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1 Gaussian Integrals

Theorem 1. If α ∈ IR, β ∈ C and α > 0, then

∫ ∞

−∞
e−αx2+βxdx =

√
π

α
e

β2
4α . (1.1)

Proof. First observe that the integral is convergent, because α > 0. (This is
trivial, but if you want to see a complete proof you can look at the remark
at the end of this subsection.)

Next we observe that, for fixed α, the integral of (1.1) is a holomorphic
function of the complex variable β, so to prove (1.1) it suffices, by analytic
continuation, to assume that β is real.

Let us make the change of variable

ξ =
√

2αx− β√
2α

,

so

ξ2 = 2αx2 − 2βx +
β2

2α
,
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and then

−ξ2

2
= −αx2 + βx− β2

4α
.

Also, dξ =
√

2α dx, so dx = dξ√
2α

, and then∫ ∞

−∞
e−αx2+βxdx =

1√
2α

e
β2

4α

∫ ∞

−∞
e−

ξ2

2 dξ .

If we let

I =

∫ ∞

−∞
e−

ξ2

2 dξ ,

then

I2 =

∫ ∞

−∞

∫ ∞

−∞
e−

ξ2+η2

2 dξ dη ,

and the last integral can be done in polar coordinates:

I2 =

∫ ∫
IR2

e−
r2

2 r dr dθ

=

∫ ∞

0

( ∫ 2π

0

dθ
)
re−

r2

2 dr

= 2π

∫ ∞

0

re−
r2

2 dr

= 2π

∫ ∞

0

(
− d

dr
e−

r2

2

)
dr

= 2π .

It follows that I =
√

2π, and then∫ ∞

−∞
e−αx2+βxdx =

1√
2α

×
√

2πe
β2

4α

so ∫ ∞

−∞
e−αx2+βxdx =

√
π

α
e

β2

4α ,

as desired. Q.E.D.

Remark 1. Let us prove the convergence of the integral in (1.1). First, we
have the inequality

|βx| ≤ 1

2

(
αx2 +

|β|2

α

)
,
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using the inequality ab ≤ a2+b2

2
with a =

√
α|x|, b = |β|√

α
, so that ab = |βx|.

Then

−αx2 + |βx| ≤ −αx2 +
1

2

(
αx2 +

|β|2

α

)
= −αx2

2
+
|β|2

α
.

Hence

|e−αx2+βx| = e−αx2|eβx|
≤ e−αx2

e|βx|

≤ e−αx2+|βx|

≤ e−
αx2

2
+
|β|2

α

= e−
αx2

2 e
|β|2

α .

And e
αx2

2 ≥ 1 + αx2

4
, because eu ≥ 1 + u for every nonnegative u, so

e−
αx2

2 ≤ 1

1 + αx2

4

,

so the function x 7→ e−
αx2

2 is integrable.

2 Fourier Trnasforms

In this section, we define

a. the Fourier transform f̂ ,

and

b. the inverse Fourier transform f̌ ,

of a function f ∈ L1(IR; C). We do this by letting

f̂(u) =
1√
2π

∫ ∞

−∞
f(v)e−iuvdv ,

f̌(u) =
1√
2π

∫ ∞

−∞
f(v)eiuvdv .

With the above definitions, it is clear that
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Theorem 2. If f ∈ L1(IR; C), then f̂ and f̌ are continuous functions on IR,
and satisfy

lim
|u|→∞

f̂(u) = lim
|u|→∞

f̌(u) = 0 ,

as well as
‖f̂‖L∞ ≤ ‖f‖L1 and ‖f̌‖L∞ ≤ ‖f‖L1 .

Furthermore, f̌(u) = f̂(−u) for all u ∈ IR, so that

f̌ = Rf̂ ,

where R is the reflection operator, i.e., the map that sends each funtion f
on IR to the function IR 3 u 7→ f(−u).

Proof. All these things are very easy to prove, and were proved in class.

1 The Fourier Inversion Formula

We are now ready to prove the Fourier Inversion Formula for L1 functions1

We define Λ1(IR; C) to be the space of all functions f ∈ L1(IR; C) such that
the Fourier transform f̂ also belongs to L1(IR; C).

