MATHEMATICS 502 - SPRING 2016
 Theory of functions of a real variable II
 H. J. Sussmann
 NOTES ON FOURIER TRANSFORMS

Contents

1 Gaussian Integrals

2 Fourier Trnasforms

1 The Fourier Inversion Formula 4
2 Plancherel's Theorem 10
3 Fourier trnasforms of functions in L^{2} 11

1 Gaussian Integrals

Theorem 1. If $\alpha \in \mathbb{R}, \beta \in \mathbb{C}$ and $\alpha>0$, then

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-\alpha x^{2}+\beta x} d x=\sqrt{\frac{\pi}{\alpha}} e^{\frac{\beta^{2}}{4 \alpha}} \tag{1.1}
\end{equation*}
$$

Proof. First observe that the integral is convergent, because $\alpha>0$. (This is trivial, but if you want to see a complete proof you can look at the remark at the end of this subsection.)

Next we observe that, for fixed α, the integral of (1.1) is a holomorphic function of the complex variable β, so to prove (1.1) it suffices, by analytic continuation, to assume that β is real.

Let us make the change of variable

$$
\xi=\sqrt{2 \alpha} x-\frac{\beta}{\sqrt{2 \alpha}}
$$

so

$$
\xi^{2}=2 \alpha x^{2}-2 \beta x+\frac{\beta^{2}}{2 \alpha},
$$

and then

$$
-\frac{\xi^{2}}{2}=-\alpha x^{2}+\beta x-\frac{\beta^{2}}{4 \alpha} .
$$

Also, $d \xi=\sqrt{2 \alpha} d x$, so $d x=\frac{d \xi}{\sqrt{2 \alpha}}$, and then

$$
\int_{-\infty}^{\infty} e^{-\alpha x^{2}+\beta x} d x=\frac{1}{\sqrt{2 \alpha}} e^{\frac{\beta^{2}}{4 \alpha}} \int_{-\infty}^{\infty} e^{-\frac{\xi^{2}}{2}} d \xi
$$

If we let

$$
I=\int_{-\infty}^{\infty} e^{-\frac{\xi^{2}}{2}} d \xi,
$$

then

$$
I^{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{\xi^{2}+\eta^{2}}{2}} d \xi d \eta
$$

and the last integral can be done in polar coordinates:

$$
\begin{aligned}
I^{2} & =\iint_{\mathbf{R}^{2}} e^{-\frac{r^{2}}{2}} r d r d \theta \\
& =\int_{0}^{\infty}\left(\int_{0}^{2 \pi} d \theta\right) r e^{-\frac{r^{2}}{2}} d r \\
& =2 \pi \int_{0}^{\infty} r e^{-\frac{r^{2}}{2}} d r \\
& =2 \pi \int_{0}^{\infty}\left(-\frac{d}{d r} e^{-\frac{r^{2}}{2}}\right) d r \\
& =2 \pi .
\end{aligned}
$$

It follows that $I=\sqrt{2 \pi}$, and then

$$
\int_{-\infty}^{\infty} e^{-\alpha x^{2}+\beta x} d x=\frac{1}{\sqrt{2 \alpha}} \times \sqrt{2 \pi} e^{\frac{\beta^{2}}{4 \alpha}}
$$

so

$$
\int_{-\infty}^{\infty} e^{-\alpha x^{2}+\beta x} d x=\sqrt{\frac{\pi}{\alpha}} e^{\frac{\beta^{2}}{4 \alpha}},
$$

as desired.
Q.E.D.

Remark 1. Let us prove the convergence of the integral in (1.1). First, we have the inequality

$$
|\beta x| \leq \frac{1}{2}\left(\alpha x^{2}+\frac{|\beta|^{2}}{\alpha}\right)
$$

using the inequality $a b \leq \frac{a^{2}+b^{2}}{2}$ with $a=\sqrt{\alpha}|x|, b=\frac{|\beta|}{\sqrt{\alpha}}$, so that $a b=|\beta x|$. Then

$$
\begin{aligned}
-\alpha x^{2}+|\beta x| & \leq-\alpha x^{2}+\frac{1}{2}\left(\alpha x^{2}+\frac{|\beta|^{2}}{\alpha}\right) \\
& =-\frac{\alpha x^{2}}{2}+\frac{|\beta|^{2}}{\alpha}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left|e^{-\alpha x^{2}+\beta x}\right| & =e^{-\alpha x^{2}}\left|e^{\beta x}\right| \\
& \leq e^{-\alpha x^{2}} e^{|\beta x|} \\
& \leq e^{-\alpha x^{2}+|\beta x|} \\
& \leq e^{-\frac{\alpha x^{2}}{2}+\frac{|\beta|^{2}}{\alpha}} \\
& =e^{-\frac{\alpha x^{2}}{2}} e^{\frac{|\beta|^{2}}{\alpha}} .
\end{aligned}
$$

