
MATHEMATICS 361 — FALL 2019

SET THEORY

H. J. Sussmann

HOMEWORK ASSIGNMENT NO. 7, DUE ON THURS-
DAY, NOVEMBER 21

This homework assignment consists of four problems.

These problems are about “pure set theory”; that is, we assume there
are no atoms, so everything is a set. Hence “ ∀x” means “for every set
x”, and “ ∃x” means “there exists a set x such that”.

In the first two problems I present an alternative construction of the
real numbers, as equivalence classes of Cauchy sequences of rationals,
rather than as Dedekind cuts. Since several students are probably not
familiar with Cauchy sequences, I am using instead a special class of
Cauchy sequences, that I call “superCauchy sequences”, because these
are sufficient for our purposes, and are much easier to work with.

Recall that a sequence is a function whose domain is ω. If s is a sequence,
then instead of writing s(n) for the unique x such that 〈n, x〉 ∈ s, we write

sn. (Then s =
{
〈n, sn〉

∣∣∣n ∈ ω }.)

A sequence of rational numbers is a sequence s such that sn ∈ Q for
every n ∈ ω.

If s is a sequence of rational numbers, we say that s is superCauchy if
there exists a C such that

C ∈ Q&C > 0 &∀n
(
n ∈ ω =⇒ |sn+1 − sn| ≤

C

2n
)
.

We let SC(Q) be the set of all superCauchy sequences of rational num-
bers.

The sum s+ t, the difference s− t, and the product s · t of two sequences
s, t of rational numbers are defined as follows:

s+ t =
{
〈n, sn + tn〉

∣∣∣n ∈ ω } ,
s− t =

{
〈n, sn − tn〉

∣∣∣n ∈ ω } ,
s · t =

{
〈n, sn · tn〉

∣∣∣n ∈ ω } .



A sequence s ∈ SC(Q) is null if there exists a C such that

C ∈ Q&C > 0 &∀n
(
n ∈ ω =⇒ |sn| ≤

C

2n

)
.

We let SC(Q)0 be the set of all null superCauchy sequences of rational
numbers.

We declare two superCauchy sequences s1, s2 to be equivalent, and write
“s1 ∼ s2”, if s1 − s2 ∈ SC(Q)0. In other words, ∼ is the relation{

〈s1, s2〉
∣∣∣ 〈s1, s2〉 ∈ SC(Q)× SC(Q) & s1 − s2 ∈ SC(Q)0

}
.

Problem 1.

1. Prove that the sum and the product of two superCauchy sequences
of rational numbers is a superCauchy sequence of rational numbers.

2. Prove that if s, t are null superCauchy sequences of rational numbers
then s+t and s−t are null superCauchy sequences of rational numbers.

3. Prove that if s is a null superCauchy sequence of rational numbers
and t is a superCauchy sequence of rational numbers then s · t is a null
superCauchy sequence of rational numbers1.

4. Prove that ∼ is an equivalence relation on SC(Q).

5. Prove that the addition function + : SC(Q)× SC(Q) 7→ SC(Q), the
subtraction function − : SC(Q) × SC(Q) 7→ SC(Q), and the multi-
plication function · : SC(Q)× SC(Q) 7→ SC(Q) are compatible2 with
the equivalence relation ∼, in the sense of Problem III of Homework
6.

6. Conclude from the previous result that the sum, difference, and prod-
uct of two equivalence classes a, b ∈ SC(Q)/ ∼ are well defined. (That
is, we can define a + b, a − b, and a · b by letting a + b = [s + t]∼,
a− b = [s− t]∼, and a · b = [s · t]∼, where s is any member of a and t
is any member of b.) �

In view of the results of Problem 1, we can formulate the following definition.

1For those who are familiar with rings and ideals, I am asking you to prove that SC(Q)
is a commutative ring and SC0(Q) is an ideal.

2For those who are familiar with rings and ideals: It is a general fact that if R is a
commutative ring and I is an ideal, then the equivalence relation ∼I defined by letting
〈s, t〉 ∈∼I⇐⇒ s − t ∈ I is compatible with the addition, subtraction and multiplication
operations on R, and therefore they give rise to operations of addition, subtraction and
multiplication on the quotient R/ ∼I , so R/ ∼I is a ring.



