MATHEMATICS 502 — SPRING 2020

THEORY OF FUNCTIONS OF A REAL VARIABLE II

H. J. SUSSMANN

HOMEWORK ASSIGNMENT NO. 1, DUE ON THURSDAY, FEBRUARY 6

Problem 1. Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ such that

- 1. the derivative f'(x)—that is, the limit $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ —exists for every $x \in \mathbb{R}$,
- 2. it is not true that
 - (&) for every $a, b \in \mathbb{R}$ such that a < b,

$$f(b) - f(a) = \int_a^b f'(x)dx, \qquad (1)$$

where the integral in (1) is a Lebesgue integral.

Problem 2. A sequence $\mathbf{x} = (x_k)_{k \in \mathbb{N}}$ of complex numbers is <u>summable</u> if $\sum_{k \in \mathbb{N}} |x_k| < \infty$ (i.e., if the series $\sum_{k \in \mathbb{N}} x_k$ is absolutely convergent). Let $\mathbf{y} = (y_k)_{k \in \mathbb{N}}$ be a sequence of complex numbers such that

(*) For every summable sequence $\mathbf{x} = (x_k)_{k \in \mathbb{N}}$ of complex numbers, the sequence $(x_k y_k)_{k \in \mathbb{N}}$ is summable (i.e., $\sum_{k \in \mathbb{N}} |x_k y_k| < \infty$).

Prove that \mathbf{y} is bounded (that is, there exists $C \in \mathbb{R}$ such that $|y_k| \leq C$ for every $k \in \mathbb{N}$). (COMMENT: This obviously has something to do with the duality between L^1 and L^{∞} . If you are familiar with the Banach-Steinhaus theorem—a.k.a. Uniform Boundedness Principle, UBP—then this problem is almost trivial. Otherwise, you could find out what the UBP says and then usu it, but I stronggly recommend that you do the problem directly, and then you will appreciate the value of the UBP.)

Problem 3. For $1 \leq p < \infty$, a sequence $\mathbf{x} = (x_k)_{k \in \mathbb{N}}$ of complex numbers is <u>p</u>-summable if the sequence $(|x_k|^p)_{k \in \mathbb{N}}$ is summable, i.e., if the sum $\sum_{k \in \mathbb{N}} |x_k|^p$ is finite. (So "1-summable" means the same as "summable".)

We define ℓ^p to be the set of all p-summable sequences of complex numbers. For $\mathbf{x} \in \ell^p$, if $\mathbf{x} = (x_k)_{k \in \mathbb{N}}$, define $\|\mathbf{x}\|_{\ell^p}$ to be the number $\left(\sum_{k \in \mathbb{N}} |x_k|^p\right)^{1/p}$. Also, define ℓ^{∞} to be the set of all bounded sequences $\mathbf{x} = (x_k)_{k \in \mathbb{N}}$ of complex numbers, and for $\mathbf{x} \in \ell^{\infty}$ define $\|\mathbf{x}\|_{\ell^{\infty}} = \sup\{|x_k| : k \in \mathbb{N}\}$ if $\mathbf{x} = (x_k)_{k \in \mathbb{N}}$. (COMMENT: you should know how to prove that the ℓ^p are Banach spaces, but I am not asking you to do this as homework.)

Let $1 \le p \le \infty$, and let $q = \frac{p}{p-1}$, so $\frac{1}{p} + \frac{1}{q} = 1$. (In particular, $q = \infty$ if p = 1 and q = 1 if $p = \infty$.)

Prove that, if $\mathbf{y} = (y_k)_{k \in \mathbb{N}}$ is a sequence of complex numbers such that

(**) for every sequence $\mathbf{x} = (x_k)_{k \in \mathbb{N}}$ of complex numbers such that $\mathbf{x} \in \ell^p$, the sequence $(x_k y_k)_{k \in \mathbb{N}}$ is summable (i.e., $\sum_{k \in \mathbb{N}} |x_k y_k| < \infty$),

then $\mathbf{y} \in \ell^q$. (COMMENTS: Again, this is related to the duality between L^p and L^q , and is trivial if you know the UBP. And, again, I recommend that you do this problem directly, and then you will get to appreciate better the value of the UBP.)

Problem 4. Recall that a real interval is a subset I of \mathbb{R} such that

(#) whenever a, b, c are real numbers such that $a < b < c, a \in I$ and $c \in I$, it follows that $b \in I$.

Also, an extended real interval is a subset I of the extended real line¹ \mathbb{R} such that

(##) whenever a, b, c are extended real numbers such that $a < b < c, a \in I$ and $c \in I$, it follows that $b \in I$.