And $e^{\frac{\alpha x^{2}}{2}} \geq 1+\frac{\alpha x^{2}}{4}$, because $e^{u} \geq 1+u$ for every nonnegative u, so

$$
e^{-\frac{\alpha x^{2}}{2}} \leq \frac{1}{1+\frac{\alpha x^{2}}{4}}
$$

so the function $x \mapsto e^{-\frac{\alpha x^{2}}{2}}$ is integrable.

2 Fourier Trnasforms

In this section, we define
a. the Fourier transform \hat{f},
and
b. the inverse Fourier transform \check{f},
of a function $f \in L^{1}(\mathbb{R} ; \mathbb{C})$. We do this by letting

$$
\begin{aligned}
\hat{f}(u) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(v) e^{-i u v} d v \\
\check{f}(u) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(v) e^{i u v} d v
\end{aligned}
$$

With the above definitions, it is clear that

Theorem 2. If $f \in L^{1}(\mathbb{R} ; \mathbb{C})$, then \hat{f} and \check{f} are continuous functions on \mathbb{R}, and satisfy

$$
\lim _{|u| \rightarrow \infty} \hat{f}(u)=\lim _{|u| \rightarrow \infty} \check{f}(u)=0,
$$

as well as

$$
\|\hat{f}\|_{L^{\infty}} \leq\|f\|_{L^{1}} \quad \text { and } \quad\|\check{f}\|_{L^{\infty}} \leq\|f\|_{L^{1}} .
$$

Furthermore, $\check{f}(u)=\hat{f}(-u)$ for all $u \in \mathbb{R}$, so that

$$
\check{f}=\mathcal{R} \hat{f}
$$

where \mathcal{R} is the reflection operator, i.e., the map that sends each funtion f on \mathbb{R} to the function $\mathbb{R} \ni u \mapsto f(-u)$.

Proof. All these things are very easy to prove, and were proved in class.

1 The Fourier Inversion Formula

We are now ready to prove the Fourier Inversion Formula for L^{1} functions ${ }^{1}$ We define $\Lambda^{1}(\mathbb{R} ; \mathbb{C})$ to be the space of all functions $f \in L^{1}(\mathbb{R} ; \mathbb{C})$ such that the Fourier transform \hat{f} also belongs to $L^{1}(\mathbb{R} ; \mathbb{C})$.

Theorem 3. Let f be a function belonging to $\Lambda^{1}(\mathbb{R} ; \mathbb{C})$. Then

$$
f=\hat{\hat{f}} . \quad(2.2)
$$

Proof. First of all. the facts that f and \hat{f} belong to L^{1} imply that the integrals in the right-hand sides of the formulas

$$
\begin{aligned}
& \hat{f}(u)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(v) e^{-i u v} d v \\
& \check{\hat{f}}(u)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(v) e^{-i u v} d v
\end{aligned}
$$

[^0]exist for each u, and are bounded continuous functions of u.
Furthermore, if $u \in \mathbb{R}$, then
$$
\dot{\hat{f}}(u)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(v) e^{i u v} d v
$$

Let

$$
\begin{equation*}
g_{\varepsilon}(u)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\varepsilon v^{2}} \hat{f}(v) e^{i u v} d v \tag{2.3}
\end{equation*}
$$

Then it is clear that

$$
\begin{equation*}
\lim _{\varepsilon \downarrow 0} g_{\varepsilon}(u)=\check{\hat{f}}(u), \tag{2.4}
\end{equation*}
$$

because the functions $\mathbb{R} \ni v \mapsto e^{-\varepsilon v^{2}} \hat{f}(v) e^{i u v}$ converge pointwise to the function $\mathbb{R} \ni v \mapsto \hat{f}(v) e^{i u v}$ and are uniformly dominated by the integrable function $|\hat{f}|$.

