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2 Homework assignment No. 12, due on Friday, December 4 13

1 Connected sets

In this note we show how the general definition of “connected metric space” is
related to the definition of “connected set” given in the book, and we discuss
several important properties of connected sets.

The book does not talk about general metric spaces, and only works
within one metric space, namely, IR. We, on the other hand, will discuss
connectedness of a general metric space.

Furthermore, a subset of IR is a particular example of a metric space.
It follows from this that, once we know what it means for a general metric
space to be “connected”, this will determine, in particular, what it means
for a subset S of IR to be connected.

But, since the book does not talk about general metric spaces, and does
not view subsets of IR as metric spaces in their own right, the way the book
defines “connected set” is special: instead of looking at a subset S of IR as
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a metric space, the book uses the fact that S is a subset of IR to give a
definition that involves working in IR.

We will discuss both definitions of “connected set” and prove that they
are equivalent.

1 Connected metric spaces

Roughly, a metric space is said to be “connected” if it cannot be divided into
two open parts. Precisely,

Definition 1. Let X be a metric space. We say that X is disconnected if
there exist two subsets U, V of X such that

1. U and V are open,

2. U and V are nonempty,

3. U ∩ V = ∅,
4. U ∪ V = X.

We say that X is connected if it is not disconnected. �

Let us say the same thing in a different way:

Theorem 1. Let X be a metric space. Then X is disconnected if and only
if there exist two subsets A,B of X such that

(D1) A and B are nonempty,

(D2) A ∪B = X,

(D3) Ā ∪B = ∅ and A ∪ B̄ = ∅.

Proof. Suppose X is disconnected. Then we can pick two subsets U, V of X
such that U and V are open and nonempty, U ∩ V = ∅, and U ∪ V = X.

Then, if we let A = U , B = V , it follows that A 6= ∅, B 6= ∅, and
A ∪ B = X, Furthermore, Ā = A, because A is the complement in X of the
open set V , so A is closed. And then Ā∩B = A∩B = U ∩V = ∅. Similarly,
A ∩ B̄ = ∅. So A and B satisfy conditions (D1,2,3).

To prove the converse, assume A and B satisfy (D1,2,3). Then Ā ⊆ A,
because Ā ⊆ A ∪ B and Ā ∩ B = ∅. So Ā = A, and then A is closed, so B
is open. Similarly, A is open. So if we take U = A, V = B, we see that the
conditions of Definition 1 hold, so X is disconnected. Q.E.D.
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2 Connected subsets of a metric space

Now that we know what a “connected metric space” is, we also know what
it means for a subset S of a metric space X to be connected. Indeed, as we
have explained before, every subset of a metric space is a metric space in its
own right: if X is a metric space with distance function dX , and S is a subset
of X, we can define a distance function1 dS : S × S 7→ IR by letting

dS(p, q) = dX(p, q) if p.q ∈ S .

Using this, we can define:

Definition 2. Let X be a metric space with distance function dX , and let
S be a subset of X. We say that S is a connected subset of X if S, regarded
as a metric space, with its distance function dS, is a connected metric space
in the sense of Definition 1. �

3 Characterization of connected subsets

In this subssection we show that the notion of “connected subset” defined
here is exactly equivalent to the one given in the book, except for the fact
that the book works only with subsets of the real line IR, whereas we are
considering arbitrary subsets of an arbitrary metric space.

Theorem 2. Let X be a metric space with distance function dX , and let S
be a subset of X. Then S is a connected subset of X if and only if there do
not exist two subsets A, B of S such that

(D’1) A and B are nonempty,

(D’2) A ∪B = S,

(D’3) Ā ∪B = ∅ and A ∪ B̄ = ∅.

Remark 1. The conditions of this theorem seem to be just restatements of
Conditions (D1,2,3) of Theorem 1, applied to S instead of X. But they are
not, for a somewhat subtle reason that I will now explain.

1In general: if A, B are sets, f : A 7→ B is a function, and C is a subset of A, then the
restriction of f to C is the function g : C 7→ B given by g(c) = f(c) for every c ∈ C. So
the distance function dS is the restriction of dX to S × S.
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If X is a metric space, and S is a subset of X, then we can regard S as a
metric space. If A is a subset of S, then we can talk about the “closure” of
a subset A of S, because S is a metric space, A is a subset of S, and every
subset of a metric space has a closure. Let us call this closure ClosS(A).
Then ClosS(A) is the set of all points of S that are the limit of a sequence
of points of A.