Theorem 3. Let f be a function belonging to Λ1(IR; C). Then

f =
ˇ̂
f . (2.2)

Proof. First of all. the facts that f and f̂ belong to L1 imply that the
integrals in the right-hand sides of the formulas

f̂(u) =
1√
2π

∫ ∞

−∞
f(v)e−iuvdv ,

ˇ̂
f(u) =

1√
2π

∫ ∞

−∞
f̂(v)e−iuvdv ,

1As will become clear soon, there are versions of the Fourier Inversion Formula for L2

functions, and for tempered distributions.
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exist for each u, and are bounded continuous functions of u.
Furthermore, if u ∈ IR, then

ˇ̂
f(u) =

1√
2π

∫ ∞

−∞
f̂(v)eiuvdv .

Let

gε(u) =
1√
2π

∫ ∞

−∞
e−εv2

f̂(v)eiuvdv . (2.3)

Then it is clear that
lim
ε↓0

gε(u) =
ˇ̂
f(u) , (2.4)

because the functions IR 3 v 7→ e−εv2
f̂(v)eiuv converge pointwise to the

function IR 3 v 7→ f̂(v)eiuv and are uniformly dominated by the integrable
function |f̂ |.

It follows from (2.3) that

gε(u) =
1√
2π

∫ ∞

−∞

( 1√
2π

∫ ∞

−∞
f(w)e−ivw dw

)
e−εv2

eiuvdv

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
e−εv2

eiv(u−w)f(w) dw dv

=
1

2π

∫ ∞

−∞
f(w)

( ∫ ∞

−∞
e−εv2

eiv(u−w) dv
)
dw ,

where the changes of the orders of integration are justified because the ab-
solute value of the function of two variables

IR2 3 (v, w) 7→ e−εv2

eiv(u−w)f(w)

is e−εv2|f(w)|, which is an integrable function on IR2.
The integral

J(u, w) =

∫ ∞

−∞
e−εv2

eiv(u−w) dv

can be computed using Formula (1.1) (with α = ε and β = i(u − w)), and
we get

J(u, w) =

√
π

ε
e−

(u−w)2

4ε .
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It follows that

gε(u) =

√
π

ε
× 1

2π

∫ ∞

−∞
f(w)e−

(u−w)2

4ε dw ,

so

gε(u) =
1

2
√

πε

∫ ∞

−∞
f(w)e−

(u−w)2

4ε dw ,

and then, making the change of variables

ξ =
u− w

2
√

ε
,

so that

dξ = − dw

2
√

ε
,

dw = −2
√

εdξ ,

w = u− 2
√

εξ ,

and
(u− w)2

4ε
= ξ2 ,

we find

gε(u) =
1

2
√

πε
× 2

√
ε

∫ ∞

−∞
f(u− 2

√
εξ)e−ξ2

dξ ,

so

gε(u) =
1√
π

∫ ∞

−∞
f(u− 2

√
εξ)e−ξ2

dξ .

We can compute the integral
∫∞
−∞ e−ξ2

dξ using (1.1), and get∫ ∞

−∞
e−ξ2

dξ =
√

π ,

so
1√
π

∫ ∞

−∞
e−ξ2

dξ = 1 .

Therefore,

gε(u)− f(u) =
1√
π

=

∫ ∞

−∞

(
f(u− 2

√
εξ)− f(u)

)
e−ξ2

dξ .
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Hence

|gε(u)− f(u)| ≤ 1√
π

=

∫ ∞

−∞

∣∣∣f(u− 2
√

εξ)− f(u)
∣∣∣e−ξ2

dξ .

If we now integrate this with respect to u, we get∫ ∞

−∞
|gε(u)− f(u)|du ≤ 1√

π

∫ ∞

−∞

∫ ∞

−∞

∣∣∣f(u− 2
√

εξ)− f(u)
∣∣∣e−ξ2

dξ du . (2.5)

The double integral in the above inequality makes sense because the integrand
is positive, and satisfies the inequality∫ ∞

−∞

∫ ∞

−∞

∣∣∣f(u− 2
√

εξ)− f(u)
∣∣∣e−ξ2

dξ du ≤
∫ ∞

−∞
θ(2
√

εξ)e−ξ2

dξ ,

where we define

θ(h) =

∫ ∞

−∞
|f(u + h)− f(u)|du .

Clearly, θ(h) = ‖τh(f) − f‖L1 , where τh(f) is the h-translate of f , i.e., the
function IR 3 u 7→ f(u + h).

