MATHEMATICS 501 — FALL 2016

Theory of functions of a real variable I H. J. Sussmann

HOMEWORK ASSIGNMENT NO. 1, DUE ON FRIDAY, SEPTEMBER 16

Corrected version. Posted on September 9

Some of these problems may be hard. Do not worry if you cannot do everything. Just do what you can.

Problem 1. *Prove* that if (X, ρ) is a metric space, S is a subset of X, and S satisfies the following conditions:

(*1) For every positive¹ real number ε there exists a compact subset K_{ε} of X such that

$$\sup\left\{\inf\{\rho(x,y): y \in K_{\varepsilon}\}: x \in S\right\} \le \varepsilon.$$

(*2) S is complete.

then S is compact.

Problem 2. Construct a bijective map f from the real line \mathbb{R} onto the closed interval [0, 1]. (NOTE: The existence of such a map follows easily using the Schröder-Bernstein Theorem. Here you are asked to construct a map explicitly, without using the Schröder-Bernstein Theorem.)

Problem 3. A subset I of the extended real line \mathbb{R} is an <u>interval</u> if it has the following property:

(#) Whenever a, b, c are members of \mathbb{R} such that $a < b < c, a \in I$, and $c \in I$, it follows that $b \in I$.

Prove the following statements:

1. The empty set is an interval.

¹Throughout this course, "positive" meeans "> 0", and "nonnegative" means " ≥ 0 ".

- 2. If $a \in \mathbb{R}$, then the set $\{a\}$ is an interval.
- 3. If $I \subseteq \mathbb{R}$, then I is an interval if and only if there exist $a, b \in \mathbb{R}$ such that I is one of the following four sets:

$$\{x \in \overline{\mathbb{R}} : a < x < b\}, \tag{0.1}$$

- $\{x \in \bar{\mathbb{R}} : a \le x \le b\},,\tag{0.2}$
- $\{x \in \overline{\mathbb{R}} : a < x \le b\}, \tag{0.3}$
- $\{x \in \overline{\mathbb{R}} : a \le x < b\}. \tag{0.4}$
- 4. If we use exactly the same definition of "interval" for subsets of the extended rational line $\overline{\mathbb{Q}}$, then the result of Part 3 is not true.

NOTE: The <u>extended rational line</u> is the set $\overline{\mathbb{Q}}$ given by $\overline{\mathbb{Q}} = \mathbb{Q} \cup \{-\infty, \infty\}$. An <u>interval</u> in $\overline{\mathbb{Q}}$ is a subset I of $\overline{\mathbb{Q}}$ such that, whenever a, b, c are members of $\overline{\mathbb{Q}}$ such that a < b < c, $a \in I$, and $c \in I$, it follows that $b \in I$. The "statement of part 3" is the statement that

- (#) If $I \subseteq \overline{\mathbb{Q}}$, then I is an interval if and only if there exist $a, b \in \overline{\mathbb{Q}}$ such that I is one of the following four sets:
 - $\left\{ x \in \bar{\mathbb{Q}} : a < x < b \right\},\tag{0.5}$
 - $\{x \in \bar{\mathbb{Q}} : a \le x \le b\},,\tag{0.6}$

$$\{x \in \overline{\mathbb{Q}} : a < x \le b\}, \qquad (0.7)$$

$$\{x \in \overline{\mathbb{Q}} : a \le x < b\}. \tag{0.8}$$

Problem 5. *Prove* that if A is an infinite set then A has a partition consisting of countably infinite sets. (That is: there exists a set \mathcal{P} such that: (1) every member of \mathcal{P} is a countably infinite subset of A, (2) if X, Y are any two members of \mathcal{P} , then either X = Y or $X \cap Y = \emptyset$, and (3) $\bigcup \mathcal{P} = A$. Recall that a set X is finite if there exists a bijection from X onto the set \mathbb{N}_n for some nonnegative integer n, where $\mathbb{N}_n = \{k \in \mathbb{N} : k \leq n\}$, so $\mathbb{N}_0 = \emptyset$, $\mathbb{N}_1 = \{1\}, \mathbb{N}_2 = \{1, 2\}$, and so on. A set is infinite if it is not finite. A set X is countably infinite if there exists a bijection from X onto \mathbb{N} .) HINT: For this proof it is essential that you use the Axiom of Choice or something equivalent, such as Zorn's lemma or the Hausdorff maximal principle.