However, A is a subset ofX as well, so we can also talk about the “closure”
of A in X, meaning: the set of all points of X that are the limit of a sequence
of points of A. Let us call this closure ClosX(A).

These two concepts of “closure” are not exactly the same. For
example, suppose X is IR, the real line, and S is the open interval (0, 1).
Consider the set A = (0, 1

2
). Then the closure ClosX(A) is the closed interval

[0, 1
2
], whereas the closure ClosS(A) is the half-open, half-closed interval (0, 1

2
].

(The point 0 belongs to ClosX(A), because it is a limit point of A in X, but
it is not in ClosS(A) because it is not in S. )

One this is understood, it should be clear that the statement of Theorem
2 is problematic: when the statement mentions Ā and B̄, the clo-
sures of A and B, which closures is it talking about, ClosX(A) and
ClosX(B), or ClosS(A) and ClosS(B)?

If we take “Ā” and “B̄” to mean “ClosS(A)” and “ClosS(B)”, then The-
orem 2 says nothing new: it is just the restatement of the condition for S
to be a connected metric space given in Theorem 1. If, on the other hand,
we take “Ā” and “B̄” to mean “ClosX(A)” and “ClosX(B)”, then Theorem
2 makes a different assertion, and needs proof.

It turns out that the correct interpretation of Theorem 2 is the latter:
“Ā” means “ClosX(A)”, and “B̄” means “ClosX(B)”. This gives us exactly
the characterization of connectedness presented in the book. (As I explained
before, the book does not talk about metric spaces, let alone about subsets
of a metric space being themselves metric spaces. It only talks about IR and
subsets of IR, and when it mentions the closure Ā of a subset A of a subset
S of IR, it means ClosIR(A), because the book does not talk about S being a
metric space in its own right.)

With this interperetation of the meaning of Ā and B̄, Theorem 2 makes
a truly new assertion: its Condition (D’3) says that

(D’3X) ClosX(A) ∩B = ∅ and A ∩ ClosX(B) = ∅.

This is different from the condition that occurs in the definition of “con-
nected metric space” applied to S: if we want to regard a subset S of X
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as a metric space in its own right, then the precise translation of the condi-
tion that S is disconnected has to involve the closures of A and B in S. In
particular, Condition (D’3) truly says that

(D’3S) ClosS(A) ∩B = ∅ and A ∩ ClosS(B) = ∅.

Then the difference between the condition that the metric space S is
connected and the condition of Theorem 2 is as follows:

(1) The metric space S (that is, the subset S of the metric space X, re-
garded as a metric space in its own right) is connected if and only if
there do not exist sets A, B such that (D’1), (D’2), and (D’3S) are
true.

(2) The subset S of the metric space X satisfies the condition of Theorem
2 if and only if there do not exist sets A, B such that (D’1), (D’2), and
(D’3X) are true.

So, as you can see, the condition of Theorem 2 is not exactly a restatement
of the fact that the metric space S is connected. It follows that Theorem
2 needs proof. To prove it, we have to show that Conditions (D’1), (D’2),
(D’3S) are equivalent to Conditions (D’1), (D’2), (D’3X). This will clearly
follow if we prove that

(*) If A, B satisfy (D’1) and (D’2), then

ClosS(A) ∩B = ClosX(A) ∩B(1.1)

and
A ∩ ClosS(B) = A ∩ ClosX(B) .(1.2)

Proof of Theorem 2. As explained in Remark 1, we have to prove (*).
Let us prove (1.1). Let LimX(A) be the set of all points of X that are

limit points of A, and let LimS(A) be the set of all points of S that are limit
points of A. Then

ClosX(A) = A ∪ LimX(A) ,

and
ClosS(A) = A ∪ LimS(A) .

It is clear that LimS(A) ⊆ LimX(A), so

LimS(A) ∩B ⊆ LimX(A) ∩B .
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On the other hand, if p ∈ LimX(A) ∩ B then p ∈ S, because B ⊆ S, so
p ∈ LimS(A), and then p ∈ LimS(A) ∩B. So

LimX(A) ∩B ⊆ LimS(A) ∩B .

