis-

ible by k!”. That, P (k) is the predicate

(∀n ∈ Z) k!
∣
∣
∣ an,k . (13.281)

Basis step of the induction. We want to prove that

P (1) is true. And P (1) is true, for trivial reasons: P (1)

says “(∀n ∈ Z)1!
∣
∣
∣ an,1”, i.e., “(∀n ∈ Z)1

∣
∣
∣n”, and this

is true because every integer is divisible by 1. So we have

proved P (1) .

Inductive step. We want to prove that

(∀k ∈ IN)
(
P (k) =⇒ P (k + 1)

)
. (13.282)
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Let k ∈ IN be arbitrary. We want to prove that

P (k) =⇒ P (k + 1) . (13.283)

Assume P (k). That is, we assume that the prod-

uct of k consecutive integers is divisible by k!.

We want to prove P (k + 1). That is, we want to

prove

(∀n ∈ Z) (k + 1)!
∣
∣
∣ an,k+1 . (13.284)

We are going to prove this by induction going

forward and backward. This means that

∗ We are going to do a second induction proof,

with respect to n, within the main proof by

induction with respect to to k.

∗ We are going to call this “the n-induction”,

to distinguish it from the main induction, the

“k-induction”.

So at this point

∗ we are within the k-induction,

∗ we are about to do the n-induction,

∗ we are assuming that P (k) is true,

∗ and we are trying to prove that P (k + 1)

is true, that is, we are trying to prove that

(13.284) is true,
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∗ and, since (13.284) is a universal sentence about

“all integers n”, we are going to do the proof

by induction going forward and backward.

We let Q(n) be the predicate

(k + 1)!
∣
∣
∣ an,k . (13.285)

We choose the starting point s∗ of our induction
to be 0.

Basis step of the n-induction. We want to

prove that Q(0) is true. But Q(0) says

(k + 1)!
∣
∣
∣ a0,k+1 .

And a0,k+1 = 0, because a0,k+1 is a product of

numbers the first one of which is 0. So Q(0) says

“(k+1)!
∣
∣
∣0”, and this is true, because 0 is divisible

by every integer. So we have proved Q(0)” .

Inductive step of the n-induction. We want to

prove that

(∀n ∈ Z)
(
Q(n) ⇐⇒ Q(n + 1)

)
. (13.286)

Let n ∈ Z be arbitrary. We want to prove

Q(n) ⇐⇒ Q(n + 1) . (13.287)

Q(n) says that (k + 1)! divides an,k+1.
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AndQ(n+1) says that (k+1)! divides an+1,k+1.

We are going to prove that

(k+1)! divides an+1,k+1−an,k+1 . (13.288)

Before we do that, let me explain why this is

a significant fact.

Suppose that we have proved (13.288).

We are going to prove the two implicatios

Q(n) =⇒ Q(n + 1) and Q(n + 1) =⇒ Q(n).

First, assume that Q(n) holds.

Then an,k+1 is divisible by (k + 1)!.

Since an+1,k+1 − an,k+1 is also divisible by

(k + 1)!, we can conclude that the sum

an,k+1 +
(
an+1,k+1 − an,k+1

)
is divisible by

(k + 1)!.

But this sum is equal to an+1,k+1, So an+1,k+1

is divisible by (k + 1)!.

That says that Q(n + 1) holds.

Hence Q(n) =⇒ Q(n + 1).

Conversely, assume Q(n + 1) holds. Then

an+1,k+1 is divisible by (k + 1)!.

Since the difference an+1,k+1− an,k+1 is di-

visible by (k + 1)!, we can conclude that

an+1,k+1 −
(
an+1,k+1 − an,k+1

)
is divisible

by (k + 1)!.
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But

an+1,k+1 −
(
an+1,k+1 − an,k+1

)
= an,k+1 .

So an,k+1 is divisible by (k + 1)!.

That says that Q(n) holds.

So Q(n + 1) =⇒ Q(n).

Summarizing, we have shown that, if the as-

sertion (13.288) is true, then both implica-

tions “Q(n) =⇒ Q(n+1)” and “Q(n+1) =⇒
Q(n)” hold, so Q(n) ⇐⇒ Q(n+ 1), which is

exactly what we are trying to prove to com-

plete the n-induction.

In other words: all we need to do is prove

(13.288) and that will complete our proof.

We now prove (13.288).
The number an,k+1 is the product of k + 1
consecutive integers starting with n and end-
ing with n + k. That is,

an,k+1 = n× (n+ 1)× (n+ 2)× · · · × (n+ k − 1)× (n+ k) .

And then
an,k+1 = n×

(

(n+ 1)× (n+ 2)× · · · × (n+ k − 1)× (n+ k)
)

,

so an,k+1 is equal to n times the product

(n+1)×(n+2)×· · ·×(n+k−1)×(n+k) of k

consecutive integers starting with n+1. That

is,

an,k+1 = n× an+1,k . (13.289)
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Similarly, the number an+1,k+1 is the product
of k+1 consecutive integers starting with n+1
and ending with n + k + 1. That is,

an+1,k+1 = (n+ 1)× (n+ 2)× · · · × (n+ k)× (n+ k + 1) .