It follows from (2.3) that

$$
\begin{aligned}
g_{\varepsilon}(u) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(w) e^{-i v w} d w\right) e^{-\varepsilon v^{2}} e^{i u v} d v \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\varepsilon v^{2}} e^{i v(u-w)} f(w) d w d v \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(w)\left(\int_{-\infty}^{\infty} e^{-\varepsilon v^{2}} e^{i v(u-w)} d v\right) d w,
\end{aligned}
$$

where the changes of the orders of integration are justified because the absolute value of the function of two variables

$$
\mathbb{R}^{2} \ni(v, w) \mapsto e^{-\varepsilon v^{2}} e^{i v(u-w)} f(w)
$$

is $e^{-\varepsilon v^{2}}|f(w)|$, which is an integrable function on \mathbb{R}^{2}.
The integral

$$
J(u, w)=\int_{-\infty}^{\infty} e^{-\varepsilon v^{2}} e^{i v(u-w)} d v
$$

can be computed using Formula (1.1) (with $\alpha=\varepsilon$ and $\beta=i(u-w)$), and we get

$$
J(u, w)=\sqrt{\frac{\pi}{\varepsilon}} e^{-\frac{(u-w)^{2}}{4 \varepsilon}} .
$$

It follows that

$$
g_{\varepsilon}(u)=\sqrt{\frac{\pi}{\varepsilon}} \times \frac{1}{2 \pi} \int_{-\infty}^{\infty} f(w) e^{-\frac{(u-w)^{2}}{4 \varepsilon}} d w,
$$

so

$$
g_{\varepsilon}(u)=\frac{1}{2 \sqrt{\pi \varepsilon}} \int_{-\infty}^{\infty} f(w) e^{-\frac{(u-w)^{2}}{4 \varepsilon}} d w
$$

and then, making the change of variables

$$
\xi=\frac{u-w}{2 \sqrt{\varepsilon}}
$$

so that

$$
\begin{gathered}
d \xi=-\frac{d w}{2 \sqrt{\varepsilon}} \\
d w=-2 \sqrt{\varepsilon} d \xi \\
w=u-2 \sqrt{\varepsilon} \xi
\end{gathered}
$$

and

$$
\frac{(u-w)^{2}}{4 \varepsilon}=\xi^{2}
$$

we find

$$
g_{\varepsilon}(u)=\frac{1}{2 \sqrt{\pi \varepsilon}} \times 2 \sqrt{\varepsilon} \int_{-\infty}^{\infty} f(u-2 \sqrt{\varepsilon} \xi) e^{-\xi^{2}} d \xi
$$

so

$$
g_{\varepsilon}(u)=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} f(u-2 \sqrt{\varepsilon} \xi) e^{-\xi^{2}} d \xi
$$

We can compute the integral $\int_{-\infty}^{\infty} e^{-\xi^{2}} d \xi$ using (1.1), and get

$$
\int_{-\infty}^{\infty} e^{-\xi^{2}} d \xi=\sqrt{\pi}
$$

so

$$
\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\xi^{2}} d \xi=1
$$

Therefore,

$$
g_{\varepsilon}(u)-f(u)=\frac{1}{\sqrt{\pi}}=\int_{-\infty}^{\infty}(f(u-2 \sqrt{\varepsilon} \xi)-f(u)) e^{-\xi^{2}} d \xi
$$

Hence

$$
\left|g_{\varepsilon}(u)-f(u)\right| \leq \frac{1}{\sqrt{\pi}}=\int_{-\infty}^{\infty}|f(u-2 \sqrt{\varepsilon} \xi)-f(u)| e^{-\xi^{2}} d \xi
$$

If we now integrate this with respect to u, we get

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|g_{\varepsilon}(u)-f(u)\right| d u \leq \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|f(u-2 \sqrt{\varepsilon} \xi)-f(u)| e^{-\xi^{2}} d \xi d u \tag{2.5}
\end{equation*}
$$

The double integral in the above inequality makes sense because the integrand is positive, and satisfies the inequality

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|f(u-2 \sqrt{\varepsilon} \xi)-f(u)| e^{-\xi^{2}} d \xi d u \leq \int_{-\infty}^{\infty} \theta(2 \sqrt{\varepsilon} \xi) e^{-\xi^{2}} d \xi
$$

where we define

$$
\theta(h)=\int_{-\infty}^{\infty}|f(u+h)-f(u)| d u
$$

Clearly, $\theta(h)=\left\|\tau_{h}(f)-f\right\|_{L^{1}}$, where $\tau_{h}(f)$ is the h-translate of f, i.e., the function $\mathbb{R} \ni u \mapsto f(u+h)$.