Hence
LimX(A) ∩B = LimS(A) ∩B .

Therefore

ClosX(A) ∩B = (A ∪ LimX(A)) ∩B
= (A ∩B) ∪ (LimX(A)) ∩B)

= (A ∩B) ∪ (LimS(A)) ∩B)

= (A ∪ LimS(A)) ∩B
= ClosS(A) ∩B .

This proves (1.1). The proof of (1.2) is similar. Q.E.D.

4 Unions of connected sets

In general, the union of two connected sets need not be connected. (For
example, the intervals (0, 1) and (2, 3) are connected, but their union is not
connected.)

On the other, hand, if A and B are connected sets, and A∩B is nonempty,
then A ∪ B is connected. Actually, the same result is true for an arbitrary
family of connected sets.

Theorem 3. Let X be a metric space, and let (Ci)i∈I be a family of connected
subsets of X, such that ⋂

i∈I

Ci 6= ∅ .

Let
C =

⋃
i∈I

Ci .

Then C is connected.

Proof. Let us assume that C is disconnected. Then we may write C = A∪B,
where A 6= ∅, B 6= ∅, Ā ∩B = A ∩ B̄ = ∅.



Notes on connecetd sets, Fall 2015 7

Pick a point p ∈
⋂

i∈I Ci. (This is possible because of our assumption
that

⋂
i∈I Ci 6= ∅.) Then p must belong to A or to B, so we may assume

without loss of generality that p ∈ A. (If p ∈ B, then just change the names
of A and B, and relabel them as B, A.)

We will prove that C = A. For this purpose, observe that A ⊆ C, because
C = A ∪ B. So we have to prove that C ⊆ A. In order to establish this, we
show that Ci ⊆ A for each i ∈ I.

So let us fix an index i ∈ I.
Let A∗ = A ∩ Ci, B∗ = B ∩ Ci. Then

A∗ ∪B∗ = (A ∩ Ci) ∪ (B ∩ Ci) = (A ∪B) ∩ Ci = C ∩ Ci = Ci .

Also, A∗ 6= ∅, because p ∈ A∗.
Furthermore, Ā∗ ∩B∗ = ∅, because Ā∗ ⊆ Ā (since A∗ ⊆ A) and B∗ ⊆ B,

so Ā∗ ∩B∗ ⊆ Ā ∩B = ∅. And, similarly, A∗ ∩ B̄∗ = ∅.
So we have shown that A∗ 6= ∅, A∗∪B∗ = Ci, Ā∗∩B∗ = ∅, and A∗∩B̄∗ = ∅.

If, in addition to all this, B∗ was nonempty, then it would follow that Ci is
disconnected, which is impossible since Ci is connected. Therefore B∗ = ∅.
Hence A∗ = Ci, Therefore

Ci ⊆ A .(1.3)

Since (1.3) is true for an arbitrary index i ∈ I, we can conclude that C ⊆ A.
Since C = A ∪ B and A ∩ B = ∅, the fact that C ⊆ A implies that

B = ∅. But B 6= ∅, so we have reached a contradiction. This shows that C
is connected, as desired. Q.E.D.

5 Connected subsets of the real line

The following theorem tells us that the connected subsets of IR are easy to
characterize: they are just the intervals.

Remark 2. We recall that an interval is a subset S of IR such that

(*) For all real numbers a, b, c such that a < b < c, if a and c belong to S
then it follows that b belongs to S. �

Theorem 4. A subset S of IR is connected if and only if S is an interval.

Proof. The book gives a detailed proof, so I will not repeat the proof here.
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Remark 3. What makes Theorem 4 very important is that it can be used
in conjunction with the result of the next section—that continuous functions
map connected sets to connected sets—to obtain lots of connected sets by
mapping an interval (say, the interval [0, 1]) via a continuous function. Such
a map is called a “path”, or “arc”, and we will prove that if any two points
of a set S can be connected by a path in S then S is connected. �

6 Continuous functions preserve connectedness

We recall that, if f is a function and S is a subset of the domain dom(f) of
f , then the image of S under f is the set f(S) of all values of f for all points
s of S. That is,

f(S)
def
= {f(s) : s ∈ S} ,

or, if you prefer,

f(S)
def
= {x : (∃s ∈ S)f(s) = x} .