So

an+1,k+1 =
(

(n+ 1)× (n+ 2)× · · · × (n+ k)
)

× (n+ k + 1) .

In other words, an+1,k+1 is equal to the prod-

uct of k consecutive integers starting with n+

1, multiplied by n + k + 1. That is,

an+1,k+1 = an+1,k × (n + 1 + k) . (13.290)

Therefore

an+1,k+1 − an,k+1

= an+1,k × (n + 1 + k)− n× an+1,k

= (n + k + 1)× an+1,k − n× an+1,k

=
(
(n + k + 1)− n

)
× an+1,k

= (k + 1)× an+1,k .

So we get the key formula

an+1,k+1−an,k+1 = (k+1)×an+1,k . (13.291)

(see the example in the box below to get a

better understanding of this formula).



Math 300, Fall 2019 384

THE FORMULA an+1,k+1− a,k+1 = (k+1)× an+1,k:

AN EXAMPLE

Take n = 11, k = 5. Then

a11,6 = 11× 12× 13× 12× 15× 16 ,

a12,6 = 12× 13× 12× 15× 16× 17 ,

a11,6 = 11×
(

12× 13× 12× 15× 16
)

= 11× a12,5

a12,6 =
(

12× 13× 12× 15× 16
)

× 17

= 17×
(

12× 13× 12× 15× 16
)

= 17× a12,5 ,

so

a12,6 − a11,6 = (17− 11)× a12,5

= 6× a12,5 .

That is,

an+1,k+1 − an,k+1 = (k + 1)× an+1,k .

Now comes the crucial point of the proof:

remember that we are within the k-induction.

We are assuming P (k) and trying to prove

P (k + 1). So at this point we are allowed to
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use P (k). And P (k) says that

(∀n ∈ Z) k!
∣
∣
∣an,k . (13.292)

So we can use (13.292).

Then k! divides an+1,k, so we can write

an,k = m× k!

for some m ∈ Z. Then

an+1,k+1 − an,k+1 = (k + 1)× k!×m

= (k + 1)!×m,

so (k + 1)! divides an+1,k+1 − an,k+1.

That is, we have proved (13.288) and, as was

explained before, it follows from this that

Q(n) ⇐⇒ Q(n + 1) .

Since we have proved that Q(n) ⇐⇒ Q(n + 1)

for an arbitrary integer n, we can conclude that

(∀n ∈ Z)
(
Q(n) ⇐⇒ Q(n + 1)

)
.

This completes the inductive step of the n-induction.

We have proved that Q(0) and also that

(∀n ∈ Z)
(
Q(n) ⇐⇒ Q(n + 1)

)
. By the PMI

Going Forward and Backward, it follows that

(∀n ∈ Z)Q(n) . (13.293)
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Since Q(n) is the predicate “(k + 1)!
∣
∣
∣an,k+1”, we

have proved

(∀n ∈ Z)(k + 1)!
∣
∣
∣an,k+1 , (13.294)

that is, we have proved P (k + 1).

Since we have proved P (k + 1) assuming P (k), it

follows that

P (k) =⇒ P (k + 1) . (13.295)

Since we have proved (13.295) for an arbitrary natural

numebr k, it follows that

(∀k ∈ IN)
(
P (k) =⇒ P (k + 1)

)
. (13.296)

So we have proved P (1), and we have also proved that

(∀k ∈ IN)
(
P (k) =⇒ P (k + 1)

)
. It follows from the PMI

that

(∀k ∈ IN)P (k) . (13.297)

But P (k) is the predicate “(∀n ∈ Z) k!
∣
∣
∣an,k”.

So we have proved

(∀k ∈ IN)(∀n ∈ Z) k!
∣
∣
∣an,k , (13.298)

which is exactly what we wanted to prove. Q.E.D.
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13.4 An application of Theorem 48: integrality of the
binomial coefficients

An important application of Theorem 48, on the divisi-

bility of a product of k consecutive integers, is to give a

second proof of Theorem 50, different from the one sug-

gested in the hints for Problem 74.

13.4.1 The binomial coefficients

The binomial coefficients
(
n
k

)
are defined as follows:

Definition 20. If n, k are nonnegative integers82 such

that k ≤ n, then the binomial coefficient

(
n

k

)

is de-

fined by the formula
(
n

k

)

=
n!

k!(n− k)!
. (13.299)

Remark 12. One of the most important facts about the

numbers

(
n

k

)

is that they are always integers.

It is not obvious at all from Definition 20 that
(
n
k

)
is

always an integer.
82A nonnegative integer is an integer n such that n ≥ 0. So the nonnegative integers

are the natural numbers, together with the integer 0, which is not a natural number.
The set of all nonnegative integers is denoted by the expression “IN ∪ {0}”. Therefore
“n ∈ IN∪ {0}” is a way of saying that n ∈ IN∨ n = 0, i.e., that n is a nonnegative integer.
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For example: why should
(
17
9

)
be an integer?