Inequality (2.5) says that

$$
\begin{equation*}
\left\|g_{\varepsilon}-f\right\|_{L^{1}} \leq \int_{-\infty}^{\infty} \theta(2 \sqrt{\varepsilon} \xi) e^{-\xi^{2}} d \xi \tag{2.6}
\end{equation*}
$$

It is clear that $\theta(h) \leq 2\|f\|_{L^{1}}$ for every h. Therefore the functions

$$
\begin{equation*}
\mathbb{R} \ni \xi \mapsto \theta(2 \sqrt{\varepsilon} \xi) e^{-\xi^{2}} \tag{2.7}
\end{equation*}
$$

are uniformly dominated by the integrable function

$$
\mathbb{R} \ni \xi \mapsto 2\|f\|_{L^{1}} e^{-\xi^{2}}
$$

We now use the fact that θ is continuous (proved below, as Lemma (1)) to conclude that the functions (2.7) converge pointwise to $\theta(0) e^{-\xi^{2}}$ as $\varepsilon \downarrow 0$.

Since $\theta(0)=0$, the functions (2.7) converge pointwise to zero. It the follows from the Lenesgue dominated convergence theorem that

$$
\lim _{\varepsilon \downarrow 0} \int_{-\infty}^{\infty} \theta(2 \sqrt{\varepsilon} \xi) e^{-\xi^{2}} d \xi=0
$$

Thefeore (2.6) implies that

$$
\lim _{\varepsilon \downarrow 0}\left\|g_{\varepsilon}-f\right\|_{L^{1}}=0
$$

So the functions g_{ε} converge to f in L^{1}. But Equation (2.4) says that the g_{ε} converge pointwise to $\check{\hat{f}}$. Hence $f=\check{\hat{f}}$, and our conclusion is proved. Q.E.D.

Lemma 1. If $f \in L^{1}(\mathbb{R} ; \mathbb{C})$, then the translations $\tau_{h}(f)$ depend continuously on h. That is, the function

$$
\begin{equation*}
\mathbb{R} \ni h \mapsto \tau_{h}(f) \in L^{1}(\mathbb{R} ; \mathbb{C}) \tag{2.8}
\end{equation*}
$$

is continous. Furthermore, the function (2.8) is actually uniformly continuous.

In particular, if we let $\theta(h)=\left\|\tau_{h}(f)-f\right\|_{L^{1}}$, then θ is a continuous function.

Proof. First assume that f is a continuous compactly supported function. Then f is uniformly continuous. Therefore, if ε^{\prime} is an arbitrary positive number, there exists a positive δ such that

1. $\delta \leq 1$,
2. $|f(x+h)-f(x)|<\varepsilon^{\prime}$ whenever $x, h \in \mathbb{R}$ and $|h|<\delta$.

If $|h|<\delta$, and L is such that the support of f is contained in the interval $[-L, L]$, then

$$
\left\|\tau_{h}(f)-f\right\|_{L^{1}}=\int_{-\infty}^{\infty}|f(x+h)-f(x)| d x \leq 2(L+1) \varepsilon^{\prime},
$$

because the integrand is always bounded by ε^{\prime}, and vanishes whenever $|x|>$ $L+1$.

Therefore, if $\varepsilon>0$, and we choose ε^{\prime} such that $2(L+1) \varepsilon^{\prime} \leq \varepsilon$, we find that

$$
\left\|\tau_{h}(f)-f\right\|_{L^{1}} \leq \varepsilon \quad \text { whenever } \quad|h|<\delta .
$$

It follows that

$$
\left\|\tau_{h_{1}}(f)-\tau_{h_{2}}(f)\right\|_{L^{1}} \leq \varepsilon \quad \text { whenever } \quad\left|h_{1}-h_{2}\right|<\delta,
$$

because

$$
\left\|\tau_{h_{1}}(f)-\tau_{h_{2}}(f)\right\|_{L^{1}}=\left\|\tau_{h_{2}}\left(\tau_{h_{1}-h_{2}}(f)-f\right)\right\|_{L^{1}}=\left\|\tau_{h_{1}-h_{2}}(f)-f\right\|_{L^{1}}
$$

in view of the trabslation-invariance of the L^{1} norm.
Now, if f is a general L^{1} function, and $\varepsilon>0$, we can find a continuous compactly supported function g such that $\|f-g\|_{L^{1}}<\frac{\varepsilon}{3}$. Then

$$
\left\|\tau_{h}(f)-\tau_{h}(g)\right\|_{L^{1}}<\frac{\varepsilon}{3} \quad \text { for every } h .
$$

