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Theory of functions of a real variable II

H. J. Sussmann

In this note,

• K is a compact Hausdorff topological space,

• C0(K) is the space of comtinuous real-valued functions on K,

• λ is a positive linear functional on C0(K).

Our goal is to construct a Borel measure µ on K such that

λ(f) =

∫
K
f dµ for all f ∈ C0(K) . (1)

The content of a compact set. If C is a compact subset of K, we define
the content1 of C to be the nonnegative real number κ(C) given by

κ(C) = inf
{
λ(f) : f ∈ C0(K) ∧ f ≥ χC

}
. (2)

Lemma 1.

1. κ(∅) = 0,

2. κ(K) = λ(1),

3. (the monotonicity property) if C1, C2 are compact subsets of K and
C1 ⊆ C2 then κ(C1) ≤ κ(C2),

4. (the subadditivity property) if C1, C2 are compact subsets of K then
κ(C1 ∪ C2) ≤ κ(C1) + κ(C2),

5. (the additivity property) if C1, C2 are disjoint compact subsets of K
then κ(C1 ∪ C2) = κ(C1) + κ(C2).

Proof. Statements 1, 2, and 3 are trivial.
To prove 4, we let f1, f2 be members of C0(K) such that f1 ≥ χC1

and
f2 ≥ χC2

. Then f1 + f2 ≥ χC1∪C2
, so

λ(f1 + f2) ≥ κ(C1 ∪ C2) .

1Strictly speaking, κ(C) should have been called the λ-content of C, and we should
have named it “κλ(C)” rather than “κ(C)”. But as long as λ is fixed, no harm is done.
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On the other hand, λ(f1 + f2) = λ(f1) + λ(f2), so

λ(f1) + λ(f2) ≥ κ(C1 ∪ C2) .

Taking the infimum ith respct to f1 and then the infimum with respect to
f2, we get

κ(C1) + κ(C2) ≥ κ(C1 ∪ C2) .

To prove 5 we use Urysohn’s Lemma and pick a function ϕ ∈ C0(K) such
that 0 ≤ ϕ ≤ 1, ϕ = 1 on C1 and ϕ = 0 on C2. If ψ = 1−ϕ, then ψ ∈ C0(K),
0 ≤ ψ ≤ 1, ψ = 0 on C1 and ψ = 1 on C2. Fix a positive real number ε,
and let f ∈ C0(K) be such that f ≥ χC1∪C2

and λ(f) ≤ κ(C1 ∪ C2) + ε. It
follows that ϕf ≥ χC1

and ψf ≥ χC2
, so λ(ϕf) + λ(ψf) ≥ κ(C1) + κ(C2).

Therefore

κ(C1) + κ(C2) = λ(ϕf) + λ(ψf)

= λ(ϕf + ψf)

= λ
(
(ϕ+ ψ)f

)
= λ(f)

≤ κ(C1 ∪ C2) + ε .

Since ε is arbitrary, it follows that

κ(C1) + κ(C2) ≤ κ(C1 ∪ C2) .

On the other hand, the subadditivity property implies that

κ(C1) + κ(C2) ≥ κ(C1 ∪ C2) .

Therefore
κ(C1) + κ(C2) = κ(C1 ∪ C2) ,

completing our proof. Q.E.D.

The outer measure of an open set. If U is an open subset of K, we
define2 the outer measure of U to be the nonnegative real number µ∗(U)
given by

µ∗(U) = sup
{
κ(C) : C ⊆ U ∧ C compact

}
. (3)

Lemma 2.

