MATHEMATICS 502 — SPRING 2020

H. J. SUSSMANN

FINAL TAKE-HOME EXAM

This exam consists of four problems.
You should submit your solutions by sending them by e-mail to sussmann@math.rutgers.edu
not later than Wednesday, May 13, 2020.
Problem 1. In this problem,

- The Borel σ-algebra of a topological space X is the σ-algebra generated by the open subsets of X.
- We use $\mathcal{B}(X)$ to denote the Borel σ-algebra of X.
- A Borel probability measure on a topological space X is a nonnegative finite measure $\mu: \mathcal{B}(X) \mapsto\{x \in \mathbb{R}: x \geq 0\}$ such that $\mu(X)=1$.
Prove that if X is a complete separable metric space and μ is a Borel probability measure on X then μ is "almost concentrated on compact sets", in the following precise sense:

$$
\sup \{\mu(K): K \subseteq X, K \text { compact }\}=1
$$

Problem 2. Using a trick similar to that used by Folland in Problem 13 on Page 254, prove that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{k^{4}}=\frac{\pi^{4}}{90} . \tag{1}
\end{equation*}
$$

Problem 3. Folland, problem 14 of section 8.3, on pages 254-5, on Wirtinger's inequality.

Problem 4. Folland, problem 23 of section 8.3, on pages 256-7, on the Hermite functions.
COMMENTS. The Fourier and Fourier inversion formulas ${ }^{1}$

$$
\begin{align*}
\hat{f}(x) & =\int_{-\infty}^{\infty} f(\xi) e^{-2 \pi i \xi \cdot x} d \xi, \tag{2}\\
f(x) & =\int_{-\infty}^{\infty} \hat{f}(\xi) e^{2 \pi i \xi \cdot x} d \xi \tag{3}
\end{align*}
$$

[^0]imply
\[

$$
\begin{equation*}
f(-x)=\int_{-\infty}^{\infty} \hat{f}(\xi) e^{-2 \pi i \xi \cdot x} d \xi \tag{4}
\end{equation*}
$$

\]

i.e.,

$$
\begin{equation*}
f(-x)=\hat{\hat{f}}(x) e^{-2 \pi i \xi \cdot x} d \xi \tag{5}
\end{equation*}
$$

Hence, if we use \mathcal{F} for the Fourier transformation map in $L^{2}(\mathbb{R})$ (so that $\mathcal{F} f=\hat{f}$), we have

$$
\begin{equation*}
f(-x)=\mathcal{F} \mathcal{F} f(x), \tag{6}
\end{equation*}
$$

and this implies that

$$
\begin{equation*}
\mathcal{F F F \mathcal { F }}=\mathbb{I}, \quad \text { i.e., } \quad \mathcal{F}^{4}=\mathbb{I} \tag{7}
\end{equation*}
$$

where \mathbb{I} is the identity map of $L^{2}(\mathbb{R})$. Furthermore, the Plancherel Theorem says that \mathcal{F} is a unitary map. Hence \mathcal{F} is a unitary map that satisfies $\mathcal{F}^{4}=1$. This implies ${ }^{2}$ that the eigenvalues of \mathcal{F} must be $1, i,-1$, and $-i$.

The Hermite functions give us, rigorously, an orthonormal basis of $L^{2}(\mathbb{R})$ consisting of eigenfuntions for \mathcal{F}. Precisely, in the problem we construct a sequence $\left\{\emptyset_{k}\right\}_{k=0}^{\infty}$ of functions \emptyset_{k} belonging to $L^{2}(\mathbb{R})$ such that the \emptyset_{k} form an orthonormal basis of $L^{2}(\mathbb{R})$ and $\mathcal{F} \emptyset_{k}=(-i)^{k} \emptyset_{k}$ so, as you can see, the \emptyset_{k} are eigenfunctions for \mathcal{F} for the eigenvalues $1, i,-1$ and $-i$.

It would be nice if we could say that "the \emptyset_{k} are the famous Hermite functions. Unfortunately, we cannot say that, exactly. The Hermite functions, denoted by h_{k} in Folland's book, are closely related, but not exactly the same as, the eigenfunctions \emptyset_{k}. I think it is important that you understand how they are related, and why they are close but not exactly the same.

