
MATHEMATICS 501 — FALL 2016
Theory of functions of a real variable I

H. J. Sussmann

HOMEWORK ASSIGNMENT NO. 8, DUE
ON TUESDAY, NOVEMBER 29

The six problems in this list are recommended for you to do.
The problems you are asked to hand in are Nos. 1, 4, 5, and 6
(minus the optional parts).

Problem 6 looks very long, but this is because I put in many
explanations and very detailed hints. I could have written it in
Folland style, and then it would have looked very short.

Problem 1. Book, problem 53, page 76. (NOTE: This is a very important
result.)

Problem 2. Book, problem 57, page 77.

Problem 3. Book, problem 62, page 80.

The purpose of Lebesgue integration theory is not to prove the-
orems about Lebesgue integrals. It is to develop a set of tools
that can used to prove results in other areas of mathematics. In
the following series of three problems we discuss an example,
namely, the construction of a solution

(0,∞)× IRd 3 (t, x) 7→ u(t, x)

of the heat equation,
∂u

∂t
=

1

2
∆u

with initial condition

u(0, x) = f(x) for x ∈ IRd ,
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where f is a given function in L1(IRd).
The key results of this series of problems are:

A. Problem 6, Part 6, which says that the function uf con-
structed in Part 1 of the problem is a solution of the heat
equation,

B. Problem 6, Part 8, which says that the function uf(t, x)
“satisfies the initial condition uf(0, x) = f(x)”, in the sense
that

lim
t↓0

uf(t, x) = f(x) , (0.1)

provided that the limit in (0.1) is interpreted in the L1

sense, that is,

lim
t↓0

∫
IRd

|uf(t, x)− f(x)|dmd(x) = 0 .

In addition,

C. Part 8 provides us with an explicit way (called “heat kernel
regularization”) to “regularize” L1 functions, i.e., to ap-
proximate L1 functions in L1 by functions of class1 C∞.

In Problems 4,5 and 6,

1. d is a fixed natural number,

2. Ld is the σ-algebra of Lebesgue measurable subsets of IRd,

1A function of class C1 on IRd is a function v : IRd 7→ C such that the partial derivatives
∂v
∂xj

, for j ∈ {1, . . . , d}, exist at every point x of IRd and are continuous functions of x. A

function of class C2 is a function of class C1 all whose first-order partial derivatives are
of class C1. And, in general, one defines “function of class Ck” inductively, as follows: a
function of class Ck, if k is a natural number, is a function of class C1 all whose first-order
partial derivatives are functions of class Ck−1. And, finally, a function of class C∞ is a
function which is of class Ck for every k ∈ IN.
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3. md is d-dimensional Lebesgue measure,

4. “L1(IRd)” means “L1(IRd,Ld,md)”. Recall that L1(IRd) is a
normed space, with norm defined by

‖f‖L1 =

∫
IRd

|f(x)|dmd(x) ,

and then L1(IRd) is a metric space, with distance function
ρ : L1(IRd)× L1(IRd) 7→ IR defined by

ρ(f, g) = ‖f − g‖L1 =

∫
IRd

|f(x)− g(x)|dmd(x) .

5. ∆d is the d-dimensional Laplace operator, given by

∆d =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
d

.

This means that, for a function v : IRd 7→ C of class C2,

∆dv =
∂2v

∂x2
1

+
∂2v

∂x2
2

+ · · ·+ ∂2v

∂x2
d

.

6. If U is an open subset of IR× IRd, a function u : U 7→ C is
a solution of the heat equation on U if it is of class2 C2 on
U and satisfies

∂u

∂t
=

1

2
∆du on U .

