MATHEMATICS 502 - SPRING 2020
 THEORY OF FUNCTIONS OF
 A REAL VARIABLE II

H. J. SUSSMANN

HOMEWORK ASSIGNMENT NO. 1, DUE ON THURSDAY, FEBRUARY 6

Problem 1. Give an example of a function $f: \mathbb{R} \mapsto \mathbb{R}$ such that

1. the derivative $f^{\prime}(x)$-that is, the limit $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ - exists for every $x \in \mathbb{R}$,
2. it is not true that
(\&) for every $a, b \in \mathbb{R}$ such that $a<b$,

$$
\begin{equation*}
f(b)-f(a)=\int_{a}^{b} f^{\prime}(x) d x \tag{1}
\end{equation*}
$$

where the integral in (1) is a Lebesgue integral.
Problem 2. A sequence $\mathbf{x}=\left(x_{k}\right)_{k \in \mathbb{N}}$ of complex numbers is summable if $\sum_{k \in \mathbf{N}}\left|x_{k}\right|<\infty$ (i.e., if the series $\sum_{k \in \mathbf{N}} x_{k}$ is absolutely convergent).

Let $\mathbf{y}=\left(y_{k}\right)_{k \in \mathbf{N}}$ be a sequence of complex numbers such that
(*) For every summable sequence $\mathbf{x}=\left(x_{k}\right)_{k \in \mathbf{N}}$ of complex numbers, the sequence $\left(x_{k} y_{k}\right)_{k \in \mathbf{N}}$ is summable (i.e., $\left.\sum_{k \in \mathbf{N}}\left|x_{k} y_{k}\right|<\infty\right)$.

Prove that \mathbf{y} is bounded (that is, there exists $C \in \mathbb{R}$ such that $\left|y_{k}\right| \leq C$ for every $k \in \mathbb{N}$). (COMMENT: This obviously has something to do with the duality between L^{1} and L^{∞}. If you are familiar with the Banach-Steinhaus theorem - a.k.a. Uniform Boundedness Principle, UBP - then this problem is almost trivial. Otherwise, you could find out what the UBP says and then usu it, but I stronggly recommend that you do the problem directly, and then you will appreciate the value of the UBP.)
Problem 3. For $1 \leq p<\infty$, a sequence $\mathbf{x}=\left(x_{k}\right)_{k \in \mathbf{N}}$ of complex numbers is p-summable if the sequence $\left(\left|x_{k}\right|^{p}\right)_{k \in \mathbf{N}}$ is summable, i.e., if the sum $\sum_{k \in \mathbf{N}} \mid \overline{\left.x_{k}\right|^{p}}$ is finite. (So " 1 -summable" means the same as "summable".)

We define ℓ^{p} to be the set of all p-summable sequences of complex numbers. For $\mathbf{x} \in \ell^{p}$, if $\mathbf{x}=\left(x_{k}\right)_{k \in \mathbf{N}}$, define $\|\mathbf{x}\|_{\ell^{p}}$ to be the number $\left(\sum_{k \in \mathbf{N}}\left|x_{k}\right|^{p}\right)^{1 / p}$. Also, define ℓ^{∞} to be the set of all bounded sequences $\mathbf{x}=\left(x_{k}\right)_{k \in \mathbf{N}}$ of complex numbers, and for $\mathbf{x} \in \ell^{\infty}$ define $\|\mathbf{x}\|_{\ell^{\infty}}=\sup \left\{\left|x_{k}\right|: k \in \mathbb{N}\right\}$ if $\mathbf{x}=\left(x_{k}\right)_{k \in \mathbb{N}}$. (COMMENT: you should know how to prove that the ℓ^{p} are Banach spaces, but I am not asking you to do this as homework.)

Let $1 \leq p \leq \infty$, and let $q=\frac{p}{p-1}$, so $\frac{1}{p}+\frac{1}{q}=1$. (In particular, $q=\infty$ if $p=1$ and $q=1$ if $p=\infty$.)

Prove that, if $\mathbf{y}=\left(y_{k}\right)_{k \in \mathbf{N}}$ is a sequence of complex numbers such that
$\left({ }^{* *}\right)$ for every sequence $\mathbf{x}=\left(x_{k}\right)_{k \in \mathbb{N}}$ of complex numbers such that $\mathbf{x} \in \ell^{p}$, the sequence $\left(x_{k} y_{k}\right)_{k \in \mathbf{N}}$ is summable (i.e., $\sum_{k \in \mathbb{N}}\left|x_{k} y_{k}\right|<\infty$),
then $\mathbf{y} \in \ell^{q}$. (COMMENTS: Again, this is related to the duality betwween L^{p} and L^{q}, and is trivial if you know the UBP. And, again, I recommend that you do this problem directly, and then you will get to appreciate better the value of the UBP.)
Problem 4. Recall that a real interval is a subset I of \mathbb{R} such that
(\#) whenever a, b, c are real numbers such that $a<b<c, a \in I$ and $c \in I$, it follows that $b \in I$.