In this subsection we prove that continuous functions preserve con-
nectedness, that is, if you map a connected set S by a continuous
function f the image set f(S) is connected.

Theorem 5. Let X, Y be metric spaces with distance functions dX , dY . Let
S be a connected subset of X, and let f : S 7→ Y be a continuous function.
Then the set f(S) is connected.

Proof. Suppose f(S) is disconnected. Then we can write f(S) = A ∪ B,
where A,B are nonempty subsets of f(S) such that Ā ∩B = A ∩ B̄ = ∅.

Let

A′ = {s ∈ S : f(s) ∈ A} ,
B′ = {s ∈ S : f(s) ∈ B} .

Then it is clear that

1. A′ ⊆ S,

2. B′ ⊆ S,

3. S = A′ ∪ B′ (because if s ∈ S then f(s) ∈ f(S), so f(s) ∈ A or
f(s) ∈ B, and then s ∈ A′ or s ∈ B),
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4. Ā′ ∩ B′ = ∅ (because, if Ā′ ∩ B′ 6= ∅, then we can pick p ∈ Ā′ ∩ B′.
so p ∈ B′ and p = limn→∞ xn, xn ∈ A′; then f(p) ∈ B and f(p) =
limn→∞ f(xn), because f is continuous; since the f(xn) belong to A, it
follows that f(p) ∈ Ā; but f(p) ∈ B, because p ∈ B′, so f(p) ∈ Ā ∩B,
and then Ā ∩B 6= ∅; but Ā ∩B = ∅, so we got a contradiction).

5. A′ ∩ B̄′ = ∅ (by the same argument as in the previous step).

So S is disconnected. But S is connected, and we have obtained a contra-
diction. This proves that f(S) is connected, concluding our proof. Q.E.D.

7 The Intermediate Value Theorem

If we combine the statements of Theorems 4 and 5, we get the following very
powerful result:

Theorem 6. Let X be a metric space, let S be a connected subset of X, and
let f : S 7→ IR be a continuous function. Then

(IVT1) The image f(S) of S under f is an interval.

(IVT2) If p, q are points of S, and α is a real number such that

f(p) ≤ α ≤ f(q) ,

then there exists a point r of S such that f(r) = α.

Proof. By Theorem 5, f(S) is a connected subset of IR. By Theorem 4, f(S)
is an interval. This proves (IVT1).

To prove (IVT2), assume p, q, α are such that p ∈ S, q ∈ S, α ∈ IR,
and f(p) ≤ α ≤ f(q). Then the fact that f(S) is an interval implies that
α ∈ f(S), so there exists r ∈ S such that f(r) = α. Q.E.D.

8 Connected components

In this subsection we show that a subset S of a metric space is partitioned
into “connected components”, i.e., connected sets such that any connected
subset of S a subset of one of the components.

Definition 3. Let X be a metric space, let S be a subset of X, and let
p ∈ S.
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1. The union of all the connected subsets A of S such that p ∈ A is the
connected component of p in S.

2. We write C(p, S) to denote the connected component of p in S. �

Theorem 7. Let X be a metric space, and let S be a subset of X. Then

1. For every p ∈ S, the connected component C(p, S) is a connected subset
of S. Furthermore: C(p, S) is the largest connected subset of S that
contains p. (This means: if A is any connected subset of S such that
p ∈ A, it follows that A ⊆ C(p, S).)

2. If p ∈ S and q ∈ S, then the connected components C(p, S), C(q, S)
are either disjoint or equal. (That is, either C(p, S) ∩ C(q, S) = ∅ or
C(p, S) = C(q, S).)

Proof. For each p ∈ S, let A(p) be the set of all connected subsets A of S
such that p ∈ A. By Theorem 3, the union of all the sets inA(p) is connected,
since the intersection of all these sets is nonempty, because it contains the
point p. So C(p, S) is connected. Furthermore, if A is any connected subset
of S such that p ∈ A, then A ∈ A(p), so A ⊆ C(p, S).