The Hermite functions are eigenfunctions of the Hermite differential oper$\boldsymbol{a t o r}^{3} S$, given by

$$
\begin{equation*}
S=-\frac{d^{2}}{d x^{2}}+x^{2} \tag{8}
\end{equation*}
$$

that is ${ }^{4}$:

$$
\begin{equation*}
S f(x)=-f^{\prime \prime}(x)+x^{2} f(x) \tag{9}
\end{equation*}
$$

[^1]As you will show in this problem, the Hermite functions h_{k}, for $k=0,1,2, \ldots$, satisfy $S h_{k}=(2 k+1) h_{k}$, so they are indeed eigenfunctions for S, corresponding to the eigenvalues $1,3,5,7, \ldots$.

How is this related to the Fourier transform \mathcal{F} ? Roughly speaking, the Hermite operator S commutes with the Fourier transform operator \mathcal{F}. And, as you know from elementary linear algebra, when two operators commute then they have a common set of eigenfunctions or eigenvectors ${ }^{5}$.

So, roughly speaking, what we do in this problem is find the eigenfunctions of S in order to find eigenfunctions of \mathcal{F}.

There is, however, one complication. The Hermite operator S does not actually commute with \mathcal{F}. It commutes with the "Fourier transform map" $\tilde{\mathcal{F}}$ defined by letting

$$
\tilde{\mathcal{F}} f=\tilde{f}, \quad \text { where } \tilde{f}(\xi)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i \xi \cdot x} d x
$$

which is not exactly the same map as \mathcal{F}. (This is, in my opinion, how the Fourier transform should have been defined.)

So, if Folland had used $\tilde{\mathcal{F}}$ rather than \mathcal{F}, we would have been able to say things much more simply: the Hermite operator S commutes with $\tilde{\mathcal{F}}$, and the eigenfunctions h_{k} of S are then also the eigenfunctions of $\tilde{\mathcal{F}}$. But, since we are using \mathcal{F}, we cannot quite say that. We have to say instead what Folland says: there is a unitary rescaling map A that conjugates \mathcal{F} and $\tilde{\mathcal{F}}$, in the sense that $A^{-1} \mathcal{F} A=\tilde{\mathcal{F}}$. Since the Hermite functions h_{k} are eigenfunctions of $\tilde{\mathcal{F}}$, their conjugates $\emptyset_{k}=A h_{k}$ are eigenfunctions of \mathcal{F}.

[^2]
[^0]: ${ }^{1}$ Formulas (2) and (3) are interpreted in the usual way: they are valid as written for $f \in L^{1}$ such that $\hat{f} \in L^{1}$ (in which case the functions f and \hat{f} are continuous, so the evaluation of these functions at one point makes sense, and the integrands are integrable functions), and then they can be extended to $f \in L^{2}$ (in which case $\hat{f} \in L^{2}$ as well) by taking limits in L^{2} of functions f_{n} such that f_{n} and \hat{f}_{n} belong to L^{1}.

[^1]: ${ }^{2}$ The implication is completely rigorous using the spectral theorem and the spectral mapping theorem, but for our purpose here this fact does not matter. So maybe I shoudl have written "suggests" rather than "implies".
 ${ }^{3}$ In the literature, the formula most commonly used for the Hermite differential operator is $\frac{1}{2}\left(-\frac{d^{2}}{d x^{2}}+x^{2}\right)$. This, of course, does not change the eigenfuctions, but it changes the eigenvalues, so that the statement you will usually encounter is that the eigenvalues of the Hermite operator are $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots$.
 ${ }^{4} S$ is a partially defined operator on $L^{2}(\mathbb{R}): S f$ is not well defined for every function f in L^{2}; it's only defined for functions f such that the second derivative $f^{\prime \prime}$ exists in some appropriate sense and the function $\mathbb{R} \ni x \mapsto-f^{\prime \prime}(x)+x^{2} f(x)$ is in L^{2}. This can be made completely rigorous but we do not need to do it here.

[^2]: ${ }^{5}$ Here is one rigorous formulation: On a finite-dimensional space, if A and B are commuting linear maps, and all the eigenvalues of A are simple, then the eigenfunctions of A are also eigenfunctions of B. Proof. Let $A f=\lambda f, f \neq 0$. Let $E=\{h: A h=\lambda h\}$. Then, if $h \in E$, we have $A(B h)=B(A h)=B(\lambda h)=\lambda B h$, so $B h \in E$. So E is a B-invariant subspace. Since E is one-dimensional, because λ is simple, we conclude that $B f$ is a scalar multiple of f, so f is an eigenfunction of B.

