MATHEMATICS 361 — FALL 2019
 SET THEORY

H. J. Sussmann

HOMEWORK ASSIGNMENT NO. 3, DUE ON THURSDAY, SEPTEMBER 26

These problems are about "pure set theory"; that is, we assume there are no atoms, so everything is a set. Hence " $\forall x$ " means"for every set x ", and " $\exists x$ " means "there exists a set x such that".

1. Book, Pages 38, 39, Exercises 1, 2, 3, 4, 5.
2. Consider the following theorem and its proof:

Theorem. If A, B are sets and $A \times B=B \times A$ then $A=B$.
Proof. If $x \in A$ and $y \in B$ then $<x, y>\in A \times B$; since $A \times B=B \times A$, it follows that $<x, y>\in B \times A$; so $x \in B$ and $y \in A$. This shows that if $x \in A$ then $x \in B$, so $A \subseteq B$, and that if $y \in B$ then $y \in A$, so $B \subseteq A$. Hence $A=B$.
Q.E.D.

Actually, the theorem, as stated, is false, so the proof must be wrong.
i. Prove that the theorem is false, by giving a counterexample.
ii. Explain why the proof is wrong, that is, find the step or steps that are invalid.
iii. Fix the theorem, by adding an extra condition to the hypotheses of the theorem that makes it true.
iv. Give a correct proof of the true theorem.

NOTE: In case you don't understand what I mean by "fixing" a theorem statement, here is an example, that should illustrate what I mean.

Suppose I give you the theorem that if a, b, c are real numbers and $a b=a c$ then $b=c$. This theorem is also false. Suppose I ask you the same questions that I asked here.

To prove that the theorem is false, you must give a counterexample. Here is a counterexample: take $a=0, b=1, c=2$. Then $a b=a c$, but b is not equal to c.

To find the mistake in the proof, you have to look at the proof. If you do that, I am sure you will find a step that involves dividing both sides by a, and this step is invalid because we don't know that $a \neq 0$.

To fix the theorem, add the condiition that $a \neq 0$. Then you get a true theorem: if a, b, c are real numbers such that $a \neq 0$, and $a b=a c$, then $b=c$.

Finally, the correct proof of the true theorem is easy: since $a \neq 0, a^{-1}$ exists. Multiply both sides of " $a b=a c$ " by a^{-1}, and you get $b=c$. \quad Q.E.D.

In the set theory problem here, I am asking you to do something similar.