Why does 17! have to be divisible by 9! × 8!?

There is no doubt that 17! has to be divisible by 9!, be-

cause 17! = 17× 16× 15× 14× 13× 12× 11× 10× 9!.

But why is the quotient

17!

9!
= 17× 16× 15× 14× 13× 12× 11× 10

divisible by 8!? In this particular example, it is easy to

do the cancellations, and get

17!

8!9!
=

17× 16× 15× 14× 13× 12× 11× 10

8× 7× 6× 5× 4× 3× 2

=
17× 15× 14× 13× 12× 11× 10

7× 6× 5× 4× 3

=
17× 14× 13× 12× 11× 10

7× 6× 4

=
17× 14× 13× 12× 11× 5

7× 6× 2

=
17× 13× 12× 11× 5

6
= 17× 13× 2× 11× 5 .

So in this particular case it is clear that

(
17

9

)

is an

integer, but it is not clear yet why it should be

true in general that

(
n

k

)

is an integer for all

n, k ∈ IN ∪ {0} such that k ≤ n.
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The following two theorems give one answer to this

question. �

Theorem 49. Let n, k ∈ IN ∪ {0} be such that 1 ≤
k ≤ n. Then

(
n + 1

k

)

=

(
n

k − 1

)

+

(
n

k

)

. (13.300)

Proof. YOU DO IT.

Theorem 50. If n, k are nonnegative integers such

that k ≤ n, then the binomial coefficient

(
n

k

)

is an

integer.

Proof. YOU DO IT.

Problem 74. Prove Theorems 49 and 50.

The proof of Theorem 49 should be very easy: you

just add the fractions n!
(k−1)!(n−(k−1))! and

n!
k!(n−k)! and the

answer turns out to be (n+1)!
k!(n−k)!. This is not a proof

by induction.

The proof of Theorem 50 should be very easy, by induc-

tion. Theorem 49 easily implies that if all the binomial

coefficients

(
n

k

)

are integers for a given n, then all the
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binomial coefficients

(
n + 1

k

)

are integers as well. And

this is basically the inductive step.

But you should write the proof carefully and

correctly. In particular, pay attention to the fact that

what you want to prove is a statement with two quanti-

fiers, but in a proof by induction of (∀n ∈ IN∪{0})P (n),
the sentence P (n) has to have n as an open variable, and

no other open variables. So you cannot take P (n) to be

a closed formula such as

(∀n ∈ IN∪{0})(∀j ∈ IN∪{0})
(

k ≤ n =⇒
(
n

k

)

∈ Z

)

,

and you cannot take P (n) to be “k ≤ n =⇒
(
n

k

)

∈ Z”

either, because this formula has two open variables.

Also, you should pay attention in your inductive step

to the fact that Formula (13.300) cannot be applied if

k = 0, so you will have to consider the case when k = 0

separately. �

13.4.2 A second proof of the integrality of the binomial coeffi-
cients

We want to prove that the binomial coefficients

(
n

k

)

are integers, for n, k ∈ IN ∪ {0} and k ≤ n.
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First we write

n! = 1× 2× · · · × (n− k)× (n + 1− k)× · · · × n

=
(
1×2×· · ·×(n− k)

)
×
(
(n + 1− k)×· · ·×n

)

= (n− k)!×
(
(n + 1− k)× · · · × n

)
.

We then observe that (n+1−k)×· · ·×n is the product

of k consecutive integers starting at n + 1 − k, which is

the number that in the proof of Theorem 48 we called

an+1−k,k.
In other words,

n! = (n− k)!× an+1−k,k . (13.301)

Finally, we use Theorem 48 to conclude that an+1−k,k is
divisible by k!. Hence we can write

an+1−k,k = k!×m,

where m is an integer.

It then follows that

n! = (n− k)!× k!×m

=
(
(n− k)!× k!

)
×m.

so n! is divisible by (n− k)!× k!, and this completes the

proof of Theorem 50. Q.E.D.
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13.5 Strong induction (a.k.a. “complete induction”)

Suppose we are trying to prove a proposition that is of

the form (∀n ∈ IN)P (n). It may happen that we can-

not prove the implication P (n) =⇒ P (n + 1), because

property P is not inherited by n+ 1 from n for every n,

but the property is inherited by n+1 from some previous

natural number, such as n − 1, or n − 2. Then it still

follows that (∀n ∈ IN)P (n).

Example 60. Let P (n) be the predicate83 “n = 1∨n is

a product of prime numbers”.

We would like to prove that

(∀n ∈ IN)P (n) , (13.302)

that is, that

(∀n ∈ IN)
(
n = 1 ∨ n is a product of prime numbers ,

or, equivalently,

(∀n ∈ IN)
(

n ≥ 2 =⇒
(
n is a product of prime numbers

))

.

(That is, “if n is a natural number and n ≥ 2 then n is

a product of prime numbers.)
83The precise meaning of “is a product of prime numbers” was defined in section 2.3.3,

Definition 4, on page 12. In particular, we insist on the fact that a single prime number
is a product of primes according to our definition.
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To prove this, we would like to use induction. The basis

step is easy: P (1) is true, because P (1) says “1 = 1∨1 is

a product of prime numbers”, and this is obviously true

because 1 = 1.

