MATHEMATICS 502 — SPRING 2020

THEORY OF FUNCTIONS OF
A REAL VARIABLE I

H. J SUSSMANN

HOMEWORK ASSIGNMENT NO. 1, DUE ON
THURSDAY, FEBRUARY 6

Problem 1. Give an example of a function f : R — IR such that

1. the derivative f’(z)—that is, the limit lim,_o w—exis‘cs for
every = € IR,

2. it is not true that

(&) for every a,b € R such that a < b,

b
£(b) — fa) = / f(@)de, 1)

where the integral in (1) is a Lebesgue integral.

Problem 2. A sequence x = (rj)ken of complex numbers is summable if
Y ken k| < oo (i.e., if the series ), @k is absolutely convergent).
Let y = (yr)ken be a sequence of complex numbers such that

(*) For every summable sequence x = (xk)ken of complex numbers, the
sequence (TpYk)keN is summable (i.e., Y cn [Tryr| < 00).

Prove that y is bounded (that is, there exists C' € R such that |y,| < C for
every k € IN). (COMMENT: This obviously has something to do with the
duality between L' and L™. If you are familiar with the Banach-Steinhaus
theorem—a.k.a. Uniform Boundedness Principle, UBP—then this problem
is almost trivial. Otherwise, you could find out what the UBP says and then
usu it, but I stronggly recommend that you do the problem directly, and
then you will appreciate the value of the UBP.)

Problem 3. For 1 < p < oo, a sequence x = (zg)reN of complex num-
bers is p-summable if the sequence (|zg|P)gen is summable, i.e., if the sum
> ken k[P is finite. (So “lI-summable” means the same as “summable”.)



We define #P to be the set of all p-summable sequences of complex numbers.

1/
For x € P, if x = (z})ken, define ||x||¢r to be the number <Zk€N ]mk\p) "

Also, define ¢*° to be the set of all bounded sequences x = (zj)ren of
complex numbers, and for x € ¢> define ||x||s~ = sup{|zg| : & € IN} if
x = (zk)ken. (COMMENT: you should know how to prove that the (P are
Banach spaces, but I am not asking you to do this as homework.)

Let 1 < p < oo, and let ¢ = }%, SO %+ % = 1. (In particular, ¢ = oo if
p=1land ¢g=1if p=o00.)

Prove that, if y = (yx)ren is a sequence of complex numbers such that

(**) for every sequence x = (xk)ken of complex numbers such that x € (P,
the sequence (Tpyx)ken is summable (i.e., Y, n [Zryr| < 00),

then y € ¢1. (COMMENTS: Again, this is related to the duality betwween
LP and L9, and is trivial if you know the UBP. And, again, I recommend
that you do this problem directly, and then you will get to appreciate better
the value of the UBP.)

Problem 4. Recall that a real interval is a subset I of IR such that

(#) whenever a, b, c are real numbers such that a < b < c¢,a € [ and ¢ € I,
it follows that b € I.

Also, an extended real interval is a subset I of the extended real line’ R
such that

(##) whenever a,b, ¢ are extended real numbers such that a < b <c,a €l
and c € I, it follows that b € I.

(COMMENT: If you have not done the following before, do it now at least
once, to maake sure you know how to do it; but I am not asking you
to hand it in, because this is really an undergraduate math problem:
prove that a subset I of R is an interval if and only if one of the fol-
lowing conditions holds: (i) I = 0, (ii)) I = {x € R : a < x < b} for
some a,b € R such that a < b, (i) I = {x € R : a < z < b} for
some a,b € R such that a < b, (iv) I = {x € R :a < z < b} for
some a,b € R such that a < b, (v) I ={z € R:a < x < b} for some
a,b € R such that a < b, (vi) I = {z € R : a < z} for some a € R,
(vit) I = {x € R :a <z} for some a € R, (viii) = {x € R:z < a} for
somea € R, (ir) [ ={x € R:z <a} for somea € R, (z) [ =R. And

then you can do the obvious analogue for extended real intervals.)

!The extended real line is the set R = IR U {—o00, +00}, where —oo and +o0o are any
two objects that are different and do not belong to RR.



1. Prowve that if (X, A, p) is a measure space then for every measurable
function f: X — C theset Pt ={pe€R:p>1landf € LP(X, A, n)
is an interval. (HINT: Holder’s inequality.)

2. Give examples, for X = IR, A the Borel or Lebesgue o-algebra, and
i =Lebesgue (or Borel) measure, showing that every extended real
interval I such that I C [1,4o00] can occur as Py for some f.

3. Prove that if (X, A, u) is a finite measure space (that is, u(X) < oo)
then for every f, if the interval Py is not empty, then 1 € Py. (That
is, if p € [1,00] and f € LP(XA, i) then f € LY(XA, u).)

4. Give examples, for X = [0,1], A the Borel or Lebesgue o-algebra,
and p =Lebesgue (or Borel) measure, showing that every extended
real interval I such that I C [1,+o00] and either I = ) or 1 € I can
occur as Py for some f.

5. Prove that if (X, A, u) is the space (N, P(IN), k), where P(IN) is the
o-algebra of all subsets of IN, and « is counting measure—defined by
letting x(S) = > ,cg1—then for every f, if the interval Py is not
empty, then +o00 € Py. (That is?, if x € 7 for some p € [1, 0], then
x € LY(XAp).)

6. Give examples, for (X, A, n) = the space (N, P(IN), x) ccnsidered
above, showing that every extended real interval I such that I C
[1,+00] and either I = () or +o00 € I can occur as Py for some f.

NOTE: One of the following two problems is very, very easy. So don’t
worry if when yo do it it looks “too easy” to you.

Problem 5. Characterize® the measure spaces (X, A, u) for which the
property of part 3 of Problem 4 holds (that is, for which LP C L! for every
p € [1,00]).
Problem 6. Characterize the measure spaces (X, A, u) for which the
property of part 5 of Problem 4 holds (that is, for which LP C L*° for every
p € [1,00]).

*Naturally, T am using the fact that LP(IN, P(IN), k) = ¢P.

3Yes, I know. If I ask you to characterize the African animals that have very long legs,
a very long neck and tiny little horn-lile protuberances on the head, and eat leaves from
the top of very tall plants, you can answer “they are exactly the African animals that
have very long legs, a very long neck and tiny little horn-lile protuberances on the head,
and eat leaves from the top of very tall plants”, and this is technically a correct answer.
But in this course it gets a zero. I want a simple characterization, such as “they are the
giraffes”.



