MATHEMATICS 502 — SPRING 2020

THEORY OF FUNCTIONS OF A REAL VARIABLE II

H. J. SUSSMANN

HOMEWORK ASSIGNMENT NO. 2, DUE ON TUESDAY, FEBRUARY 18

Problem 1. In this problem, "countable" means "finite or countably infinite". That is, a set S is **countable** if and only if there exists a one-to-one map from S to \mathbb{N} .

Let $X = \mathbb{R}$. Let \mathcal{A} be the set of all subsets S of X such that either S is countable or X - S is countable. Let $\mu : \mathcal{A} \mapsto \mathbb{R} \cup \{+\infty\}$ be the function such that

- $\mu(S)$ is the number of members of S, if S is a finite subset of X,
- $\mu(S) = +\infty$ if $S \in \mathcal{A}$ and S is infinite.
- 1. **Prove** that A is a σ -algebra, μ is a measure on the measurable space (X, A), and μ is not σ -finite.
- 2. **Construct** a bounded linear functional λ on $L^1(X, \mathcal{A}, \mu)$ such that there exists no function $g \in L^{\infty}(X, \mathcal{A}, \mu)$ for which $\lambda(f) = \int_X gf \, d\mu$ for every $f \in L^1(X, \mathcal{A}, \mu)$.

Problem 2. If (X, \mathcal{A}, μ) is a measure space, an <u>atom</u> of (X, \mathcal{A}, μ) (or of μ) is a set $A \in \mathcal{A}$ such that $\mu(A) > 0$ and there exists no subset B of A such that $B \in \mathcal{A}$ and $0 < \mu(B) < \mu(A)$. An <u>infinite atom</u> is an atom A such that $\mu(A) = +\infty$.

Prove that the canonical map

$$L^{\infty}(X, \mathcal{A}, \mu) \ni g \mapsto \lambda_g \in L^1(X, \mathcal{A}, \mu)^*$$

given by

$$\lambda_g(f) = \int_X fg \, d\mu \text{ for } f \in L^1(X, \mathcal{A}, \mu)$$

is one-to-one if and only if (X, \mathcal{A}, μ) has no infinite atoms.

Problem 3. In this problem, you are asked to analyze in detail a Calculus of Variations minimization problem, and in particular prove a theorem on existence of a solution.

The problem we consider is that of minimizing a "cost functional"

$$J(f) = \int_{a}^{b} \Phi(t, f(t))dt + \int_{a}^{b} |f'(t)|^{p} dt$$
 (1)

subject to a constraint $f(a) = \alpha$, $f(b) = \beta$. The goal is to "find" (or at least prove the existence of) a function f_* that minimizes the functional J, in the sense that $J(f_*) \leq J(f)$ for "all functions" f.

Naturally, we cannot truly allow "all functions" because, for example, for a completely arbitrary function the integrals of (1) need not exist. (For example, f might be nowhere differentiable, in which case f'(t) does not exist for any t, or the function $[a,b] \ni t \mapsto \Phi(t,f(t))$ might not be integrable, or even measurable.) So we need to be more precise, make appropriate technical assumptions about Φ , and select an appropriate function space for the functions f.

We will assume:

A1. a, b, α, β, p are real numbers such that a < b,

A2. $\Phi: [a,b] \times \mathbb{R} \to \mathbb{R}$ is a function such that

- 1. the function $[a,b] \ni t \mapsto \Phi(t,x)$ is measurable for every fixed $x \in \mathbb{R}$.
- 2. the function $\mathbb{R} \ni X \mapsto \Phi(t,x)$ is continuous for every fixed $t \in [a,b]$,
- 3. $\Phi(t,x) \geq 0$ for every $(t,x) \in [a,b] \times \mathbb{R}$,
- 4. there exists a nonnegative, integrable function $C:[a,b]\mapsto \mathbb{R}$ such that

$$\Phi(t,x) \le C(t) \text{ for every } (t,x) \in [a,b] \times \mathbb{R}.$$
(2)

A3. p > 1.

We then let \mathcal{F} (the "feasible set") be the set of all absolutely continuous functions $f:[a,b]\mapsto \mathbb{R}$ such that $f(a)=\alpha$ and $f(b)=\beta$.

- 1. **Prove** that for every function $f \in \mathcal{F}$ the cost J(f) is well defined. Precisely, you should
 - i. **prove** that if $f:[a,b] \mapsto \mathbb{R}$ is an arbitrary continuous function then the function $[a,b] \ni t \mapsto \Phi(t,f(t))$ is measurable¹,

¹This is not immediately obvious given our technical hypotheses! It requires proof.

- ii. **conclude** that if $f:[a,b] \mapsto \mathbb{R}$ is an arbitrary continuous function then the function $[a,b] \ni t \mapsto \Phi(t,f(t))$ is integrable²,
- iii. *conclude* that if $f \in \mathcal{F}$ then J(f) is well defined³.
- 2. Let

$$\theta = \inf \left\{ J(f) : f \in \mathcal{F} \right\}.$$
 (3)

Prove⁴ that $0 \le \theta < +\infty$.

3. **Prove** that our problem has a solution. That is, prove that there exists $f \in \mathcal{F}$ such that $J(f) = \theta$.

 ${\rm HINT:}$ You may want to use the Banach-Alaouglu theorem 5, and the Ascoli-Arzelà theorem.

NOTE: The hint does *not* say that you *have* to use Banach-Alaoglu and/or Ascoli-Arzelà. It may very well be possible to prove the result in a different way, not using those theorems. All I know is that *the proof I am thinking* of uses those theorems, and on that basis I recommend that you use them too, but if you find a different proof that's O.K. too⁶.

²This one is completely trivial, but I still want to see the proof.

³But J(f) could be $+\infty$, because our definition of \mathcal{F} only guarantees that $f' \in L^1$, and this does not imply that $f \in L^p$.

⁴This one is also completely trivial, but I still want to see the proof.

⁵ If X is a normed space then if a sequence $\mathbf{x} = (x_n)_{n \in \mathbb{N}}$ in the dual X^* satisfies a bound $(\forall n \in \mathbb{N}) ||x_n|| \leq C$ for some constant C, then \mathbf{x} has a subsequence that converges weak* to a member of X^* of norm $\leq C$. This is a special case of the more general **Bourbaki-Alaoglu theorem**, valid for general locally convex topological vector spaces and involving nets, rather than sequences.

⁶Or even better!