2Again, µ∗(U) should really have been called the λ-outer measure of U , and we should
have named it “µo,λ)(U)” rather than “µ∗(U)”. But as long as λ is fixed, no harm is done.
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1. if C is compact, U is open, and C ⊆ U , then

κ(C) ≤ µ∗(C) ≤ µ∗(U) ;

2. µ∗(∅) = 0,

3. µ∗(K) = λ(1),

4. (the monotonicity property) if U1, U2 are open subsets of K and U1 ⊆
U2 then µ∗(U1) ≤ µ∗(U2),

5. (the countable subadditivity property) if U = (Uj)j∈N is a sequence of
open subsets of K and U = ∪j∈NUj, then

µ∗(U) ≤
∑
j∈N

µ∗(Uj) ;

6. (the countable additivity property) if U = (Uj)j∈N is a sequence of
pairwise disjoint open subsets of K, and U = ∪j∈NUj, then

µ∗(U) =
∑
j∈N

µ∗(Uj) .

Proof. Statements 1, 2, 3, and 4 are trivial.
To prove 5, we fix a positive real number ε, and let C be a compact

subset of U such that κ(C) + ε ≥ µ∗(U), so

µ∗(U)− ε ≤ κ(C) .

Since the sets Uj , for j ∈ N, form an open covering of C, we can pick N ∈ N
such that C ⊆ ∪Nj=1Uj . Then we can find3 compact subsets C1, C2, . . . , CN
of U1, U2, . . . , UN such that C = ∪Nj=1Cj . By the subadditivity property of
the content,

κ(C) ≤
N∑
j=1

κ(Cj) .

3Proof: For each x ∈ C, let j(x) be the smallest member j of the set {1, 2, . . . , N} such
that x ∈ Uj . Then let Vx be a compact neighborhood of x such that Vx ⊆ Uj(x). Then let
X be a finite subset of C such that the sets Vx, x ∈ X, cover C. For each j ∈ {1, 2, . . . , N},
let Dj = ∪x∈X,∧j(x)=jVx. Let D = ∪Nj=1Dj . Then each Dj is compact, so D is compact.
Furthermore, C ⊆ D. In addition, Dj ⊆ Uj for each j, So, if we let Cj = Dj ∩C, it follows
that the Cj are compact, Cj ⊆ Uj , and C = ∪Nj=1Cj .
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Then

µ∗(U)− ε ≤ κ(C)

≤
N∑
j=1

κ(Cj)

≤
∞∑
j=1

κ(Cj)

≤
∞∑
j=1

µ∗(Uj) ,

so

µ∗(U)− ε ≤
∞∑
j=1

µ∗(Uj) .

Since ε is arbitrary, it follows that

µ∗(U) ≤
∞∑
j=1

µ∗(Uj) ,

proving the countable subadditivity property.
To prove additivity, we consider first the case of two disjoint open sets.

Let U1, U2 be open and such that U1 ∩ U2 = ∅. Let C1, C2 be arbitrary
compact subsets of U1, U2. Then C1 ∩ C2 = ∅, so

κ(C1 ∪ C2) = κ(C1) + κ(C2) .

It follows that
κ(C1) + κ(C2) ≤ µ∗(U1 ∪ U2) , (4)

since C1 ∪ C2 is a compact subset of U1 ∪ U2.
Taking the supremum over all compact subsets C1 of U1, and then the

supremum over all compact subsets C2 of U2, we find

µ∗(U1) + µ∗(U2) ≤ µ∗(U1 ∪ U2) . (5)

Since µ∗(U1) + µ∗(U2) ≥ µ∗(U1 ∪ U2) by the subaditivity property, we end
up with

µ∗(U1) + µ∗(U2) = µ∗(U1 ∪ U2) . (6)
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From this it follows easily by induction that if U1, . . . , UN are pairwise dis-
joint open sets, then

µ∗
( N⋃
j=1

Uj

)
=

N∑
j=1

µ∗(Uj) . (7)

Finally, if U = (Uj)j∈N is a sequence of pairwise disjoint open subsets of K,
and U = ∪j∈NUj , then

µ∗(U) ≥ µ∗
( N⋃
j=1

Uj

)

=

N∑
j=1

µ∗(Uj)

for every N , so

µ∗(U) ≥
∞∑
j=1

µ∗(Uj) .

