
MATHEMATICS 501 — FALL 2016
Theory of functions of a real variable I

H. J. Sussmann

HOMEWORK ASSIGNMENT NO. 3, DUE
ON FRIDAY, OCTOBER 7
Outer measure and null sets. If S ⊂ IR, the Lebesgue outer measure of
S is the (possibly extended) real number µ∗(S) defined by

µ∗(S) = inf
{ ∞∑

j=1

|Ij| : {Ij}∞j=1 ∈ OIC(S)
}
,

where

1. OI is the set of all sequences {Ij}∞j=1 of bounded open intervals of IR,

2. If I = (a, b) is a bounded open interval of IR, the length of I is the
number |I| given by

|I| = b− a .

3. If I = {Ij}∞j=1 ∈ OI, and S ⊂ IR, we say that I covers S if

S ⊂
∞⋃
n=1

In .

4. We use OIC(S) to denote the set of all sequences I ∈ OI such that I
covers S.

A null subset of IR is a subset S of IR such that µ∗(S) = 0.
A property P (x) of real numbers x holds almost everywhere on some set

S if it holds for all x ∈ S except possibly for the values of x belonging to a
null set. (Precisely P (x) holds almost everywhere if there exists a null set
N such that P (x) holds for all x ∈ S\N .) For example, “x is irrational”
holds almost everywhere (or, alternatively, “almost every real number is ir-
rational”), because “x is irrational” is true except when x is rational, i.e.,
when x ∈ Q, and the set Q is countable and hence a null set.
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Problem 1. Let N be the set of all null subsets of IR. Prove that

card(N ) > card(IR) .

(This may require finding first a null set S such that card(S) = card(IR).)

Problem 2. Let N̄ be the set of all subsets of IR such that either (a) S is
a null set, or (b) IR\S is a null set. Prove that N̄ is a σ-algebra of subsets
of IR and the restriction of µ∗ to N̄ is a non-semifinite measure on N .

Problem 3. Prove that if a, b ∈ IR, a < b. and f : [a, b] 7→ IR is a function,
then a necessary condition for f to be Riemann integrable is that the set
DISC(f) of points of discontinuity of f be a null set. (By definition, a
point of discontinuity of f is a point x ∈ [a, b] such that

(a) there exists a real number ε such that ε > 0 and

(a1) there exists a sequence x = {xn}∞n=1 of members of [a, b] such that
limn→∞ xn = x, and |f(xn)− f(x)| ≥ ε for every n.

For any given ε, a point of ε-discontinuity is a point x such that (a1) holds.
So x is a point of discontinuity if and only if it is a point of ε-discontinuity
for some ε such that ε > 0.) (HINT: Prove that for each positive ε the set
of points of ε-discontinuity must be a null set.)

Problem 4. Let us work on the interval [0, 1]. We are going to construct a
function f : [0, 1] 7→ IR that has a lot of singularities.

1. Start with an enumeration {rm}∞m=1 of the rational numbers that belong
to [0, 1]. (That is, {rm}∞m=1 is a sequence such that the map IN 3 m 7→
rm ∈ [0, 1] is a bijection from IN onto Q ∩ [0, 1].)

2. Define

f(x) =
∞∑

m=1

2−m√
|x− rm|

. (0.1)

(NOTE: For each x, the summands of the right-hand side of (0.1) are
nonnegative extended1 real numbers. Hence the sum exists, as an ex-
tended real number, and is equal to the supremum of the partial sums

1I say “extended” because, for the function x 7→ 2−m√
|x−rm|

, the value when x = rm is

+∞.
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SN(x) given by

SN(x) =
N∑

m=1

2−m√
|x− rm|

.

If we let gm(x) = 1√
|x−rm|

, then the function gm is exactly the same

as the function g of Problem 7 of Homework 2 —i.e., the function
x 7→ 1√

|x|
—except that the singularity has been moved from 0 to rm.

What are doing is summing all these functions, for all rm, in order to
produce a function that has singularities at all the points of Q ∩ [0, 1].
The factors 2−m are put in so as to make the series convergent.)

Prove that f(x) is finite almost everywhere on [0, 1].

Problem 5. Prove the following statement:

(*) Let d be a natural number. Let R,R1, . . . , Rn be rectangles in IRd such
that

R ⊂ R1 ∪R2 ∪ · · · ∪Rn .

Then
|R| ≤ |R1|+ |R2|+ · · ·+ |Rn| . (0.2)

NOTE: The relevant definitions here are as follows:

1. A closed rectangle in IRd is a set R of the form

R =
d∏

j=1

[aj, bj] , (0.3)

where a1, b1, a2, b2, . . . , ad, bd are real numbers. (Notice that if aj > bj
for some j, then R is empty. So a closed rectangle is either the empty
set or a set R of the form (0.3) with aj ≤ bj for j = 1, 2, . . . , d.) In
particular, a closed rectangle in IRd is a compact subset of IRd.

2. A rectangle in IRd is a set S such that

Int(R) ⊂ S ⊂ R (0.4)

for some closed rectangle R. (Here “Int” stands for “interior of”.)
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3. The volume2 of a closed rectangle R given by (0.3) is the number |R|
defined by

|R| =
d∏

j=1

(bj − aj) . (0.5)

4. The volume of a rectangle S is the volume |R| of any closed rectangle R
such that (0.4) holds. (In particular, the volume of the empty rectangle
is 0.)

NOTES: The result of this problem follows trivially from the subadditivity
of Lebesgue measure, provided one knows that the volume |R| of a rectan-
gle is equal to its Lebesgue measure µd(R). But the proof of the fact that
µd(R) = |R| depends on inequality (0.2). So you are not allowed to
justify inequality (0.2) by invoking the subadditivity of Lebesgue
measure, because you don’t know that µd(R) = |R|.

In class, I outlined a particular way to do this problem. You are free
you use this approach to do the problem, or to propose a different approach.
Anything you do is fine, as long as it rigorous and written clearly and pre-
cisely.

If you find the combinatorial issues pertaining to the proof too compli-
cated, I suggest you try first the case when d = 2. Once you understand this
situation, the general case will be clear, and the only remaining difficulty will
be how to choose the appropriate notations in order to say what you want
to say in precise mathematical language.

Problem 6. Prove the following statement: If A,B are sets, A is infinite,
and card(B) ≤ card(A), then card(A∪B) = card(A). (HINT: You may find
it convenient to use the result of the last problem of Homework 1.)

2When d = 1 we use the word “length” rather than “volume”, and when d = 2 we use
the word “area”.