Definition.

i. A real number is a member of the quotient SC(Q)/ ∼.

ii. The set of all real numbers is denoted by “IR”, so IR = SC(Q)/ ∼.

iii. If r is a rational number, then we can associate with r the “real number
r”, also called “r regarded as a real number”. This number is denoted
by rIR, and is given by

rIR = [rseq]∼ ,

where rseq is the sequence given by

rseq =
{
〈n, r〉

∣∣∣n ∈ ω } .
iv. If a ∈ IR,

iv.a. we say that a is nonnegative, and write a ≥ 0, or 0 ≤ a, if a = [r]∼
for some sequence r ∈ SC(Q) such that rn ≥ 0 for all n ∈ ω.

iv.b. we say that a is positive, and write a > 0, or 0 < a, if a ≥ 0 and
a 6= 0IR.

v. If a, b are real numbers, we say that a is smaller than or equal to b if
b− a ≥ 0, and that a is strictly smaller than b if b− a > 0.

vi. An upper bound for a set S of real numbers a real number b such that
∀x(x ∈ S =⇒ x ≤ b).

vii. A set S of real numbers is bounded above if S has an upper bound,
i.e., if there exists a real number b such that ∀x(x ∈ S =⇒ x ≤ b).

viii. A least upper bound for a set S of real numbers is a real number L
such that

viii.a. L is an upper bound for S,

viii.b. If C is an arbitrary upper bound for S, then C ≥ L. �

Problem 2. Prove, using the construction of IR given here, that

1. “≤” is a total ordering relation, that is:

1.a ∀x(x ∈ IR =⇒ x ≤ x),

1.b ∀x ∀y
(

(x ∈ IR & y ∈ IR) =⇒ (x ≤ y .or y ≤ x)
)

,



1.c ∀x ∀y ∀z
(

(x∈ IR&y∈ IR&z∈ IR&x≤y&y≤z)=⇒(x≤z)
)

,

1.d ∀x ∀y
(

(x ∈ IR & y ∈ IR &x ≤ y&y ≤ x) =⇒ x = y
)

.

2. 〈IR,≤〉 satisfies the completeness property: if S is a nonempty sub-
set of IR which is bounded above, then S has a least upper bound. �

For problems 3 and 4, you are free to use the definition of “real number”
given in the book and discussed in class, or the one presented earlier
here. But I strongly recommend that you use the one given in the book,
with Dedekind cuts.

Problem 3. Give a rigorous proof that, if we let

r = OIR ∪
{
q
∣∣∣ q ∈ Q& q · q < 2

}
,

then r is a positive real number and r · r = 2IR. (Here: (a) the product of
two nonnegative3 real numbers is defined on Page 118 of the book; (b) “2IR”

is, of course, the real number
{
q
∣∣∣ q ∈ Q& q < 2

}
.) NOTE: At some point

you will need to prove that if q ∈ Q, q > 0, and q < 2, then you can write
q = q1q2, where q1 ∈ Q, q2 ∈ Q, q1 > 0, q2 > 0, q1 ·q1 < 2 and q2 ·q2 < 2. The
most obvious choice would be to take q1 = q2 =

√
q, but this does not work

because
√
q could be irrational. To take care of this problem, you should

pick q1 “a little bit smaller than
√
q”, and rational, and then let q2 = q

q1
, so

q2 is “a little bit larger than
√
q”, and rational, and q2 · q2 is still < 2. To

do this, I suggest you write q = m
n2 , with n very large and m ∈ ω, and then

let µ be the unique natural number such that µ2 ≤ m < (µ+ 1)2, and pick
q1 = µ

n . �

Problem 4. For natural numbers k, the k-th power of a real number r is

defined recursively by r0 = 1, rk+1 = rk · r for k ∈ ω. Give a rigorous
proof, without using the completeness property, that if r is a nonnegative
real number, k ∈ ω, and k > 0, then ∃s ∈ IR (s ≥ 0 & sk = r). (That is,
every nonnegative real number has a nonnegative k-th root.) HINT: Take

s = 0IR ∪ {
{
q
∣∣∣ q ∈ Q& q ≥ 0 &∃t(t ∈ Q& t > q& tk ∈ r)

}
. �

3Remember that “nonnegative” means “ge0”, and “positive” means “> 0”.