Inequality (2.5) says that

‖gε − f‖L1 ≤
∫ ∞

−∞
θ(2
√

εξ)e−ξ2

dξ . (2.6)

It is clear that θ(h) ≤ 2‖f‖L1 for every h. Therefore the functions

IR 3 ξ 7→ θ(2
√

εξ)e−ξ2

(2.7)

are uniformly dominated by the integrable function

IR 3 ξ 7→ 2‖f‖L1e−ξ2

.

We now use the fact that θ is continuous (proved below, as Lemma (1)) to
conclude that the functions (2.7) converge pointwise to θ(0)e−ξ2

as ε ↓ 0.
Since θ(0) = 0, the functions (2.7) converge pointwise to zero. It the

follows from the Lenesgue dominated convergence theorem that

lim
ε↓0

∫ ∞

−∞
θ(2
√

εξ)e−ξ2

dξ = 0 .
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Thefeore (2.6) implies that

lim
ε↓0
‖gε − f‖L1 = 0 .

So the functions gε converge to f in L1. But Equation (2.4) says that the gε

converge pointwise to
ˇ̂
f . Hence f =

ˇ̂
f , and our conclusion is proved. Q.E.D.

Lemma 1. If f ∈ L1(IR; C), then the translations τh(f) depend continuously
on h. That is, the function

IR 3 h 7→ τh(f) ∈ L1(IR; C) (2.8)

is continous. Furthermore, the function (2.8) is actually uniformly continu-
ous.

In particular, if we let θ(h) = ‖τh(f) − f‖L1, then θ is a continuous
function.

Proof. First assume that f is a continuous compactly supported function.
Then f is uniformly continuous. Therefore, if ε′ is an arbitrary positive
number, there exists a positive δ such that

1. δ ≤ 1,

2. |f(x + h)− f(x)| < ε′ whenever x, h ∈ IR and |h| < δ.

If |h| < δ, and L is such that the support of f is contained in the interval
[−L, L], then

‖τh(f)− f‖L1 =

∫ ∞

−∞
|f(x + h)− f(x)|dx ≤ 2(L + 1)ε′ ,

because the integrand is always bounded by ε′, and vanishes whenever |x| >
L + 1.

Therefore, if ε > 0, and we choose ε′ such that 2(L + 1)ε′ ≤ ε, we find
that

‖τh(f)− f‖L1 ≤ ε whenever |h| < δ .

It follows that

‖τh1(f)− τh2(f)‖L1 ≤ ε whenever |h1 − h2| < δ ,
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because

‖τh1(f)− τh2(f)‖L1 =
∥∥∥τh2

(
τh1−h2(f)− f

)∥∥∥
L1

= ‖τh1−h2(f)− f‖L1 ,

in view of the trabslation-invariance of the L1 norm.
Now, if f is a general L1 function, and ε > 0, we can find a continuous

compactly supported function g such that ‖f − g‖L1 < ε
3
. Then

‖τh(f)− τh(g)‖L1 <
ε

3
for every h .

We then find a positive δ such that

‖τh1(g)− τh2(g)‖L1 ≤ ε

3
whenever |h1 − h2| < δ ,

It then follows that, if |h1 − h2| < δ, the inequality

‖τh1(f)− τh2(f)‖L1 ≤ ε

holds, because

‖τh1(f)− τh2(f)‖L1 ≤ ‖τh1(f)− τh1(g)‖L1 + ‖τh1(g)− τh2(g)‖L1

+‖τh2(g)− τh2(f)‖L1 .

Hence the function (2.8) is uniformly continuous, and our proof is complete.
Q.E.D.

Corollary 1. If f ∈ Λ1(IR; C) then

1. Both f and f̂ are continuous functions on IR that go to zero at infinity.

2. ‖f̂‖L∞ ≤ ‖f‖L1 and ‖f‖L∞ ≤ ‖f̂‖L1.

3. Both f and f̂ belong to L2(IR; C).

Proof. We already know that f̂ and
ˇ̂
f are continuous functions that go to

zero at infinity, and that ‖f̂‖L∞ ≤ ‖f‖L1 and ‖ ˇ̂
f‖L∞ ≤ ‖f̂‖L1 . But now we

know in addition that
ˇ̂
f = f . Hence f is a continuous function that goes to

zero at infinity, and ‖f‖L∞ ≤ ‖f̂‖L1 .
Finally, the fact that f and f̂ belong to L2 follows by interpolation

from the fact that both functions belong to L1 ∩ L∞. (That is,
∫
|f |2 ≤

‖f‖L1‖f‖L∞ , so
∫
|f |2 < ∞, and similarly for f̂ .) Q.E.D.
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2 Plancherel’s Theorem