Since we know from the countable subadditivity property that

µ∗(U) ≤
∞∑
j=1

µ∗(Uj) ,

it follows that

µ∗(U) =

∞∑
j=1

µ∗(Uj) ,

completing our proof.

The outer measure of an arbitrary set. If E is an arbitrary subset of
K, we define4 the outer measure of E to be the nonnegative real number
µ∗(E) given by

µ∗(E) = inf
{
µ∗(U) : E ⊆ U ⊆ K ∧ U compact

}
. (8)

Lemma 3. IF E is open then the number µ∗(E) defined by Equation (8)
agrees with the number µ∗(E) defined by Equation (3).

4Strictly speaking, we cannot call this new quantity “µ∗(E)” for arbitrary E, because
when E is an open set we have already defined what “µ∗(E)” is. But it is completely
obvious (and we will prove it soon, in Lemma 3) that for an open set E the new µ∗(E)
agrees with the old one, so no harm is done.



Math 502, Spring 2020 6

Proof. Temporarily, let us use “µ∗,new(E)” for the right-hand side of Equa-
tion (8). Then it is clear that if E is open then µ∗,new(E) = µ∗(E), because
µ∗(E) ≤ µ∗(U) for every open set U such that E ⊆ U , and one of those sets
is E itself. This completes the proof. Q.E.D.

Lemma 4.

1. if E is an arbitrary subset of K, U is open, C is compact, and C ⊆
E ⊆ U , then

κ(C) ≤ µ∗(C) ≤ µ∗(E) ≤ µ∗(U) .

2. µ∗(∅) = 0,

3. µ∗(K) = λ(1),

4. (the monotonicity property) if E1, E2 are subsets of K and E1 ⊆ E2

then µ∗(E1) ≤ µ∗(E2),

5. (the countable subadditivity property) if E = (Ej)j∈N is a sequence of
open subsets of K and E = ∪j∈NEj, then

µ∗(E) ≤
∑
j∈N

µ∗(Ej) .

Proof. Statements 1, 2, 3, and 4 are trivial.
To prove 5, we fix a positive real number ε, and let Uj be open subsets

of K such that Ej ⊆ Uj and

µ∗(Uj) ≤ µ∗(Ej) + 2−jε .
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Let U = ∪∞j=1Uj , so U is open and E ⊆ U . Then

µ∗(E) ≤ µ∗(U)

= µ∗
( ∞⋃
j=1

Uj

)
≤

∞∑
j=1

µ∗(Uj)

≤
∞∑
j=1

µ∗(Uj)

≤
∞∑
j=1

(
µ∗(Ej) + 2−jε

)
=

∞∑
j=1

µ∗(Ej) +

∞∑
j=1

2−jε

=

∞∑
j=1

µ∗(Ej) + ε .

So

µ∗(E) ≤
∞∑
j=1

µ∗(Ej) + ε

and, since ε is arbitrary, we find that

µ∗(E) ≤
∞∑
j=1

µ∗(Ej) ,

completing our proof. Q.E.D.

The outer measure of a compact set.

Theorem 1. If C is a compact subset of K, then µ∗(C) = κ(C) .

Proof. We know that κ(C) ≤ µ∗(C), so all we need is to prove that

µ∗(C) ≤ κ(C) . (9)

Let α = κ(C). Pick a positive real number ε, and a function f ∈ C0(K)
such that f ≥ χC and λ(f) ≤ α+ ε.
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Fix a real number θ such that 0 < θ < 1. Let Vθ = {x ∈ K : f(x) > θ}.
Then Vθ is open and C ⊆ Vθ. Then the function K 3 x 7→ gθ(x)

def
= f(x)

θ is
≥ 1 on Vθ, so µ∗(Vθ) ≤ λ(gθ) (because

µ∗(Vθ) = sup{κ(D) : D ⊆ Vθ ∧D compact }

and if D is an arbitrary compact subset of Vθ then gθ ≥ χD , so κ(D) ≤
λ(gθ)).

