MATHEMATICS 300 — SPRING 2015

Introduction to Mathematical Reasoning

H. J. Sussmann INSTRUCTOR'S NOTES

BASED ON THE FEBRUARY 27 LECTURE BY PROF. LISA CARBONE

1 More on the natural numbers and induction

Recall that a natural number n is <u>even</u> if there exists $k \in \mathbb{N}$ such that n = 2k. Similarly n is <u>odd</u> if there exists $k \in \mathbb{N}$ such that n = 2k - 1.

Theorem 1. Every natural number is either even or odd.

Proof. Let P(n) be the statement "n is either even or odd", for natural numbers n. We want to prove that $(\forall n \in \mathbb{N})P(n)$.

We will prove this by induction. For this purpose, we will prove that P(1) and that $(\forall n)(P(n) \Longrightarrow P(n+1))$.

Base case. P(1) is true, because P(1) says that "1 is even or odd", and that is true because 1 is odd.

Inductive step. We prove that $(\forall n \in \mathbb{N})(P(n) \Longrightarrow P(n+1))$.

Let n ne an arbitrary natural number.

We want to prove that $P(n) \Longrightarrow P(n+1)$. To prove this, we assume P(n) and prove P(n+1).

So assume that P(n) is true. Then n is even or n is odd. To prove that P(n + 1) is true, we consider the cases when n is even and when nis odd. If n is even, then we may pick $k \in \mathbb{N}$ such that n = 2k. Then n+1 = 2k+1 = 2(k+1)-1, and $k+1 \in \mathbb{N}$. So n+1 is odd. Hence n+1is even or odd, so P(n+1) is true. If n is odd, then we may pick $k \in \mathbb{N}$ such that n = 2k - 1, so n + 1 = 2k, and then n + 1 is even, so n + 1 is even or odd, so P(n+1) is odd.

So we have proved that P(n+1) is true in both cases, so P(n+1) is true.

Since we have proved P(n + 1) assuming P(n), we have shown that $P(n) \Longrightarrow P(n + 1)$. Since this has been established for arbitrary $n \in \mathbb{N}$, we have proved that $(\forall n \in \mathbb{N})(P(n) \Longrightarrow P(n + 1))$. This concludes the inductive step.

Hence, by the PMI, P(n) is true for all $n \in \mathbb{N}$. Q.E.D.

Theorem 2. If n is a natural number and $n \neq 1$ then n - 1 is a natural number.

Proof. For $n \in \mathbb{N}$, let P(n) be the statement " $n \neq 1 \Longrightarrow n - 1 \in \mathbb{N}$ ". We want to prove that $(\forall n \in \mathbb{N})P(n)$.

We will prove this by induction. For this purpose, we will prove that P(1) and that $(\forall n)(P(n) \Longrightarrow P(n+1))$.

Base case. P(1) is true, because P(1) says that " $1 \neq 1 \implies 1 - 1 \in \mathbb{N}$ " and this is true because it is an implication whose premises (" $1 \neq 1$ ") is false.

Inductive step. We must show that $(\forall n \in \mathbb{N})(P(n) \Longrightarrow P(n+1))$.

Let $n \in \mathbb{N}$ be arbitrary. We want to prove that $P(n) \Longrightarrow P(n+1)$. To show this, we assume P(n) and prove P(n+1).

So assume P(n). That means that

(*)
$$n \neq 1 \Longrightarrow n-1 \in \mathbb{N}$$
.

Then P(n+1) says

$$(\#) \ n+1 \neq 1 \Longrightarrow (n+1) - 1 \in \mathbb{N}.$$

But (n + 1) - 1 = n, and $n \in \mathbb{N}$, so the conclusion $("(n + 1) - 1 \in \mathbb{N}")$ of the implication (#) is true. Hence (#) is true. That is, P(n + 1) is true. So we have proved P(n + 1).