Finally, let p, q be points of S. We want to prove that the sets C(p, S),
C(q, S) are either disjoint or equal. Suppose that they are not disjoint, i.e.,
that C(p, S) ∩ C(q, S) 6= ∅. We want to prove that C(p, S) = C(q, S). Since
C(p, S)∩C(q, S) 6= ∅ and C(p, S) and C(q, S) are connected, Theorem 3 im-
plies that C(p, S)∪C(q, S) is connected. Furthermore, p ∈ C(p, S)∪C(q, S),
so C(p, S)∪C(q, S) ∈ A(p). It follows that C(p, S)∪C(q, S) ⊆ C(p, S), and
then C(q, S) ⊆ C(p, S). A similar argument shows that C(p, S) ⊆ C(q, S).
So C(p, S) = C(q, S). Q.E.D.

Exercise 1. Recall that a binary relation on a set S is a subset of the Carte-
sian product S × S, i.e., a set of ordered pairs of members of S. If R is
a binary relation on S, we write “pRq” instead of “(p, q) ∈ R”. A binary
relation R on S is an equivalence relation on S if R satisfies the following
three conditions:

1. R is reflexive, that is,
(∀x ∈ S)xRx .



Notes on connecetd sets, Fall 2015 11

2. R is symmetric, that is,

(∀x ∈ S)(∀y ∈ S)(xRy =⇒ yRx) .

3. R is transitive, that is,

(∀x ∈ S)(∀y ∈ S)(∀z ∈ S)
(

(xRy ∧ yRz) =⇒ xRz
)
.

An equivalence relation R on a set S gives rise to a partition of S into sets
called “equivalence classes”. (A partition of S is a set P such that: (1) every
member of P is a nonempty subset of S, (2) if X, Y are members of P then
either X ∩Y = ∅ or X = Y , (3) the union of all the members of P is S. The
partition P arising from the equivalence relation R is defined as follows: for
any member p of S, let [p]R be the set {q ∈ S : pRq}. Any set X such that
X = [p]R for some p ∈ S is called an equivalence class of R. Then P consists
of all the equivalence classes of R.)

If S is a subset of a metric space X, define a binary relation Rc on S by
letting

Rc = { (x, y) ∈ S × S : (∃A)
(
A ⊆ S ∧ A is connected ∧ x ∈ A ∧ y ∈ A

)
} .

Prove that

1. Rc is an equivalence relation on S,

2. The equivalence classes of Rc are the connected components of S. �

9 Path-connected sets

We now present a method for proving connectedness of many sets. The idea
is that we can prove that a set S is connected by proving that any two points
of S can be joined by a path in S.

Definition 4. Let X be a metric space with distance dX . Then

1. A path (or arc) in X is a continuous function γ : [0, 1] 7→ X.

2. If S ⊆ X, then a path γ is a path in S if γ(t) ∈ S for all t ∈ [0, 1].
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3. The locus, or carrier, of a path γ is the set |γ| of all points γ(t), for all
t ∈ [0, 1]. (So γ is a path in S if and only if |γ| ⊆ S .)

4. If p, q ∈ X, then a path γ in X goes from p to q, or connects p to q, if
γ(0) = p and γ(1) = q.

5. If S ⊆ X, then S is path-connected if for every pair p, q of points of S
there exists a path in S that connects p to q. �

Theorem 8. Let X be a metric space with distance dX . Then every path-
connected subset of X is connected.

Proof. Let S be a path-connected subset of X.
Then either S is empty or S is nonempty.
Suppose S is empty. Then S is connected. (See Exercise 2 below.)
Now suppose S is not empty. Pick a point p of S. Let A be the set of all

conected subsets of S that contain the point p. Let A be the union of all the
members of A. Then by Theorem 3 A is connected. Since every member of
is a subset of S, it follows that A ⊆ S.

We now show that S ⊆ A. Let q be an arbitrary point of S. Since S is
path-connected, and the points p, q are in S, there exists a path γ in S that
connects p to q. By Theorem 4 the interval [0, 1] is connected. Then Theorem
5 implies that the carrier |γ| is a connected subset of X, But |γ| ⊆ S, because
γ is a path in S. So |γ| is a connected subset of S that contaiins p. It follows
that |γ| ∈ A. So |γ| ⊆ A. Furthermore, q ∈ |γ|. So q ∈ A. Since q was an
arbitrary point of S, we have proved that (∀q)(q ∈ S =⇒ q ∈ A). That is,
S ⊆ A.