Clearly,

λ(gθ) =
λ(f)

θ
≤ α+ ε

θ
,

so

µ∗(Vθ) ≤
α+ ε

θ
.

Since C ⊆ Vθ, it follows that µ∗(C) ≤ µ∗(Vθ), so

µ∗(C) ≤ α+ ε

θ
.

Since θ and ε are arbitrary (in the ranges (0, 1) and (0,∞), respectively, we
conclude that µ∗(C) ≤ α, so (9) holds. Q.E.D.

Measurable sets. Recall that, in general,

• An outer measure on a set X is a function5 ν : 2X 7→ [0,+∞] such that
ν(∅) = 0 and ν satisfies the monotonicity and countable subadditivity
properties

• An outer measure ν on a set X is finite if6 µ(X) <∞.

It follows that

Corollary 1. The function µ∗ that we have constructed is a finite outer
measure on K.

Next, we recall the following general procedure, due to Carathéodory,
for constructing a measure from an outer measure ν on a set X:

1. Call two subsets A,B of X nicely dsjoint7 if A∩B = ∅ and ν(A∪B) =
ν(A) + ν(B).

5“2X” is the power set of X, i.e., the set of all subsets of X. And, naturally, “[0,+∞]”
is the nonnegative extended real line, i.e., the union {x ∈ R : x ≥ 0} ∪ {+∞}.

6Obviously, ν is finite if and only if µ(S) is finite for every subset S of X.
7Of course, we should have said “nicely disjoint with respecto ν”, but as long as ν is

fixed what we are doing is O.K.
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2. IF S ⊆ X, call S ν-measurable if for every subset E of X the sets8

S ∩ E, Sc ∩ E are nicely disjoint.

We use M(ν) to denote the set of all ν-measurable subsets of X. Then the
following is the key theorem on the Carathéodory construction:

Theorem 2. Let ν be an outer measure on a set X. Then

1. M(ν) is a σ-algebra of subsets of X,

2. the restriction νdM(ν) of ν to M(ν) is a measure.

It follows from Theorem 2 and Corollary 1 that the µ∗-measurable sub-
sets of K form a σ-algebraandthe restriction of µ∗ to this σ-algebra is a
measure. The σ-algebra ought to be called M(µ∗) but, since µ∗ was con-
structed from the functional λ, we will call it M(λ) instead. And the mea-
sure obtained by restricting µ∗ to M(λ) will be called µλ.

Hence we have defined, for each compact Hausdorff space X and each
positive linear functional λ on C0(K), a σ-algebra M(λ) of subsets of K
and a finite measure µλ :M(λ) 7→ [0,+∞).

Remark 1. For a given compact Hausdorff space K, the σ-algebra
M(λ) in general depends on λ, as shown by the following two examples.

Example 1. (Lebesgue measure) Let K = [0, 1]. Let λ(f) =
∫ 1
0 f(x)dx,

where the integral is a Riemann integral9.
Then it is easy to see that the σ-algebra M(λ) corresponding to λ is

the set of all Lebesgue-measurable subsets of [0, 1] and the measure µλ is
Lebesgue measure. �

Example 2. (The Dirac delta functions) Let K = [0, 1]. Fix a point p ∈
[0, 1]., and define

λp(f) = f(p) for f ∈ C0(K) .

Then it is easy to verify that the σ-algebraM(λp) corresponding to λp is the
set of all subsets of [0, 1] and the measure µλp is the “Dirac delta function
at p, given by

µλp(S) =

{
0 if p /∈ S
1 if p ∈ S .

�
8We use “Sc” for the complement of S relative to X, so Sc = {x ∈ X : x /∈ S}.
9It is well known that, on a compact interval [a, b], every continuous function is

Riemann-integrable and, furthermore, the integral of a nonnegative functiom is a non-
negative real number.
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Measurability of Borel sets.