Since we have proved P(n + 1) assuming P(n), we have shown that $P(n) \Longrightarrow P(n + 1)$. Since this has been established for arbitrary $n \in \mathbb{N}$, we have proved that $(\forall n \in \mathbb{N})(P(n) \Longrightarrow P(n + 1))$. This concludes the inductive step.

Hence, by the PMI, P(n) is true for all $n \in \mathbb{N}$. Q.E.D.

Theorem 3. If $n \in \mathbb{N}$ then there is no natural number q such that n < q < n+1.

Proof. For $n \in \mathbb{N}$, let P(n) be the statement "there is no natural number q such that n < q < n + 1". We want to prove that $(\forall n \in \mathbb{N})P(n)$.

We will prove this by induction. For this purpose, we will prove that P(1) and that $(\forall n)(P(n) \Longrightarrow P(n+1))$.

Base case. P(1) is true, because P(1) says that there are no natural numbers between 1 and 2, and this is true because of Theorem 2 of the previous lecture. ("Every natural number greater than 1 is greater than or equal to 2.")

Inductive step. We must show that $(\forall n \in \mathbb{N})(P(n) \Longrightarrow P(n+1))$.

Let $n \in \mathbb{N}$ be arbitrary. We want to prove that $P(n) \Longrightarrow P(n+1)$. To show this, we assume P(n) and prove P(n+1).

So assume P(n). That means that

(*) There does not exist a natural number q such that n < q < n + 1.

We want to prove that P(n+1) is true, i.e.,

(#) There does not exist a natural number q such that n + 1 < q < n + 2.

We prove this by contradiction. Suppose that a natural number q such that n+1 < q < n+2 exists. Pick one such number and call it q_0 . Then $q_0 \in \mathbb{N}$ and $n+1 < q_0 < n+2$. It then follows that $q_0 \neq 1$ (because $q_0 > n+1$ and n+1 > 1, so $q_0 > 1$).

So, by Theorem 2, $q_0 - 1$ is a natural number. And it is clear that $n < q_0 - 1 < n+1$. So there exists a natural number q such that n < q < n+1. But this contradicts (*).

So we have proved (#). Hence P(n+1) is true.

Since we have proved P(n + 1) assuming P(n), we have shown that $P(n) \Longrightarrow P(n + 1)$. Since this has been established for arbitrary $n \in \mathbb{N}$, we have proved that $(\forall n \in \mathbb{N})(P(n) \Longrightarrow P(n + 1))$. This concludes the inductive step.

Hence, by the PMI, P(n) is true for all $n \in \mathbb{N}$. Q.E.D.

1.1 Inductive definitions

We have defined " x^{2} ", for a real number x, to mean "x.x". And we can define " x^{3} " to mean "(x.x).x", or, if you prefer, " $x^{2}.x$ ". But how can we define " x^{n} " for an arbitrary natural number n? One possibility would be to write something like this

$$x^n = \underbrace{x \times x \times \cdots \times x}_{n \text{ times}}$$

But this is very unclear. I do not know what " \cdots " means, precisely (and if you think you do, please tell me!). And, in any case, " \cdots " is not one of the

basic symbols that are all the symbols we are allowed to use. (That is, 0, 1, $+, -, \times, \div, =, <, \leq, \geq, >, (,), \forall, \exists, \land, \lor, \Longrightarrow, \iff, \sim, \in, \mathbb{R}, \mathbb{N}, \mathbb{Z}$, plus letter variables, and symbols defined later, such as 2, 3, 4, |, and \subseteq).

The way to define " x^{n} " correctly is by means of an <u>inductive definition</u>: we first define x^{1} to be x, and then define x^{n+1} to be $x^{n}.x$, for every n. That is, we write:

Definition 1. (Inductive definition of positive integer powers of a real number) For all $a \in \mathbb{R}$, we set

$$a^{1} = a,$$

$$a^{n+1} = a^{n}.a \text{ for } n \in \mathbb{N}.$$

We also set $a^0 = 1$.