Now that we know that the functions f and f̂ belong to L2 whenever f ∈
Λ1, we can go one step further and prove the very important Plancherel
theorem:

Theorem 4. If f ∈ Λ1(IR; C) then

‖f̂‖L2 = ‖f‖L2 . (2.9)

Proof. First observe that, if f and g belong to Λ1, then∫ ∞

−∞
f(x)ǧ(x)dx =

∫ ∞

−∞
f̂(x)g(x)dx , (2.10)

To see this, we compute∫ ∞

−∞
f(x)ǧ(x)dx =

1√
2π

∫ ∞

−∞
f(x)

∫ ∞

−∞
g(y)eixydydx

=
1√
2π

∫ ∫
)IR2f(x)g(y)eixydydx

=
1√
2π

∫ ∫
)IR2f(x)e−ixyg(y)dydx

=
1√
2π

∫ ∞

−∞

( ∫ ∞

−∞
f(x)e−ixydx

)
g(y)dy

=

∫ ∞

−∞
f̂(y)g(y)dy .

This proves (2.10). If we then apply (2.10) with g = f̂ , we get∫ ∞

−∞
f(x)

ˇ̂
f(x)dx =

∫ ∞

−∞
f̂(x)f̂(x)dx .

Since
ˇ̂
f = f , we may conclude that∫ ∞

−∞
f(x)f(x)dx =

∫ ∞

−∞
f̂(x)f̂(x)dx ,
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that is, ∫ ∞

−∞
|f(x)|2dx =

∫ ∞

−∞
|f̂(x)|2dx ,

which is the desired identity. Q.E.D.

3 Fourier trnasforms of functions in L2

We have shown that Λ1 is a subspace of L2 and the Fourier transform map
Λ1 3 f 7→ f̂ maos Λ1 to Λ1 and satisfies ‖f̂‖L2 = ‖f‖L2 for all f ∈ Λ1. It is
easy to see that Λ1 is a dense subspace of L2. (For example, the space S od
rapidly decreasing C∞ functions is conatined in Λ1 and is dense in L2.) Hence
the Fourier transform map can be extended to a map F : L2 7→ L2, and this
map also satisfies ‖F(f)‖l2 = ‖f‖L2 . In other words, F is an isometric map
from L2 to L2.

We will now go back to our initial notation, and write f̂ for F(f) and f̌
for R(F(f)). (Recall that R os the reflection map, that sends a function f
to the function x 7→ f(−x).)

The formulas
ˇ̂
f = f , (2.11)

and
‖f̂‖L2 = ‖f‖L2 , (2.12)

that were proved for f ∈ Λ1, extend by contimnuity to all of L2. The Fourier
inversion formula (2.11) says that

F ◦ F = R .

Since R2 = identity, it follows that

F4 = identity . (2.13)

It is important to note thet. for a general function in L2, the formula

f̂(x) =
1√
2π

∫ ∞

−∞
f(y)e−icydy

is no longer valid as written, because f need not be integrable, so the intefral
need not exist.
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What is true, however, is that f̂ is the L2-limit of f̂L as L →∞, where f̂L

is the Fourier transform of χ[−L,L]f , because χ[−L,L]f → f in L2 as L →∞.
Furthermnore, the functions χ[−L,L]f are in L1, so their Fourier transforms
are given by the integral fornula. And the same is true for rthe inverse Fourier
transform. So we get the following Fourier transform formulas:

f̂ = L2− lim
L→∞

f̂L , (2.14)

f̂L(x) =
1√
2π

∫ L

−L

f (y)e−ixydy , (2.15)

f̌ = L2− lim
L→∞

f̌L , (2.16)

f̌L(x) =
1√
2π

∫ L

−L

f (y)eixydy , (2.17)

ˇ̂
f = f , (2.18)

‖f̂‖L2 = ‖f‖L2 , (2.19)

valid for f ∈ L2(IR; C).
Formulas (2.14) and (2.16) aare sometimes written in the form

f̂(x) =
1√
2π

lim
L→∞

∫ L

−L

f(y)e−ixydy ,

and

f̌(x) =
1√
2π

lim
L→∞

∫ L

−L

f(y)eixydy ,

with the understanding that the limits are not pointwise limits, for
every x, but limits in L2 of functions of x/


