MATHEMATICS 502 - SPRING 2020
 THEORY OF FUNCTIONS OF
 A REAL VARIABLE II
 H. J. SUSSMANN

LIST OF HOMEWORK PROBLEMS FOR THE WEEKS OF MARCH 23-27 AND MARCH 30-APRIL 3

You should submit your solutions to the starred problems by sending them by e-mail to both cr718@math.rutgers.edu and sussmann@math.rutgers.edu. The solutions will not be graded but will be read and you will receive comments.
(I) Folland, pages 177-178, problems *54, 55, *56, 57, *58, *59, 60, 61, *62, *63.
(II) Let A be a set and let $\ell^{2}(A)$ be the L^{2} space of the measure space $\left(A, \mathcal{A}_{A}, c_{A}\right)$ where \mathcal{A}_{A} is the σ-algebra of all subsets of A, and c_{A} is counting measure on A. You know from Problem 54 of page 177 that $\ell^{2}(A)$ is a Hilbert space. Let $\varphi: A \mapsto \mathbb{C}$ be a bounded function. Let M_{φ} be the operator of multiplication by φ, that is, the map from $\ell^{2}(A)$ to $\ell^{2}(A)$ given by $M_{\varphi}(f)(a)=\varphi(a) f(a)$ for $a \in A$. Prove that

1. M_{φ} is a bounded linear map from $\ell^{2}(A)$ to $\ell^{2}(A)$.
2. M_{φ} is a normal operator (that is, $M_{\varphi} M_{\varphi}^{*}=M_{\varphi}^{*} M_{\varphi}$), and M_{φ} is self-adjoint if and only if φ is real-valued (that is, $\varphi(a) \in \mathbb{R}$ for every $a \in A$).
*3. M_{φ} is a compact linear map if and only if φ "vanishes at infinity", in the sense that for every positive ε there exists a finite subset F of A such that $|\varphi(a)|<\varepsilon$ whenever $a \in A, a \notin F$. (NOTE: if we add to A a "point at infinity" ∞, declare a subset S of $A \cup\{\infty\}$ to be open if and only if either (i) $S=\emptyset$ or (ii) $\infty \in S$ and the complement of S is A is finite, then " φ vanishes at infinity" is precisely equivalent to " $\lim _{a \rightarrow \infty} \varphi(a)=0$ ".)
HINT: Show that the values of φ are the eigenvalues of M_{φ}, and identify the eigenfunctions (i.e., the eigenvectors). Show that a multiplication operator M_{θ} on a space $\ell^{2}(B)$ corresponding to a function θ such that $|\theta|$ is bounded below by some strictly positive δ is compact if and only if B is finite.)

NOTE: The spectral theorem for compact normal operators says that the converse of the result of (II. $2,{ }^{*} 3$) is true: If H is a Hilbert space and $K: H \mapsto H$ is a compact normal operator, then the pair (H, K) is equivalent to the pair $\left(\ell^{2}(A), M_{\varphi}\right)$ for some set A and some bounded function φ on A that vanishes at infinity. (Precisely, there exists a Hilbert space isomorphism $\Psi: H \mapsto \ell^{2}(A)$ such that $\Psi^{-1} M_{\varphi} \Psi=K$.)
(III) Folland, page 239, problems 1, 2, 3 and *4.
(IV) Folland, page 248, problems $* 7,8$, and $* 9$.
(V) ${ }^{*}$. Folland, page 254, problem 13.
*2. Use a trick similar to that of the previous problem (with a suitable choice of function f) to prove that

$$
\sum_{k=1}^{\infty} \frac{1}{k^{4}}=\frac{\pi^{4}}{90}
$$

(*VI) Consider the following general way of defining the "Fourier transform" \hat{f} and the "inverse Fourier transform" \check{f} of a function in $L^{1}(\mathbb{R})$: we fix two positive real numbers a, b, and define

$$
\begin{align*}
& \hat{f}(y)=a \int_{-\infty}^{\infty} f(x) e^{-b x y i} d x \tag{1}\\
& \check{f}(x)=a \int_{-\infty}^{\infty} f(y) e^{b x y i} d y \tag{2}
\end{align*}
$$

For what values of the parameters a, b does the identity

$$
\begin{equation*}
f(x)=\check{\hat{f}}(-x) \quad \text { for all } \quad x \in \mathbb{R} \tag{3}
\end{equation*}
$$

hold? Prove, in particular, that (3) holds if and only if $b=2 \pi a^{2}$. (Folland chooses $a=1, b=2 \pi$. In my notes I choose $a=\frac{1}{\sqrt{2 \pi}}$ and $b=1$.)