2It is possible to define a notion of “solution of the heat equation” for functions that
in principle are not of class C2 or even of class C1 or even continuous. But one can then
prove that the heat operator is “hypoelliptic”, meaning that every solution of the heat
equation in this generalized sense is in fact of class C∞.
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7. For each T ∈ IR, we use Hd
+(T ) and H̄d

+(T ) to denote,
respectively, the open and closed half-spaces of IRd+1 defined
by

Hd
+(T ) = {(t, x) : t > T and x ∈ IRd} , (0.2)

H̄d
+(T ) = {(t, x) : t ≥ T and x ∈ IRd} . (0.3)

8. Kd is the d-dimensional heat kernel, that is, the function
Kd : H+

d (0) 7→ IR defined by

K(t, x) =
1

2πtd/2
e−
‖x‖2
2t for x ∈ IRd , t > 0 .

9. For each multiindex3 α = (α0, α1, . . . , αd) ∈ Zd+1
+ , we write

∂α =
∂α0

∂tα0

∂α1

∂xα1
1

· · · ∂
αd

∂xαd

d

so ∂α is a differential operator acting on functions of the
d+ 1 variables t, x1, . . . , xd.

Problem 4. (The result of this problem is an important fact in its own right,
but here we need it as a lemma that will be used in problem 6.)

The translations τa, for a ∈ IRd, are defined on Page 71 of the book. Prove
that if f : IRd 7→ C is a Lebesgue integrable function, then the map
Φf : IRd 7→ L1(IRd) defined by

Φf (a) = f ◦ τa for a ∈ IRd

is continuous, as a map from the metric space IRd to the metric space L1(IRd).
(Continuity of the map Φf means L1-limb→a Φf (b) = Φf (a), that is,

lim
b→a
‖f ◦ τb − f ◦ τa‖L1 = 0

3Z+ is the set of all nonnegative integers, so Z+ = IN∪{0}. Then Zd+1
+ is the set of all

d+ 1-tuples of nonnegative integers.
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or, equivalently,

lim
b→a

∫
IRd

|f(x+ b)− f(x+ a)|dmd(x) = 0 ,

for every a ∈ IRd.) HINT: First show that, thanks to the translation invari-
ance of md, it suffices to show that

lim
a→0

∫
IRd

|f(x+ a)− f(x)|dmn(x) = 0 .

Then prove the result for compactly supported4 continuous functions. Then
use Theorem 2.41, together with the translation invariance of Lebesgue mea-
sure (Theorem 2.42) to prove continuity of Φf for general f ∈ L1.

Problem 5. (The result of this problem is just a lemma needed for Problem
6.) Prove that if ψ : IRd 7→ C is a bounded measurable function which is
continuous at 0, then

lim
σ↓0

∫
IRd

|ψ(σh)− ψ(0)|e−
‖h‖2

2 dmd(h) = 0 . (0.4)

(HINT: Let Iσ be the integral of (0.4). Split Iσ into two parts, Iσ,1 and Iσ,2
as follows: Iσ,1 is the integral over the set {x ∈ IRn : ‖x‖ ≤ β}, and Iσ,2 is
the integral over the set {x ∈ IRn : ‖x‖ > β}. Then, roughly—and it is your
job to do this carefully and rigorously—Iσ,2 can be made small by taking β
large, and then, for a fixed β, Iσ,1 can be made small for small enough σ,
because of the continuity of ψ at 0.)

Problem 6. If f : IRd 7→ C is a Lebesgue integrable function, we define, for
t > 0,

ft(x) = (2πt)−d/2
∫
IRd

f(y)e−
‖y−x‖2

2t dmd(y), , (0.5)

that is,

ft(x) =

∫
IRd

f(y)Kd(t, y − x)dmd(y) , (0.6)

and we also write
uf (t, x) = ft(x) . (0.7)

4A function g : IRd 7→ C is compactly supported if there exists a compact subset K of

IRd such that g(x) = 0 for all x ∈ IRd\K.
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(NOTE: We use the notation ft(x) if we want to regard (0.5) as defining
a family (ft)t∈(0,∞) of functions on IRd, indexed by t. And we use uf (t, x)
when we want to regard the right-hand side of (0.5) as a function of t and x,
defined on H+

d (0).)
Prove that

1. The function uf is continuous on Hd
+(0).

2. For each real number T such that T > 0,

(a) the function uf is bounded on H+
d (T ), and in fact uf satisfies a

bound
|uf (t, x)| ≤ cT−d/2‖f‖L1 ,

where c is a constant independent of f and T .

