
MATHEMATICS 502 — SPRING 2020

H. J. SUSSMANN

FINAL TAKE-HOME EXAM

This exam consists of four problems.

You should submit your solutions by sending them by e-mail to

sussmann@math.rutgers.edu

not later than Wednesday, May 13, 2020.

Problem 1. In this problem,

• The Borel σ-algebra of a topological space X is the σ-algebra generated by
the open subsets of X.

• We use B(X) to denote the Borel σ-algebra of X.

• A Borel probability measure on a topological space X is a nonnegative finite
measure µ : B(X) 7→ {x ∈ IR : x ≥ 0} such that µ(X) = 1.

Prove that if X is a complete separable metric space and µ is a Borel probability
measure on X then µ is “almost concentrated on compact sets”, in the following
precise sense:

sup{µ(K) : K ⊆ X , K compact } = 1 .

Problem 2. Using a trick similar to that used by Folland in Problem 13 on Page
254, prove that

∞∑
k=1

1

k4
=
π4

90
. (1)

Problem 3. Folland, problem 14 of section 8.3, on pages 254-5, on Wirtinger’s
inequality.

Problem 4. Folland, problem 23 of section 8.3, on pages 256-7, on the Hermite
functions.

COMMENTS. The Fourier and Fourier inversion formulas1

f̂(x) =

∫ ∞
−∞

f(ξ)e−2πiξ·xdξ , (2)

f(x) =

∫ ∞
−∞

f̂(ξ)e2πiξ·xdξ , (3)

1Formulas (2) and (3) are interpreted in the usual way: they are valid as written for
f ∈ L1 such that f̂ ∈ L1 (in which case the functions f and f̂ are continuous, so the
evaluation of these functions at one point makes sense, and the integrands are integrable
functions), and then they can be extended to f ∈ L2 (in which case f̂ ∈ L2 as well) by
taking limits in L2 of functions fn such that fn and f̂n belong to L1.
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imply

f(−x) =

∫ ∞
−∞

f̂(ξ)e−2πiξ·xdξ , (4)

i.e.,

f(−x) =
ˆ̂
f(x)e−2πiξ·xdξ . (5)

Hence, if we use F for the Fourier transformation map in L2(IR) (so that Ff = f̂),
we have

f(−x) = FFf(x) , (6)

and this implies that

FFFF = I , i.e., F4 = I , (7)

where I is the identity map of L2(IR). Furthermore, the Plancherel Theorem says
that F is a unitary map. Hence F is a unitary map that satisfies F4 = 1. This
implies2 that the eigenvalues of F must be 1, i,−1, and −i.

The Hermite functions give us, rigorously, an orthonor-
mal basis of L2(IR) consisting of eigenfuntions for F. Pre-
cisely, in the problem we construct a sequence {∅k}∞k=0 of
functions ∅k belonging to L2(IR) such that the ∅k form an
orthonormal basis of L2(IR) and F∅k = (−i)k∅k so, as you
can see, the ∅k are eigenfunctions for F for the eigenvalues
1, i,−1 and −i.

It would be nice if we could say that “the ∅k are the famous Hermite
functions. Unfortunately, we cannot say that, exactly. The Hermite functions,
denoted by hk in Folland’s book, are closely related, but not exactly the same as,
the eigenfunctions ∅k. I think it is important that you understand how they are
related, and why they are close but not exactly the same.

The Hermite functions are eigenfunctions of the Hermite differential oper-
ator3 S, given by

S = − d
2

dx2
+ x2 , (8)

that is4:
Sf(x) = −f ′′(x) + x2f(x) . (9)

2The implication is completely rigorous using the spectral theorem and the spectral
mapping theorem, but for our purpose here this fact does not matter. So maybe I shoudl
have written “suggests” rather than “implies”.

3In the literature, the formula most commonly used for the Hermite differential operator

is 1
2

(
− d2

dx2 + x2
)

. This, of course, does not change the eigenfuctions, but it changes the

eigenvalues, so that the statement you will usually encounter is that the eigenvalues of the
Hermite operator are 1

2
, 3
2
, 5
2
, . . ..

4S is a partially defined operator on L2(IR): Sf is not well defined for every function
f in L2; it’s only defined for functions f such that the second derivative f ′′ exists in some
appropriate sense and the function IR 3 x 7→ −f ′′(x) +x2f(x) is in L2. This can be made
completely rigorous but we do not need to do it here.
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As you will show in this problem, the Hermite functions hk, for k = 0, 1, 2, . . .,
satisfy Shk = (2k+ 1)hk, so they are indeed eigenfunctions for S, corresponding to
the eigenvalues 1, 3, 5, 7, . . ..

How is this related to the Fourier transform F? Roughly speaking, the Her-
mite operator S commutes with the Fourier transform operator F . And,
as you know from elementary linear algebra, when two operators commute then
they have a common set of eigenfunctions or eigenvectors5.

So, roughly speaking, what we do in this problem is find the eigenfunctions of
S in order to find eigenfunctions of F .

There is, however, one complication. The Hermite operator S does not actually
commute with F . It commutes with the “Fourier transform map” F̃ defined by
letting

F̃f = f̃ , where f̃(ξ) =
1√
2π

∫ ∞
−∞

f(x)e−iξ·xdx ,

which is not exactly the same map as F . (This is, in my opinion, how the Fourier
transform should have been defined.)

So, if Folland had used F̃ rather than F , we would have been able to say
things much more simply: the Hermite operator S commutes with F̃ , and the
eigenfunctions hk of S are then also the eigenfunctions of F̃ . But, since we are using
F , we cannot quite say that. We have to say instead what Folland says: there is a
unitary rescaling map A that conjugates F and F̃ , in the sense that A−1FA = F̃ .
Since the Hermite functions hk are eigenfunctions of F̃ , their conjugates ∅k = Ahk
are eigenfunctions of F .

5Here is one rigorous formulation: On a finite-dimensional space, if A and B are
commuting linear maps, and all the eigenvalues of A are simple, then the eigenfunctions
of A are also eigenfunctions of B. Proof. Let Af = λf , f 6= 0. Let E = {h : Ah = λh}.
Then, if h ∈ E, we have A(Bh) = B(Ah) = B(λh) = λBh, so Bh ∈ E. So E is a
B-invariant subspace. Since E is one-dimensional, because λ is simple, we conclude that
Bf is a scalar multiple of f , so f is an eigenfunction of B.
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