Problem 1. Show that if \(L \) is a line in the plane, and \(S \) is a conic section, then one of the following possibilities must occur:

1. \(L \) and \(S \) do not intersect at all (that is, \(S \cap L = \emptyset \)),
2. \(L \) and \(S \) intersect at one point (that is, \(S \cap L = \{P\} \) for some point \(P \)),
3. \(L \) and \(S \) intersect at two points (that is, \(S \cap L = \{P, Q\} \) for some point \(P, Q \)),
4. \(L \) is entirely contained in \(S \) (that is, \(L \subseteq S \)).

In other words, you must show that if the intersection of \(L \) and \(S \) has three distinct points, then \(L \) is entirely contained in \(S \). (HINT: There are lots of ways to do this problem, but one possibility would be to make a change of coordinates that will simplify the situation.)

Problem 2. Problem 1 of the notes on conic sections.

Problem 3. Problem 2 of the notes on conic sections.

Problem 4. Problem 3 of the notes on conic sections.