But when we get to the inductive step, and we try to

prove that implication P (n) =⇒ P (n + 1) for every n,

we get into trouble.

Look, for example, at n = 47 and n = 60. We want

to prove that P (47) =⇒ P (48) and P (60) =⇒ P (61).

But, although P (48) and P (61) are true (because 48 =

2 × 2 × 2 × 3, and 61 is prime, so both 48 and 61 are

products of primes), the reasons that P (48) and P (61)

are true have nothing to do with the facts that P (47) and

P (60) are true.

Indeed:

• P (48) is true because
– 48 = 8× 6,

– 8 and 6, are both products of primes, because

all the natural numbers that are ≤ 47

are products of primes,

– so 48 is a product of primes.

• And P (61) is true because

– 61 is prime. �
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So, as Example 60 shows, it is not going to be possible

to prove the implication P (n) =⇒ P (n+ 1) for every n.

On the other hand, if we associate to the predicate

P (n) another predicate, Q(n), defined by

Q(n) means “P (1) ∧ P (2) ∧ · · · ∧ P (n)” ,
that is,

Q(n) means “(∀k ∈ IN)
(
k ≤ n =⇒ P (k)

)
”.

then it is clear that

(*)
if we prove that (∀n ∈ IN)Q(n), then it

follows that (∀n ∈ IN)P (n).

(Why? Suppose that (∀n ∈ IN)Q(n). Let n ∈ IN be

arbitrary. Then Q(n) is true, by Rule ∀use. Therefore

the proposition P (1) ∧ P (2) ∧ · · · ∧ P (n) is true, so in

particular P (n) is true. Hence (∀n ∈ IN)P (n).)

Furthermore,

(**)

To prove that (∀n ∈ IN)Q(n) by in-

duction, in the inductive step, when

we want to prove that the implication

Q(n) =⇒ Q(n + 1) is true, it suffices

to prove that the weaker implication

Q(n) =⇒ P (n + 1) is true.

(Why? Let us assume that Q(n). We want to prove that

Q(n + 1). That is, we need to prove the conjunction
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“P (1)∧ P (2)∧ · · · ∧ P (n)∧ P (n+ 1)”. But we already

know that “P (1) ∧ P (2) ∧ · · · ∧ P (n)” is true, because

that is what Q(n) is. So all we need in order to prove

Q(n + 1) is to prove P (n + 1).)

Strong Induction (a.k.a. “complete

induction”)

Let P (n) be a one-variable predicate.

Let Q(n) be the predicate

P (1) ∧ P (2) ∧ · · · ∧ P (n) ,
so that Q(n) means

(∀k ∈ IN)
(
k ≤ n =⇒ P (k)

)
.

Then, if

P (1)

and

(∀n ∈ IN)
(
Q(n) =⇒ P (n + 1)

)
,

it follows that (∀n ∈ IN)P (n).

Example 61. Let us prove

Theorem 51. If n is a natural number and n ≥ 2

then n is a product of prime numbers.

Proof. Let P (n) be the predicate “if n ≥ 2 then n is a
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product of prime numbers”.

Let Q(n) be the predicate “P (k) is true for all natural

numbers k such that k ≤ n”.

We prove (∀n ∈ IN)P (n) using strong induction.

For this purpose, we prove the two propositions P (1)

and (∀n ∈ IN)
(
Q(n) =⇒ P (n + 1)

)
.

Basis step. We have to prove P (1). But P (1) says “if

1 ≥ 2 then 1 is a product of prime numbers”, and this is

an implication with a false premise. So P (1) is true.

Inductive step. We have to prove that

(∀n ∈ IN)
(
Q(n) =⇒ P (n + 1)

)
. (13.303)

Let n ∈ IN be arbitrary. We want to prove that

Q(n) =⇒ P (n + 1).

Assume Q(n). We want to prove P (n + 1).

So we want to prove that n + 1 is a product of

prime numbers.

But n + 1 is either prime, or not prime.

If n+1 is prime, then it is a product of primes,

and P (n + 1) holds.

If n+1 is not prime, then, since n+1 6= 1, it

follows that n+ 1 is the product j × k of two

natural numbers that are both > 1.

Clearly, then, j ≤ n and k ≤ n. (If j was
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> n, then j would be≥n+1 and, since k>1,

it would follow that jk > n + 1. But this is

not possible, because jk = n + 1. So j ≤ n.

A similar argument proves that k ≤ n.)

Since Q(n) holds, both j and k are products

of primes.

And then n + 1, the product of j and k, is

also a product of primes.

So P (n + 1) holds.

We have proved that P (n+1) holds in both cases,

when n+1 is prime and when n+1 is not prime.

Hence we have proved P (n+1), assuming Q(n).

So we have proved thatQ(n) =⇒ P (n+1), assuming

that n is an arbitrary natural number.