We then find a positive δ such that

$$
\left\|\tau_{h_{1}}(g)-\tau_{h_{2}}(g)\right\|_{L^{1}} \leq \frac{\varepsilon}{3} \quad \text { whenever } \quad\left|h_{1}-h_{2}\right|<\delta
$$

It then follows that, if $\left|h_{1}-h_{2}\right|<\delta$, the inequality

$$
\left\|\tau_{h_{1}}(f)-\tau_{h_{2}}(f)\right\|_{L^{1}} \leq \varepsilon
$$

holds, because

$$
\begin{gathered}
\left\|\tau_{h_{1}}(f)-\tau_{h_{2}}(f)\right\|_{L^{1}} \leq\left\|\tau_{h_{1}}(f)-\tau_{h_{1}}(g)\right\|_{L^{1}}+\left\|\tau_{h_{1}}(g)-\tau_{h_{2}}(g)\right\|_{L^{1}} \\
+\left\|\tau_{h_{2}}(g)-\tau_{h_{2}}(f)\right\|_{L^{1}}
\end{gathered}
$$

Hence the function (2.8) is uniformly continuous, and our proof is complete. Q.E.D.

Corollary 1. If $f \in \Lambda^{1}(\mathbb{R} ; \mathbb{C})$ then

1. Both f and \hat{f} are continuous functions on \mathbb{R} that go to zero at infinity.
2. $\|\hat{f}\|_{L^{\infty}} \leq\|f\|_{L^{1}}$ and $\|f\|_{L^{\infty}} \leq\|\hat{f}\|_{L^{1}}$.
3. Both f and \hat{f} belong to $L^{2}(\mathbb{R} ; \mathbb{C})$.

Proof. We already know that \hat{f} and $\check{\hat{f}}$ are continuous functions that go to zero at infinity, and that $\|\hat{f}\|_{L^{\infty}} \leq\|f\|_{L^{1}}$ and $\|\hat{f}\|_{L^{\infty}} \leq\|\hat{f}\|_{L^{1}}$. But now we know in addition that $\check{\hat{f}}=f$. Hence f is a continuous function that goes to zero at infinity, and $\|f\|_{L^{\infty}} \leq\|\hat{f}\|_{L^{1}}$.

Finally, the fact that f and \hat{f} belong to L^{2} follows by interpolation from the fact that both functions belong to $L^{1} \cap L^{\infty}$. (That is, $\int|f|^{2} \leq$ $\|f\|_{L^{1}}\|f\|_{L^{\infty}}$, so $\int|f|^{2}<\infty$, and similarly for \hat{f}.)
Q.E.D.

2 Plancherel's Theorem

Now that we know that the functions f and \hat{f} belong to L^{2} whenever $f \in$ Λ^{1}, we can go one step further and prove the very important Plancherel theorem:

Theorem 4. If $f \in \Lambda^{1}(\mathbb{R} ; \mathbb{C})$ then

$$
\|\hat{f}\|_{L^{2}}=\|f\|_{L^{2}}
$$

Proof. First observe that, if f and g belong to Λ^{1}, then

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(x) \overline{\tilde{g}(x)} d x=\int_{-\infty}^{\infty} \hat{f}(x) \overline{g(x)} d x \tag{2.10}
\end{equation*}
$$

To see this, we compute

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f(x) \overline{\bar{g}(x)} d x=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) \overline{\int_{-\infty}^{\infty} g(y) e^{i x y} d y} d x \\
& \left.=\frac{1}{\sqrt{2 \pi}} \iint\right)_{\mathbf{R}^{2}} f(x) \overline{g(y) e^{i x y}} d y d x \\
& \left.=\frac{1}{\sqrt{2 \pi}} \iint\right)_{\mathbf{R}^{2}} f(x) e^{-i x y} \overline{g(y)} d y d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} f(x) e^{-i x y} d x\right) \overline{g(y)} d y \\
& =\int_{-\infty}^{\infty} \hat{f}(y) \overline{g(y)} d y \text {. }
\end{aligned}
$$

This proves (2.10). If we then apply (2.10) with $g=\hat{f}$, we get

$$
\int_{-\infty}^{\infty} f(x) \overline{\hat{f}(x)} d x=\int_{-\infty}^{\infty} \hat{f}(x) \overline{\hat{f}(x)} d x
$$

Since $\check{\hat{f}}=f$, we may conclude that

$$
\int_{-\infty}^{\infty} f(x) \overline{f(x)} d x=\int_{-\infty}^{\infty} \hat{f}(x) \overline{\hat{f}(x)} d x
$$

that is,

$$
\int_{-\infty}^{\infty}|f(x)|^{2} d x=\int_{-\infty}^{\infty}|\hat{f}(x)|^{2} d x
$$

which is the desired identity.
Q.E.D.