Also, an extended real interval is a subset I of the extended real line ${ }^{1} \overline{\mathbb{R}}$ such that
(\#\#) whenever a, b, c are extended real numbers such that $a<b<c, a \in I$ and $c \in I$, it follows that $b \in I$.
(COMMENT: If you have not done the following before, do it now at least once, to maake sure you know how to do it; but I am not asking you to hand it in, because this is really an undergraduate math problem: prove that a subset I of \mathbb{R} is an interval if and only if one of the following conditions holds: (i) $I=\emptyset$, (ii) $I=\{x \in \mathbb{R}: a<x<b\}$ for some $a, b \in \mathbb{R}$ such that $a<b$, (iii) $I=\{x \in \mathbb{R}: a \leq x<b\}$ for some $a, b \in \mathbb{R}$ such that $a<b$, (iv) $I=\{x \in \mathbb{R}: a<x \leq b\}$ for some $a, b \in \mathbb{R}$ such that $a<b$, (v) $I=\{x \in \mathbb{R}: a \leq x \leq b\}$ for some $a, b \in \mathbb{R}$ such that $a \leq b$, (vi) $I=\{x \in \mathbb{R}: a<x\}$ for some $a \in \mathbb{R}$, (vii) $I=\{x \in \mathbb{R}: a \leq x\}$ for some $a \in \mathbb{R}$, (viii) $I=\{x \in \mathbb{R}: x<a\}$ for some $a \in \mathbb{R}$, (ix) $I=\{x \in \mathbb{R}: x \leq a\}$ for some $a \in \mathbb{R}$, (x) $I=\mathbb{R}$. And then you can do the obvious analogue for extended real intervals.)

[^0]1. Prove that if (X, \mathcal{A}, μ) is a measure space then for every measurable function $f: X \mapsto \mathbb{C}$ the set $P_{f}=\left\{p \in \mathbb{R}: p \geq 1\right.$ and $f \in L^{p}(X, \mathcal{A}, \mu)$ is an interval. (HINT: Hölder's inequality.)
2. Give examples, for $X=\mathbb{R}, \mathcal{A}$ the Borel or Lebesgue σ-algebra, and $\mu=$ Lebesgue (or Borel) measure, showing that every extended real interval I such that $I \subseteq[1,+\infty]$ can occur as P_{f} for some f.
3. Prove that if (X, \mathcal{A}, μ) is a finite measure space (that is, $\mu(X)<\infty)$ then for every f, if the interval P_{f} is not empty, then $1 \in P_{f}$. (That is, if $p \in[1, \infty]$ and $f \in L^{p}(X \mathcal{A}, \mu)$ then $f \in L^{1}(X \mathcal{A}, \mu)$.)
4. Give examples, for $X=[0,1], \mathcal{A}$ the Borel or Lebesgue σ-algebra, and $\mu=$ Lebesgue (or Borel) measure, showing that every extended real interval I such that $I \subseteq[1,+\infty]$ and either $I=\emptyset$ or $1 \in I$ can occur as P_{f} for some f.
5. Prove that if (X, \mathcal{A}, μ) is the space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \kappa)$, where $\mathcal{P}(\mathbb{N})$ is the σ-algebra of all subsets of \mathbb{N}, and κ is counting measure - defined by letting $\kappa(S)=\sum_{s \in S} 1$-then for every f, if the interval P_{f} is not empty, then $+\infty \in P_{f}$. (That is ${ }^{2}$, if $\mathbf{x} \in \ell^{p}$ for some $p \in[1, \infty]$, then $\left.\mathrm{x} \in L^{1}(X \mathcal{A}, \mu).\right)$
6. Give examples, for $(X, \mathcal{A}, \mu)=$ the space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \kappa)$ ccnsidered above, showing that every extended real interval I such that $I \subseteq$ $[1,+\infty]$ and either $I=\emptyset$ or $+\infty \in I$ can occur as P_{f} for some f.
NOTE: One of the following two problems is very, very easy. So don't worry if when yo do it it looks "too easy" to you.
Problem 5. Characterize ${ }^{3}$ the measure spaces (X, \mathcal{A}, μ) for which the property of part 3 of Problem 4 holds (that is, for which $L^{p} \subseteq L^{1}$ for every $p \in[1, \infty]$).
Problem 6. Characterize the measure spaces (X, \mathcal{A}, μ) for which the property of part 5 of Problem 4 holds (that is, for which $L^{p} \subseteq L^{\infty}$ for every $p \in[1, \infty]$).
[^1]
[^0]: ${ }^{1}$ The extended real line is the set $\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty,+\infty\}$, where $-\infty$ and $+\infty$ are any two objects that are different and do not belong to \mathbb{R}.

[^1]: ${ }^{2}$ Naturally, I am using the fact that $L^{p}(\mathbb{N}, \mathcal{P}(\mathbb{N}), \kappa)=\ell^{p}$.
 ${ }^{3}$ Yes, I know. If I ask you to characterize the African animals that have very long legs, a very long neck and tiny little horn-lile protuberances on the head, and eat leaves from the top of very tall plants, you can answer "they are exactly the African animals that have very long legs, a very long neck and tiny little horn-lile protuberances on the head, and eat leaves from the top of very tall plants", and this is technically a correct answer. But in this course it gets a zero. I want a simple characterization, such as "they are the giraffes".