Theorem 3. If K is a compact Hausdorff space and λ is a positive lieanr
functional on C0(K), then every Borel set is µλ-measurable.

Proof. We know that the setM(λ) of all µλ-measurable sets is a σ-algebra.
So, in order to prove that every Borel subset of K is µλ-measurable, it
suffices to prove that every open subset of K is µλ-measurable.

Let U be an open subset of K. To prove that U is measurable we have
to prove that if E is an arbitrary suhset of K, then

µ∗(E ∩ U) + µ∗(E ∩ U c) = µ∗(E) . (10)

Furtherrmore, the subadditivity of µ∗ implies the inequality

µ∗(E ∩ U) + µ∗(E ∩ U c) ≥ µ∗(E) , (11)

so all we need is to prove that

µ∗(E ∩ U) + µ∗(E ∩ U c) ≤ µ∗(E) . (12)

Fix a positive real number ε, and pick an open subset V of K such that

E ⊆ V and µ∗(E) + ε ≥ µ∗(V ) . (13)

Next, pick open sets Ṽ1, Ṽ2, such that

E ∩ U ⊆ Ṽ1 and E ∩ U c ⊆ Ṽ2 . (14)

Let V1 = V ∩ Ṽ1, V2 = V ∩ Ṽ2. Then

E ∩ U ⊆ V1 and E ∩ U c ⊆ V2 . (15)

Let W1 = U ∩ V1, so

W1 is open and E ∩ U ⊆W1 . (16)

Then pick a compact subset C1 of K such that

C1 ⊆W1 and κ(C1) + ε ≥ µ∗(W1) . (17)

It then follows, since µ∗(W1) ≥ µ ∗ ∗(E ∩ U) (because E ∩ U ⊆W1), that

C1 ⊆ U and κ(C1) + ε ≥ µ∗(W1) ≥ µ∗(E ∩ U) . (18)
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Let W2 = V2 ∩Cc1. Then W2 is open, because V2 and Cc1 are open. Further-
more,

E ∩ U c ⊆W2 , (19)

because (a) E ∩ U c ⊆ V2 and (b) E ∩ U c ⊆ Cc1, because C1 ⊆ U .
Now pick a compact subset C2 of K such that

C2 ⊆W2 and κ(C2) + ε ≥ µ∗(W2) . (20)

It then follows, since µ∗(W2) ≥ µ∗(E ∩ U c) (because E ∩ U c ⊆ W2) and
C2 ⊆W2 ⊆ Cc1, that

C1 ∩ C2 = ∅ and κ(C2) + ε ≥ µ∗(W2) ≥ µ∗(E ∩ U c) . (21)

Then (18) and (21), together with the additivity property for the content,
that

κ(C1 ∪ C2) = κ(C1) + κ(C2)

≥
(
µ∗(W1)− ε

)
+
(
µ∗(W2)− ε

)
= µ∗(W1) + µ∗(W2)− 2ε

≥ µ∗(E ∩ U) + µ∗(E ∩ U c)− 2ε ,

so
κ(C1 ∪ C2) ≥ µ∗(E ∩ U) + µ∗(E ∩ U c)− 2ε . (22)

On the other hand,

C1 ∪ C2 ⊆W1 ∪W2 ⊆ V1 ∪ V2 ⊆ V . (23)

Hence
µ∗(V ) ≥ κ(C1 ∪ C2) . (24)

It then follows from (13) and (24) that

µ∗(E) + ε ≥ κ(C1 ∪ C2) . (25)

This, together with (22), imply that µ∗(E)+ε ≥ µ∗(E∩U)+µ∗(E∩U c)−2ε,
so

µ∗(E) + 3ε ≥ µ∗(E ∩ U) + µ∗(E ∩ U c) . (26)