3 Fourier trnasforms of functions in L^{2}

We have shown that Λ^{1} is a subspace of L^{2} and the Fourier transform map $\Lambda^{1} \ni f \mapsto \hat{f}$ maos Λ^{1} to Λ^{1} and satisfies $\|\hat{f}\|_{L^{2}}=\|f\|_{L^{2}}$ for all $f \in \Lambda^{1}$. It is easy to see that Λ^{1} is a dense subspace of L^{2}. (For example, the space \mathcal{S} od rapidly decreasing C^{∞} functions is conatined in Λ^{1} and is dense in L^{2}.) Hence the Fourier transform map can be extended to a map $\mathcal{F}: L^{2} \mapsto L^{2}$, and this map also satisfies $\|\mathcal{F}(f)\|_{l^{2}}=\|f\|_{L^{2}}$. In other words, \mathcal{F} is an isometric map from L^{2} to L^{2}.

We will now go back to our initial notation, and write \hat{f} for $\mathcal{F}(f)$ and \check{f} for $\mathcal{R}(\mathcal{F}(f))$. (Recall that \mathcal{R} os the reflection map, that sends a function f to the function $x \mapsto f(-x)$.)

The formulas

$$
\begin{equation*}
\check{\hat{f}}=f \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\hat{f}\|_{L^{2}}=\|f\|_{L^{2}} \tag{2.12}
\end{equation*}
$$

that were proved for $f \in \Lambda^{1}$, extend by contimnuity to all of L^{2}. The Fourier inversion formula (2.11) says that

$$
\mathcal{F} \circ \mathcal{F}=\mathcal{R} .
$$

Since $\mathcal{R}^{2}=$ identity, it follows that

$$
\begin{equation*}
\mathcal{F}^{4}=\text { identity } . \tag{2.13}
\end{equation*}
$$

It is important to note thet. for a general function in L^{2}, the formula

$$
\hat{f}(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(y) e^{-i c y} d y
$$

is no longer valid as written, because f need not be integrable, so the intefral need not exist.

What is true, however, is that \hat{f} is the L^{2}-limit of \hat{f}_{L} as $L \rightarrow \infty$, where \hat{f}_{L} is the Fourier transform of $\chi_{[-L, L]} f$, because $\chi_{[-L, L]} f \rightarrow f$ in L^{2} as $L \rightarrow \infty$. Furthermnore, the functions $\chi_{[-L, L]} f$ are in L^{1}, so their Fourier transforms are given by the integral fornula. And the same is true for rthe inverse Fourier transform. So we get the following Fourier transform formulas:

$$
\begin{align*}
\hat{f} & =L^{2}-\lim _{L \rightarrow \infty} \hat{f}_{L} \tag{2.14}\\
\hat{f}_{L}(x) & =\frac{1}{\sqrt{2 \pi}} \int_{-L}^{L} f(y) e^{-i x y} d y \tag{2.15}\\
\check{f} & =L^{2}-\lim _{L \rightarrow \infty} \check{f}_{L} \tag{2.16}\\
\check{f}_{L}(x) & =\frac{1}{\sqrt{2 \pi}} \int_{-L}^{L} f(y) e^{i x y} d y \tag{2.17}\\
\check{\hat{f}} & =f \tag{2.18}\\
\|\hat{f}\|_{L^{2}} & =\|f\|_{L^{2}} \tag{2.19}
\end{align*}
$$

valid for $f \in L^{2}(\mathbb{R} ; \mathbb{C})$.
Formulas (2.14) and (2.16) aare sometimes written in the form

$$
\hat{f}(x)=\frac{1}{\sqrt{2 \pi}} \lim _{L \rightarrow \infty} \int_{-L}^{L} f(y) e^{-i x y} d y
$$

and

$$
\check{f}(x)=\frac{1}{\sqrt{2 \pi}} \lim _{L \rightarrow \infty} \int_{-L}^{L} f(y) e^{i x y} d y
$$

with the understanding that the limits are not pointwise limits, for every x, but limits in L^{2} of functions of $x /$

[^0]: ${ }^{1}$ As will become clear soon, there are versions of the Fourier Inversion Formula for L^{2} functions, and for tempered distributions.