Hence we have proved (∀n ∈ IN)
(
Q(n) =⇒ P (n + 1)

)
,

completing the inductive step.

Since we have proved both P (1) and (∀n ∈ IN)
(
Q(n) =⇒

P (n + 1)
)
, it follows from the strong principle of math-

emtical induction that (∀n ∈ IN)P (n), that is,

(∀n ∈ IN)
(
n ≥ 2 =⇒ n , is a product of primes .

This completes our proof. Q.E.D.
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13.5.1 Stronger and weaker statements

Remark 13.Why did I say that the implicationQ(n) =⇒
P (n + 1) is “weaker” than the implication P (n) =⇒
P (n + 1)?

Intuitively, a proposition A is weaker than a propo-

sition B if it gives less information. This means that

knowing that B is true tells us that A is true, so if we

know that B is true then we know that A is true. (So if

we know B then we know B and A, but if we know A

we only know A; we don’t know B.)

More formally, we have

Definition 21. A proposition A is weaker than a propo-

sition B if the proposition B =⇒ A is true. And in that

case we also say that B is stronger than A. �

Example 62. Let A be the proposition “you got a pass-

ing grade”, let B be the proposition “you got an ‘A’

grade”. Which one gives you more information? Obvi-

ously, B does. So A should be weaker than B, and B

should be stronger than A.

And, indeed, the proposition B =⇒ A is clearly true.

So A is weaker than B according to our definition. �
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Returning now to P (n) and Q(n), it is clear that
(

P (n) =⇒ P (n + 1)
)

=⇒
(

Q(n) =⇒ P (n + 1)
)

.

(13.304)

(Proof: Assume that P (n) =⇒ P (n + 1). We want to

prove that Q(n) =⇒ P (n+ 1). Assume Q(n). We want

to prove P (n + 1). Clearly, Q(n) =⇒ P (n). Since we

are assuming Q(n), it follows from the Modus Ponens

rule—i.e., Rule =⇒use—that P (n) is true. Since we are

assuming that P (n) =⇒ P (n + 1), it follows again from

the Modus Ponens rule that P (n+1). So we have proved

Q(n) =⇒ P (n+1), assuming P (n) =⇒ P (n+1). Hence

(13.304) holds.)

So we see that “Q(n) =⇒ P (n + 1)” is weaker than

“P (n) =⇒ P (n+ 1)” in the very precise sense of Defini-

tion 21. �

Problem 75. For each of the following pairs A, B of

propositions, indicate which one is stronger and which

one is weaker. (You may assume that n and f are arbi-

trary objects that have been given to you, that is, they

are fixed objects but you do not know who they are.)

1. A is “n is a natural number” and B is “n is an inte-

ger”.

2. A is “if n is a natural number then n > 0” and B is

“if n is an integer then n > 0”.
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3. A is “f is a continuous function on an interval [a, b]”

and B is “f is a differentiable function on an interval

[a, b]”.

4. A is “every continuous function on an interval [a, b]

has a maximum and a minimum on [a, b]”, and B is

“every differentiable function on an interval [a, b] has

a maximum and a minimum on [a, b]”. �

Problem 76. Prove, using the 14 rules of logic,

that

1. If A, B, C are propositions, then if A is weaker

than B then A =⇒ C is stronger than B =⇒ C.

(See also Example 63 below.)

2. If A, B, C are propositions, then if B is weaker

than C it follows that A =⇒ B is stronger than

A =⇒ C.

3. If A, B, C, D are propositions, then if B is

stronger than A and C is stronger than D it fol-

lows that A =⇒ C is stronger than B =⇒ D.

4. If A, B, C are propositions, then if A is weaker

than B then A ∧ C is weaker han B ∧ C.
5. If X(n) and Y (n) are predicates with the open

variable n (so that for each fixed n X(n) and Y (n)
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are propositions) then if X(n) is weaker that Y (n)

for each n in some set S, it follows that the propo-

sition “(∀n ∈ S)X(n)” is weaker than “(∀n ∈
S)Y (n)” and the proposition “(∃n ∈ S)X(n)” is

weaker than “(∃n ∈ S)Y (n)”. �

Example 63. Why is strong induction called “strong

induction”?

The reason is this:

• Clearly, for each n ∈ IN the proposition Q(n) is

stronger than P (n).

• Hence for each n ∈ IN the implication “Q(n) =⇒
P (n + 1)” is weaker than “P (n) =⇒ P (n + 1)”

(because of the first result of Problem 76).

• So “(∀n ∈ IN)
(
Q(n) =⇒ P (n+ 1)

)
” is weaker than

“(∀n ∈ IN)
(
P (n) =⇒ P (n + 1)

)
” (because of the

third result of Problem 76).

• Hence “P (1) ∧ (∀n ∈ IN)
(
Q(n) =⇒ P (n + 1)

)
” is

weaker than “P (1)∧(∀n ∈ IN)
(
P (n) =⇒ P (n+1)

)
”

(because of the second result of Problem 76).