(b) uf (t, x) goes to zero as t+ ‖x‖ → ∞ in H+
d (T ).

(NOTE: In particular, the results of (a) and (b) imply that for
each positive t the function ft is bounded and continuous, and
vanishes at infinity5.

3. uf is a function of class C∞ on H+
d (0).

HINT:

a. Now that you know how to differentiate under the integral sign,
do it repeatedly.

b. It will be convenient for you to prove, by induction, that every
partial derivative of the heat kernel Kd is of the form PKd, where
P is a polynomial in the variables x1, . . . , xd and 1

t
. For example,

∂

∂x1
K(t, x) = −x1

t
K(t, x) ,

and
∂

∂t
K(t, x) =

(‖x‖2
2t2
− d

2t

)
K(t, x) ,

so in both cases you get a polynomial in x1, . . . , xn,
1
t

times K.

5The sentence “g vanishes at infinity” means “lim‖x‖→∞ g(x) = 0”.
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c. Conclude from the result of Part b that every partial derivative
of K, of any order, is bounded on H̄d

+(T ), for every T such that
T > 0.

d. Do not forget that exponential decay always beats polynomial
growth.

4. (Optional) If you want to go further with the analysis of Part 3, prove,
by carefully analyzing the degrees with respect to 1

t
of the polynomials

P that you get in Part 3, that every partial derivative ∂αK, for every
α ∈ Zd+1

+ satisfies a bound

|∂αK(t, x)| ≤ cαt
−ν(α)− d

2 for t > 0, x ∈ IRd ,

where the cα are constants and, if α = (α0, α1, . . . , αd), then

ν(α) = 2α0 + α1 + · · ·+ αd .

(Notice that each differentiation with respect to t counts like two dif-
ferentiations with respect to the x variables, which should not be too
surprising, since ∂K

∂t
= 1

2
∆dK.) This result says that Kt is bounded as

long as t is bounded away from zero, and K and all its derivatives blow
up as t ↓ 0 like powers of 1

t
.

5. (Continuation of 4. Optional) Prove that uf and its derivatives satisfy
bounds

|∂αuf (t, x)| ≤ cαt
−ν(α)− d

2‖f‖L1 ,

where the cα are constants.

5. The equality

ft(x) = (2π)−d/2
∫
IRd

f(x+
√
th)e−

‖h‖2
2 dmd(h) (0.8)

holds for each positive t and each x ∈ IRd. (HINT: Make an appropriate
change of variables in the integral of (0.5).)

6. The function uf is a solution of the heat equation on H+
d (0). (HINT:

Using the result of your differentiation under the integral sign, express(
∂
∂t
− 1

2
∆d

)
uf as an integral involving

(
∂
∂t
− 1

2
∆d

)
K, and verify that

K is a solution of the heat equation.)
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7. ft is integrable for each positive t, and

‖ft‖L1 ≤ ‖f‖L1 .

(HINT: First conclude from the book’s Proposition 2.53 that

(2π)−n/2
∫
IRn

e−
‖h‖2

2 dmn(h) = 1 . (0.9)

Then use the translation invariance of Lebesgue measure, the Fubini-
Tonelli theorem, and Equation (0.9).)

8. ft converges to f in L1 as t ↓ 0 (that is, limt↓0 ‖ft− f‖L1 = 0). (HINT:
Using (0.9), together with (0.8), conclude that

ft(x)− f(x) = (2π)−n/2
∫
IRn

(
f(x+

√
th)− f(x)

)
e−
‖h‖2

2 dmn(h) ,

and then, using the notations of Problem 4, show that

‖ft − f‖L1 ≤ (2π)−n/2
∫
IRn

‖f ◦ τ√
th
− f‖L1e−

‖h‖2
2 dmn(h) , (0.10)

Finally, show that the right-hand side of (0.10) goes to zero, using the
results of Problems 4 and 5.)