Since ε is arbitrary, the desired inequality

µ∗(E) ≥ µ∗(E ∩ U) + µ∗(E ∩ U c)

follows. Q.E.D.
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Recovering the linear functional from the measure. Having con-
structed the Borel measure µλ, we still have to prove that µλ has the desired
property, i.e., that

Theorem 4. For every f ∈ C0(K),∫
K
f(x)dµλ(x) = λ(f) . (27)

Proof. In this proof, “µ” stands for “µλ”.
Naturally, it suffices to prove (27) for positive f .
So let f ∈ C0(K), f ≥ 0, and fix a positive real umber ε.
For each nonnegative integer k, let

Cε,k = {x ∈ K : f(x) ≥ εk} . (28)

Then Cε,0 = K, and the sets Cε,k are compact, decreasing, and empty for
sufficientlt large k, i.e.,

K = Cε,0 ⊇ Cε,1 ⊇ Cε,2 ⊇ · · · ⊇ Cε,N1 ⊇ Cε,N = ∅ ,

if N ∈ N is such that N > max{f(x) : x ∈ K}.
Let

Dε,k = Cε,k − Cε,k+1 ,

so the Dε,k are Borel measurable pairwise disjoint subsets of K and consti-
tute a partition of K.

Define functions gε,k, for k ∈ {0, 1, . . . , N}, by letting

gε,k =


0 if f(x) ≤ εk
1
ε

(
f(x)− εk

)
if εk ≤ f(x) ≤ ε(k + 1)

1 if ε(k + 1) ≤ f(x)
.

Then the gε,k are positive, continuous, and such that

f = ε

N∑
k=0

gε,k .

Furthermore, each gε,k satisfies

gε,k ≡ 0 on K − Cε,k
0 ≤ gε,k ≤ 1 on Dε,k

gε,k ≡ 1 on Cε,k+1

. (29)
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It follows from this that

λ(gε,k) ≥ κ(Cε,k+1) = µ∗(Cε,k+1) (30)

and also that
λ(gε,k) ≤ µ∗(Cε,k) (31)

(because, if we let hε,k = 1 − gε,k, and Eε,k = K − Cε,k, then hε,k ≥ χEε,k ,

and Eε,k is open; since hε,k ≥ χJ for every compact subset J of Eε,k,it
follows that λ(hε,k) ≥ κ(J) for every such J , so λ(hε,k) ≥ µ∗(Eε,k); finally,
µ∗(Eε,k) = µ∗(K) − µ∗(Cε,k), λ(hε,k) = λ(1) − λ(gε,k), and λ(1) = µ∗(K),
so (31) follows).

On the other hand, the inequalities (29) clearly imply that

µ∗(Cε,k+1) ≤
∫
K
gε, k dµ ≤ µ∗(Cε,k) . (32)

It follows from (30), (31), and (32) that the numbers λ(gε,k) and
∫
K gε,k dµ

both belong to the closed interval [µ∗(Cε,k+1), µ
∗(Cε,k)] .

Therefore∣∣∣λ(gε,k)−
∫
K
gε,k dµ

∣∣∣ ≤ µ∗(Cε,k)− µ∗(Cε,k+1) = µ∗(Dε,k) . (33)

Hence ∣∣∣λ(f)−
∫
K
f dµ

∣∣∣ =
∣∣∣λ(ε N∑

k=0

gε,k
)
−
∫
K

(
ε

N∑
k=0

gε,k
)
dµ
∣∣

≤ ε
N∑
k=0

∣∣∣λ(gε,k)− ∫
K
gε,k dµ

∣∣∣
≤ ε

N∑
k=0

µ∗(Dε,k)

= εµ∗(K) .

So ∣∣∣λ(f)−
∫
K
f dµ

∣∣∣ ≤ εµ∗(K)

for arbitrary positive ε. Therefore λ(f) =
∫
K f dµ, and our proof is com-

plete. Q.E.D.