• And then the implication
(

P (1) ∧ (∀n ∈ IN)
(
Q(n) =⇒ P (n + 1)

))

=⇒ (∀n ∈ IN)P (n) (13.305)
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is stronger than the implication
(

P (1) ∧ (∀n ∈ IN)
(
P (n) =⇒ P (n + 1)

))

=⇒ (∀n ∈ IN)P (n) . (13.306)

But (13.306) is the ordinary Principle of Mathemati-

cal Induction, and (13.305) is the strong Principle of

Mathematical Induction.

So the strong PMI is indeed stronger than the ordinary

PMI. �
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14 The main theorems of elementary integer

arithmetic I: the division theorem

We now study the phenomena that make the natural

numbers and the integers different in crucial ways from

the real numbers. The root of this difference is that the

division operation on IN and Z is very different from di-

vision on IR.

14.1 What is the division theorem about?

The first important fact about the integers is the divi-

sion theorem. It deals with an issue that you know

very well, namely, what happens if you have an integer a

and an integer b and you want to “divide” a by b:

1. First of all: dividing by zero is never a good idea,

so we have to work with integers a and b such that

b 6= 0.

2. Dividing a by b should amount, roughly, to finding a

number q, called the “quotient of a by b”, such that

a = bq . (14.307)

3. If we were dealing with real numbers rather than

integers, then it is always possible84 to find q. The
84Assuming, of course, that b 6= 0.
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real number q that satisfies (14.307) is denoted by

the expression a
b , that we read as “a over b”, or “a

divided by b”.

4. The situation is different when we are dealing with

integers rather than real numbers. In this case, it

is not always possible to find an integer q for which

(14.307) is satisfied exactly. But we can come close:

we can find an integer q for which (14.307) is satisfied

approximately.

5. Precisely, let us rewrite (14.307) as follows:

a = bq + r and r = 0 . (14.308)

Then what happens is this: we cannot satisfy (14.308),

but we can satisfy

a = bq + r and r is small . (14.309)

6. And the precise meaning of “small”, if b > 0, is

“0 ≤ r < b”. So what you will be satisfying (if

b > 0) is

a = bq + r and 0 ≤ r < b . (14.310)

7. The number q is called the quotient of the di-

vision of a by b, and the number r is called the

remainder of the division of a by b.
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8. The reason that r is called the “remainder” is very

straightforward: suppose you have, say, 27 dollar

bills, and you want to divide them equally among

5 people. Then the best you can do is give 5 dollars

to each of the five people, and when you do that 2

dollars will “remain”.

9. Notice that, if instead of 27 dollar bills you were deal-

ing with, say, 27 gallons of water, then you would be

able to divide the water equally, by giving 5.4 gallons

to each of the five people. But with dollar bills you

cannot do that. That’s because dollar bills are

countable, whereas water is uncountable. In

other words,

• You can talk about the amount of water in a

tank, and amounts of water are measured

in terms of real numbers.

• And you cannot talk about the number of water

in a tank.

• You can talk about the number of dollar bills

in your wallet, and numbers of dollar bills

are measured in terms of natural num-

bers. (And if you want to consider negative

amounts as well, e.g. to talk about debts, you

would use integers.)
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• And you cannot 85 talk about the amount of

dollar bills in your wallet.

• If you have a units of a countable quantity such as

dollar bills or coins, and b persons among whom

you want to divide your a units equally, then the

best you can do is give q units to each of the b

persons, where q is the quotient of the division

of a by b, and when you do that there will be a

remainder of r undistributed dollar bills, where r

is the remainder of the division of a by b.

• What happens if b is negative? Well, in this case

you certainly cannot have 0 ≤ r < b, because if

b < 0 this is impossible. But you can ask for a

remainder r such that 0 ≤ r < |b|, where |b| is
the absolute value of b, that is, the number

defined by

|x| =
{

x if x ≥ 0

−x if x < 0
. (14.311)

• So the final condition is

a = bq + r and 0 ≤ r < |b| . (14.312)
85I really mean “you shouldn’t, because it’s wrong”. Strictly speaking, you can say

anything you want, in this free counrty of ours. But there are rules of grammar, and
according to those rules it is wrong to say things like “a large amount of people were at
the rally”, or “she has a large amount of dollar bills”. But it’s O.K. to ta;lk about “a
large amount of money”. “People”, like “dollar bills”, or “coins”, is countable. “Water”,
like “money”, is uncountable.
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The division theorem says precisely that given integers

a, b, there exist integers q, r such that (14.312) holds,

provided, of course, that b is not equal to zero. And

in addition it makes the very important and very useful

assertion that q and r are unique, that is, there is only

one possible choice of q and r.

14.1.1 An example: even and odd integers

Example 64. Let us apply the division theorem to the

case when b = 2. Suppose a is an integer.

What does the division theorem tell us about a?

The theorem makes two assertions, namely,

1. that the quotient and remainder exist (that’s the ex-

istence part),

2. that the quotient and remainder are unique (that’s

the uniqueness part).

So let us look at each of these two parts, and see what

it tells us about a.

The existence part of the theorem tells us that we

can find integers q and r such that

a = 2q + r and 0 ≤ r < 2 .

