MATHEMATICS 501 - FALL 2016
 Theory of functions of a real variable I
 H. J. Sussmann

HOMEWORK ASSIGNMENT NO. 1, DUE ON FRIDAY, SEPTEMBER 16

Corrected version. Posted on September 9
Some of these problems may be hard. Do not worry if you cannot do everything. Just do what you can.

Problem 1. Prove that if (X, ρ) is a metric space, S is a subset of X, and S satisfies the following conditions:
(*1) For every positive ${ }^{1}$ real number ε there exists a compact subset K_{ε} of X such that

$$
\sup \left\{\inf \left\{\rho(x, y): y \in K_{\varepsilon}\right\}: x \in S\right\} \leq \varepsilon
$$

(*2) S is complete.
then S is compact.
Problem 2. Construct a bijective map f from the real line \mathbb{R} onto the closed interval $[0,1]$. (NOTE: The existence of such a map follows easily using the Schröder-Bernstein Theorem. Here you are asked to construct a map explicitly, without using the Schröder-Bernstein Theorem.)
Problem 3. A subset I of the extended real line $\overline{\mathbb{R}}$ is an interval if it has the following property:
(\#) Whenever a, b, c are members of $\overline{\mathbb{R}}$ such that $a<b<c, a \in I$, and $c \in I$, it follows that $b \in I$.

Prove the following sstatements:

1. The empty set is an interval.

[^0]2. If $a \in \overline{\mathbb{R}}$, then the set $\{a\}$ is an interval.
3. If $I \subseteq \overline{\mathbb{R}}$, then I is an interval if and only if there exist $a, b \in \overline{\mathbb{R}}$ such that I is one of the following four sets:
\[

$$
\begin{align*}
& \{x \in \overline{\mathbb{R}}: a<x<b\}, \tag{0.1}\\
& \{x \in \overline{\mathbb{R}}: a \leq x \leq b\}, \tag{0.2}\\
& \{x \in \overline{\mathbb{R}}: a<x \leq b\} \tag{0.3}\\
& \{x \in \overline{\mathbb{R}}: a \leq x<b\} . \tag{0.4}
\end{align*}
$$
\]

4. If we use exactly the same definition of "interval" for subsets of the extended rational line $\overline{\mathbb{Q}}$, then the result of Part 3 is not true.

NOTE: The extended rational line is the set $\overline{\mathbb{Q}}$ given by $\overline{\mathbb{Q}}=\mathbb{Q} \cup$ $\{-\infty, \infty\}$. An interval in $\overline{\mathbb{Q}}$ is a subset I of $\overline{\mathbb{Q}}$ such that, whenever a, b, c are members of $\overline{\mathbb{Q}}$ such that $a<b<c, a \in I$, and $c \in I$, it follows that $b \in I$. The "statement of part 3 " is the statement that
$(\#)$ If $I \subseteq \overline{\mathbb{Q}}$, then I is an interval if and only if there exist $a, b \in \overline{\mathbb{Q}}$ such that I is one of the following four sets:

$$
\begin{align*}
& \{x \in \overline{\mathbb{Q}}: a<x<b\}, \tag{0.5}\\
& \{x \in \overline{\mathbb{Q}}: a \leq x \leq b\}, \tag{0.6}\\
& \{x \in \overline{\mathbb{Q}}: a<x \leq b\}, \tag{0.7}\\
& \{x \in \overline{\mathbb{Q}}: a \leq x<b\} . \tag{0.8}
\end{align*}
$$

Problem 5. Prove that if A is an infinite set then A has a partition consisting of countably infinite sets. (That is: there exists a set \mathcal{P} such that: (1) every member of \mathcal{P} is a countably infinite subset of $A,(2)$ if X, Y are any two members of \mathcal{P}, then either $X=Y$ or $X \cap Y=\emptyset$, and (3) $\bigcup \mathcal{P}=A$. Recall that a set X is finite if there exists a bijection from X onto the set \mathbb{N}_{n} for some nonnegative integer n, where $\mathbb{N}_{n}=\{k \in \mathbb{N}: k \leq n\}$, so $\mathbb{N}_{0}=\emptyset$, $\mathbb{N}_{1}=\{1\}, \mathbb{N}_{2}=\{1,2\}$, and so on. A set is infinite if it is not finite. A set X is countably infinite if there exists a bijection from X onto \mathbb{N}.) HINT: For this proof it is essential that you use the Axiom of Choice or something equivalent, such as Zorn's lemma or the Hausdorff maximal principle.

[^0]: ${ }^{1}$ Throughout this course, "positive" meeans " >0 ", and "nonnegative" means " ≥ 0 ".