(COMMENT: If you have not done the following before, do it now at least once, to maake sure you know how to do it; but I am not asking you to hand it in, because this is really an undergraduate math problem: prove that a subset I of \mathbb{R} is an interval if and only if one of the following conditions holds: (i) $I = \emptyset$, (ii) $I = \{x \in \mathbb{R} : a < x < b\}$ for some $a, b \in \mathbb{R}$ such that a < b, (iii) $I = \{x \in \mathbb{R} : a \le x < b\}$ for some $a, b \in \mathbb{R}$ such that a < b, (iv) $I = \{x \in \mathbb{R} : a < x \le b\}$ for some $a, b \in \mathbb{R}$ such that a < b, (v) $I = \{x \in \mathbb{R} : a \le x \le b\}$ for some $a, b \in \mathbb{R}$ such that a < b, (vi) $I = \{x \in \mathbb{R} : a < x\}$ for some $a \in \mathbb{R}$, (vii) $I = \{x \in \mathbb{R} : x < a\}$ for some $a \in \mathbb{R}$, (vii) $I = \{x \in \mathbb{R} : x < a\}$ for some $a \in \mathbb{R}$, (ix) $I = \{x \in \mathbb{R} : x \le a\}$ for some $a \in \mathbb{R}$, (x) $I = \mathbb{R}$. And then you can do the obvious analogue for extended real intervals.)

¹The <u>extended real line</u> is the set $\bar{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$, where $-\infty$ and $+\infty$ are any two objects that are different and do not belong to \mathbb{R} .

- 1. **Prove** that if (X, \mathcal{A}, μ) is a measure space then for every measurable function $f: X \mapsto \mathbb{C}$ the set $P_f = \{p \in \mathbb{R} : p \geq 1 \text{ and } f \in L^p(X, \mathcal{A}, \mu) \text{ is an interval. (HINT: Hölder's inequality.)}$
- 2. Give examples, for $X = \mathbb{R}$, \mathcal{A} the Borel or Lebesgue σ -algebra, and μ =Lebesgue (or Borel) measure, showing that every extended real interval I such that $I \subseteq [1, +\infty]$ can occur as P_f for some f.
- 3. **Prove** that if (X, \mathcal{A}, μ) is a finite measure space (that is, $\mu(X) < \infty$) then for every f, if the interval P_f is not empty, then $1 \in P_f$. (That is, if $p \in [1, \infty]$ and $f \in L^p(X\mathcal{A}, \mu)$ then $f \in L^1(X\mathcal{A}, \mu)$.)
- 4. Give examples, for X = [0,1], \mathcal{A} the Borel or Lebesgue σ -algebra, and μ =Lebesgue (or Borel) measure, showing that every extended real interval I such that $I \subseteq [1, +\infty]$ and either $I = \emptyset$ or $1 \in I$ can occur as P_f for some f.
- 5. **Prove** that if (X, \mathcal{A}, μ) is the space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \kappa)$, where $\mathcal{P}(\mathbb{N})$ is the σ -algebra of all subsets of \mathbb{N} , and κ is counting measure—defined by letting $\kappa(S) = \sum_{s \in S} 1$ —then for every f, if the interval P_f is not empty, then $+\infty \in P_f$. (That is², if $\mathbf{x} \in \ell^p$ for some $p \in [1, \infty]$, then $\mathbf{x} \in L^1(X\mathcal{A}, \mu)$.)
- 6. Give examples, for (X, \mathcal{A}, μ) = the space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \kappa)$ considered above, showing that every extended real interval I such that $I \subseteq [1, +\infty]$ and either $I = \emptyset$ or $+\infty \in I$ can occur as P_f for some f.

NOTE: One of the following two problems is very, very easy. So don't worry if when yo do it it looks "too easy" to you.

Problem 5. Characterize³ the measure spaces (X, \mathcal{A}, μ) for which the property of part 3 of Problem 4 holds (that is, for which $L^p \subseteq L^1$ for every $p \in [1, \infty]$).

Problem 6. Characterize the measure spaces (X, \mathcal{A}, μ) for which the property of part 5 of Problem 4 holds (that is, for which $L^p \subseteq L^{\infty}$ for every $p \in [1, \infty]$).

²Naturally, I am using the fact that $L^p(\mathbb{N}, \mathcal{P}(\mathbb{N}), \kappa) = \ell^p$.

³Yes, I know. If I ask you to characterize the African animals that have very long legs, a very long neck and tiny little horn-lile protuberances on the head, and eat leaves from the top of very tall plants, you can answer "they are exactly the African animals that have very long legs, a very long neck and tiny little horn-lile protuberances on the head, and eat leaves from the top of very tall plants", and this is technically a correct answer. But in this course it gets a zero. I want a simple characterization, such as "they are the giraffes".