So we have proved that A ⊆ S and S ⊆ A. Hence S = A. Since A is
connected, it follows that S is connected. Q.E.D.

Exercise 2. Prove that if X is a metric space, then the empty set is a
connected subset of X.

10 The connected components of an open set

Theorem 9. Let d be a natural number, and let U be an open subset of IRd.
Then the connected components of U are open sets.
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Proof. Let C be a connected component of U . We want to show that C is
an open subset of IRd. For this purpose, we show that if p ∈ C is arbitrary,
then tere exists a positive real number ε such that the neighborhood Vε(p)
is a subset of C.

Since U is open, there exists a positive ε such that Vε(p) ⊆ C. In addition,
the set Vε(p) is connected. (Reason: Any point q ∈ Vε(p) can be joined by
a path to the center p of Vε(p). So ε(p) is path-connected.) It follows that
Vε(p) ⊆ C, as desired. Q.E.D.

11 The structure of open subsets of IR

What is a general open subset of IR like?

Theorem 10. Let U be an open subset of IR. Then U is the union of a finite
or countably infinite set U of pairwise disjoint open intervals.

Proof. Let U be the set of all connected components of U . Then the members
of U are connected subsets of IR, so they are intervals. Furthermore, they
are open sets by Theorem 9. So they are open intervals.

Finally, the set U is finite or countably infinite, for the following reason:
for every I ∈ U we can choose a rational number f(I) belonging to I. Then
f is a function from U into the set Q of all rational numbers. The function
f is one-to-one because, if I1 ∈ U , I2 ∈ U , and I1 6= I2, then f(I1) 6= f(I2),
because f(I1) ∈ I1, f(I2) ∈ I2, and I1 ∩ I2 = ∅.

So f is a one-to-one function from U into the countable set Q, and this
implies that U is finite or countable. Q.E.D.

Exercise 3. Prove that it is not true that every closed subset of IR is a
union of a finite or countable colection of closed intervals. �

2 Homework assignment No. 12, due on Fri-

day, December 4

The following is a list of recommended problems. Sev-
eral of the ones marked “To Hand In” are challenging,
so do as many as you can but don’t be too upset if you
cannot do some of them.
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PROBLEM 1. Exercise 1 in Subsection 8.

PROBLEM 2. Exercise 2 in Subsection 9.

PROBLEM 3. Exercise 3 in Subsection 11.

PROBLEM 4. (TO HAND IN) Let X be a metric space with distance
dX , and let S be a connected subset of X. Prove that S̄ is connected.

(Recall that the closure of a subset S of X is the set S̄ of all points p of
X such that p = limn→∞ xn for some sequence (xn)∞n=1 of points of S.)

PROBLEM 5. (TO HAND IN) Let d ∈ IN be such that d > 1. For
two real numbers r, R such that 0 < r < R, define Ad(r, R) to be “the set
of points p ∈ IRd that are outside the ball centered at the origin of radius r,
and inside the ball of radius R”. Precisely,

Ad(r, R)
def
= {x ∈ IRd : r < ‖x‖ < R } .

Prove that Ad(r, R) is connected. (HINT: Prove that Ad(r, R) is path-
connected. If at some point you want to say that two points p, q can be
connected by a path in Ad(r, R), don’t just say it. Either write down an
explicit formula for the path, or prove rigorously that the path exists.)

PROBLEM 6. (TO HAND IN) Let S be the unit circle in IR2, that is,
the set given by

S = {(x, y) ∈ IR2 : x2 + y2 = 1} .

Prove that S is connected. (You may use the sine and cosine functions,
if you like, and are allowed to use the fact that they are continuous, but if
you are careful then you can manage to prove the result without using those
functions. It suffices to use polynomials and the square-root function.)