Since 0 ≤ r < 2 and r is an integer, it follows that r = 0

or r = 1.
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If r = 0 then a = 2q, so a is divisible by 2, that is, a

is even.

If r = 1 then a = 2q+1, so a−1 = 2q, and then a−1

is divisible by 2, that is, a− 1 is even, and, according to

our definition of “odd”, this implies that a is odd.

So we have shown that: either r = 0, in which case

a is even, or r = 1, in which case a is odd. So the

existence part of the division theorem tells us

that a must be even or odd.

The uniqueness part of the theorem tells us that we

cannot find integers q, r such that

a = 2q + r and 0 ≤ r < 2 ,

and also find different integers q′, r′ such that

a = 2q′ + r′ and 0 ≤ r′ < 2 .

In particular, it is not possible to find integers q, q′ such
that

a = 2q and a = 2q′ + 1 (i.e., a = 1 = 2q′) .

In other words, a cannot be both even and odd. So the

uniqueness part of the division theorem tells

us that a cannot be both even and odd.

Summarizing: the division theorem, for b = 2,

tells us that an integer a has to be even or
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odd and cannot be both even and odd. And this

is exactly Theorem 26, that we had to work so hard to

prove!

In other words: The division theorem (that is, Theorem

52 below) is a generalization of the theorem that says

that every integer is even or odd and not both. �

Now that we understand what the division theorem says

for b = 2, let us look at what it says for other values of b.

• Theorem 52 says that, when you try to divide an

integer a by 2, then one and only one of two things

will happen:

1. you will be able to divide a by 2 exactly, with a

remainder equal to zero, and conclude that a is

even,

2. you will not be able to divide a by 2 exactly, but

you will be able to do it with a remainder equal

to 1, and conclude that a− 1 is divisible by 2, so

a is odd.

• The division theorem, applied with b = 2, says ex-

actly that that evry integers is even or odd and not

both.

• The division theorem, applied with b = 3, says that,
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when you try to divide an integer a by 3, then one

and only one of three things will happen:

1. you will be able to divide a by 3 exactly, with a

remainder equal to zero, and conclude that a is

divisible by 3,

2. you will not be able to divide a by 3 exactly, but

you will be able to do it with a remainder equal to

1, and conclude that a = 3q + 1 for some integer

q, so a− 1 is divisible by 3.

3. you will not be able to divide a by 3 exactly, but

you will be able to do it with a remainder equal to

2, and conclude that a = 3q + 2 for some integer

q, so a− 2 is divisible by 3.

• The division theorem, applied with b = 4, says that,

when you try to divide an integer a by 4, then one

and only one of four things will happen: 4|a, 4|a−1,

4|a− 2, 4|a− 3.

• The division theorem, applied with b = 5, says that,

when you try to divide an integer a by 5, then one

and only one of five things will happen: 5|a, 5|a− 1,

5|a− 2, 5|a− 3, 5|a− 4.

• · · ·
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• The division theorem, applied with b = 29, says that,

when you try to divide an integer a by 29, then one

and only one of 29 things will happen: 29|a − j for

j ∈ Z, 0 ≤ j < 29.

• · · ·
• The division theorem, applied with b = 372, 508, says

that, when you try to divide an integer a by 372, 508,

then one and only one of 372, 508 things will happen:

372, 508|a− j for j ∈ Z, 0 ≤ j < 372, 508.

14.2 Precise statement of the division theorem

And here is, finally, the division theorem:

The division theorem for integers

Theorem 52. If a, b are integers, and b 6= 0, then there
exist unique integers q, r such that

a = bq + r and 0 ≤ r < |b| .

14.2.1 The quotient and the remainder

Definition 22. If a, b are integers, and b 6= 0, then the

unique integers q, r such that

a = bq + r and 0 ≤ r < |b|
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called, respectively, the quotient and the remainder of the

division of a by b.

We use QUO(a, b) and REM(a, b) to denote the quo-

tient and the remainder of the division of a by b. �

It follows from Definition 22 that, if a ∈ Z, b ∈ Z, and

b 6= 0, then

1. a = b× QUO(a, b) + REM(a, b),

2. QUO(a, b) ∈ Z,

3. REM(a, b) and 0 ≤ REM(a, b) < |b|,
4. if q, r are integers such that a = bq+ r and 0 ≤ r <

|b|, then q = QUO(a, b) and r = REM(a, b).

14.2.2 Some problems

Problem 77. Prove the following theorem.

Theorem 53. If n is an integer, then there exist unique

integers q, r such that

n2 = 4q + r and r = 0 ∨ r = 1 .

(HINT: First write n = 4k+s, with 0 ≤ s < 4, and then

prove that REM(n2, 4) must be 0 or 1.) �

Problem 78. Prove the following theorem.
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Theorem 54. If m, n are integers, then there exist

unique integers q, r such that

m2 + n2 = 4q + r and r = 0 ∨ r = 1 ∨ r = 2 .