PROBLEM 7. (TO HAND IN) Let G be the set of all points of IR2 that
are of the form (x, sin 1

x
), for x ∈ IR, x > 0. That is,

G =

{(
x, sin

1

x

)
: x ∈ IR ∧ x > 0

}
,

or, if you prefer,

G = { p ∈ IR2 : (∃x ∈ IR)(x > 0 ∧ p = (x, sin
1

x
) } .(2.4)
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So G is the graph of the function f , with domain (0,+∞), given by

f(x) = sin
1

x
for x ∈ IR , x > 0 .(2.5)

Let σ be the vertical segment in IR2 given by

σ = {(0, y) : −1 ≤ y ≤ 1} .

(That is, σ is the vertical segment joining the points (0,−1) and (0, 1).)
Let

S = G ∪ σ .
1. Sketch a picture of the set S.

2. Prove that G is path-connected.

3. Prove that the closure of G is S.

4. Conclude that S is connected.

5. Prove that S is not path-connected.

6. Conclude that it is not true in general that the closure of a path-
connected set is path-connected.

Remark 4. You may recall from Math 300 that a function is a set f having
the following two properties: (1) f is a set of ordered pairs (that is, (∀x)(x ∈
f =⇒ (∃u, v)x = (u, v)) ) and (2) whenever two paits (u, v), (u,w) belong to
f , it follows that v = w. (In other words, a “function” is a set of “input-
output pairs”, having the property that for every input the function produces
only one output.) The domain of a function f is the set dom(f) of all possible
inputs, that is,

dom(f) = {x : (∃y)(x, y) ∈ f) .

The value of a function f at a point x belonging to dom(f) is the unique y
such that (x, y) ∈ f . And we use f(x) to denote the value of f at x. (In other
words: the domain of f is the set of all objects x for which f produces an
output. And, for each x in the domain, the value f(x) is the output produced
by f for x.) The graph of a function f is the set of all input-output pairs.
This means that, for us, the graph of a function is the function. In
particular, the graph G defined by (2.4) and the function f defined by (2.5)
are one and the same thing, so G = f . �

PROBLEM 8. Book, Exercise 4.3.3, page 126, Part (a).
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PROBLEM 9. Book, Exercise 4.3.6, page 127.

PROBLEM 10. Book, Exercise 4.3.10, page 128.

PROBLEM 11. (TO HAND IN) LetX, Y be metric spaces with distance
functions dX , dY . Let c be a positive real number. A function f : X 7→ Y
Lipschitz with constant c if

dY (f(p), f(q)) ≤ c · dX(p, q)

for all p, q ∈ X.
A function f : X 7→ Y is Lipschitz if it is Lipschitz with constant c for

some positive real number c.
Prove that a Lipschitz function is continuous.

PROBLEM 12. (TO HAND IN) Let X be a metric space with distance
function dX , and let S be a nonempty subset of X. Define a function distS :
X 7→ IR by letting

distS(p) = inf{dX(p, s) : s ∈ S} .

If f : X 7→ IR is a function, the set of zeros of f is the set Z(f) given by

Z(f) = {p ∈ X : f(p) = 0} .

1. Prove that if S is any nonemtpy subset of X, then the function distS
is continous. (HINT: Prove that distS is Lipschitz with constant 1.)

2. Prove that the set of zeros of distS is exactly the closure S̄ of S (that
is, Z(distS) = S̄).

3. Prove that if f : X 7→ IR is a continous function, then Z(f) is closed.

4. Conclude from the above that a subset S of X is the zero set of some
continuous function from X to IR if and only if S is closed. (That is:

(∀S)

(
S ⊆ X =⇒ (∃f)

(
(f : X 7→ IR∧f is continuous∧Z(f) = S)⇐⇒

S̄ = S
))

.)

PROBLEM 13. (TO HAND IN) Book, Exercise 4.3.13, pages 128, 129.
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PROBLEM 14. (TO HAND IN) Book, Exercise 4.3.14, page 129.
(NOTE: My personal opinion is that it would be better to do Part (b) first,
so I advise you to do that. But it may be that the author has a different
approach in mind, which involves doing Part (a) first, so if you figure out
how to do it that way, it’s O.K. with me. Also, may I point out that when
the book says “the function of Exercise 4.3.12 may be useful:, that function
is exactly the one of Problem 12 above; the only difference is that Problem
12 asks you to do the same thing as Exercise 4.3.12, in the broader setting
of general metric spaces.)