(HINT: Use Theorem 53.) �

Problem 79. Prove that if n = 3, 409, 583, then there

do not exist integers p, q such that p2 + q2 = n. �

14.3 Proof of the division theorem

14.3.1 The existence proof

Let a, b be arbitrary integers such that b 6= 0.

We want to prove

(E) There exist integers q, r such that

a = bq + r and 0 ≤ r < |b| . (14.313)

Let S be the set of all integers r such that r ≥ 0 and

s = a− bq for some integer q. In other words,

S = {s ∈ Z : (∃q ∈ Z)s = a− bq{ . (14.314)

We prove that

(I) S has a smallest member,

(II) if r is the smallest member of S, then 0 ≤ r < |b|
and r = a− bq for some q ∈ Z.
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Proof of (I). The well ordering principle tells us that S

has a smallest member, provided we prove that

1. S is a set of integers,

2. S is bounded below,

3. S is nonempty.

The fact that S is a set of integers is obvious from the

definition of S, i.e., formula (14.314).

It also follows from formula (14.314) that S is bounded

below, since every member of S is ≥ 0.

Finally, S is nonempty for the following reason: take

q = −b|a|, and let s = a− bq, then

s = a− bq = a− b(−b|a|) = a + b2|a| ≥ a + |a| ≥ 0 ;

then s ∈ S (because s ∈ Z, s ≥ 0, s = a − bq, and

q ∈ Z).

Since we have proved that the three conditions needed

to be able to apply the WOP hold, we can apply the

WOP and conclude that S has a smallest member.

Proof of (II). Let r be the smallest member of S. Then

r is nonnegative, because all the members of S are non-

negative. And, since r ∈ S, we may pick q ∈ Z such that

r = a− bq. Then a = bq + r and r ≥ 0.

Only one thing is missing, namely, proving that r < |b|.
We prove this by contradiction.
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Assume that r ≥ |b|.
Let

m =

{
1 if b > 0

−1 if b < 0
.

Then m ∈ Z and mb = |b|.
Let q′ = q +m, and let r′ = r − |b|. Then r′ ∈ Z, and

the assumption that r ≥ |b| implies that r′ ≥ 0.

Furthermore, if we let q′ = q +m, then q′ ∈ Z, and

r′ = r−|b| = r−mb = a−bq−mb = a−b(q+m) = a−bq′ .

Since r′ ≥ 0, r′ = a − bq′, and q′ ∈ Z, it follows that

r′ ∈ S.

But r′ = r − |b|, and b 6= 0, so r′ < r. Hence r is not

the smallest member of S, because r′ ∈ S and r′ < r.

So the assumption that r ≥ |b has led us to a contradc-

tion. Hence r < |b|.
So we have proved that S has a smallest member r, that

0 ≤ r < |b|, and that a = bq+r for some integer q. This

completes the proof of the existence of q and r.

14.3.2 The uniqueness proof

To prove thet the pair (q, r) is unique, we have to prove
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(U) If q1, q2, r1, r2 are integers such that

a = bq1 + r1 , (14.315)

0 ≤ r1 < b , (14.316)

a = bq2 + r2 , (14.317)

0 ≤ r2 < b , , (14.318)

then q1 = q2 and r1 = r2.

Proof of (U).

Let q1, q2, r1, r2 be integers such that (14.315), (14.316),

(14.317), and (14.318) hold.

We will prove that q1 = q2 and r1 = r2.

Since a = bq1 + r1 and a = bq2 + r2, we have

bq1 + r1 = bq2 + r2 ,

so

b(q2 − q1) = r1 − r2 , (14.319)

and then

|b| · |q2 − q1| = |r1 − r2| , (14.320)

because |xy| = |x| · |y| for arbitrary real numbers

x, y.
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Since q1 and q2 are integers, the number |q1 − q2| is
a nonnegative integer.

We now prove86 that q1 = q2.

Assume that q1 6= q2.

Then the nonnegative integer |q1−q2| is not zero,
so it is a natural number.

And then |q1 − q2| ≥ 1, because every natural

number is ≥ 1.

COMMENT: This is the only step in the proof

where we use the fact the we are working with

the integers. All the other would be equally

valid if we were working in IR rather than Z.

Therefore (14.320) implies that |r1 − r2| ≥ |b| .
So it’s not true that |r1 − r2| < |b| .
On the other hand, |r1 − r2| < |b| . (Reason:

Since r1 < |b| and 0 ≤ r2, we have −r2 ≤ 0,

so r1 − r2 < |b|. Similarly, r2 − r1 < |b|. Since
one of the two numbers is r1 − r2, it follows that

|r1 − r2| < |b|.)
So wee have arrived at a contradiction.

This proves that q1 = q2 .

86by contradiction , naturally.
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And then (14.320) implies that r1 = r2 .

So we have proved (U), for arbitrary integers a, b such

that b 6= 0.

This completes the proof of the uniqueness part of the

division theorem. So our proof is complete. Q.E.D.

14.3.3 Another proof of the existence part of the division theo-
rem, using induction going forward and backward

THIS SECTION STILLHAS TO BE WRITTEN