Using this definition, we can write down what a^n is for any n.

Suppose, for example, that we want to know what a^5 is. By the second line of our inductive definition of a^n ,

$$a^5 = a^4.a.$$

This answers our question about a^5 , in terms of a^4 . And what is a^4 ? Again, using the second line of the inductive definition, we find

$$a^4 = a^3.a.$$

 So

$$a^5 = ((a^3).a).a.$$

And what is a^3 ? Once again, we can use the second line of the inductive definition, and find

$$a^3 = a^2.a$$

 So

$$a^5 = (((a^2).a).a).a.$$

One more step yields

$$a^2 = a^1 . a \,,$$

 \mathbf{SO}

$$a^5 = (((a^1.a).a).a).a$$

And, finally, the first line of the inductive definition, tells us that $a^1 = a$, so we end up with

$$a^{5} = (((a.a).a).a).a.$$

Here are a few examples of inductive definitions:

Instructor's Notes, Spring 2015

Inductive definition of the factorial. The "factorial" of a natural number n is supposed to be the product $1 \times 2 \times 3 \times \cdots \times n$. That is, the factorial of n is the product of all the natural numbers from 1 to n. Here is the inductive definition:

Definition 2. The <u>factorial</u> of a natural number n is the number n! given by

$$\begin{array}{rcl} 1! &=& 1 \; , \\ (n+1)! &=& n! \times (n+1) & \text{for } n \in \mathbb{N} \; . \end{array}$$

In addition, we define

$$0! = 1$$
,

so n! is defined for every nonnegative integer n.

Inductive definition of summation.

Definition 3. For a natural number n, and real numbers a_1, a_2, \ldots, a_n , we define the <u>sum</u> (or <u>summation</u>) of the a_j for j from 1 to n to be the number $\sum_{j=1}^{n} a_j$ determined as follows:

$$\sum_{j=1}^{n} a_{j} = a_{1},$$

$$\sum_{j=1}^{n+1} a_{j} = \left(\sum_{j=1}^{n} a_{j}\right) + a_{n+1} \text{ for } n \in \mathbb{N}.$$

And we also define $\sum_{j=1}^{0} a_j = 0$.

Inductive definition of product.

Definition 4. For a natural number n, and real numbers a_1, a_2, \ldots, a_n , we define the product of the a_j for j from 1 to n to be the number $\prod_{j=1}^n a_j$ determined as follows:

$$\prod_{j=1}^{1} a_j = a_1,$$

$$\prod_{j=1}^{n+1} a_j = \left(\prod_{j=1}^{n} a_j\right) \times a_{n+1} \quad \text{for} \quad n \in \mathbb{N}.$$

And we also define $\prod_{j=1}^{0} a_j = 1$.

1.1.1 Some examples of proofs using inductive definitions

Theorem 4. For all $n \in \mathbb{N}$

$$\sum_{k=1}^{n} (2k-1) = n^2$$

(That is, the sum of the first n odd numbers is a perfect square, namely, n^2 .)

Proof. For $n \in \mathbb{N}$, let P(n) be the statement " $\sum_{k=1}^{n} (2k-1) = n^2$ ". We want to prove that $(\forall n \in \mathbb{N})P(n)$.

We will prove this by induction. For this purpose, we will prove that P(1) and that $(\forall n)(P(n) \Longrightarrow P(n+1))$.

Base case. P(1) is true, because P(1) says that $\sum_{k=1}^{1}(2k-1) = 1^2$, which is true because $\sum_{k=1}^{1}(2k-1) = 1$ and $1^2 - 1$.

Inductive step. We prove that $(\forall n \in \mathbb{N})(P(n) \Longrightarrow P(n+1))$.

Let *n* ne an arbitrary natural number. We want to prove that $P(n) \Longrightarrow P(n+1)$. To prove this, we assume P(n) and prove P(n+1).

So assume that P(n) is true. Then

$$\sum_{k=1}^{n} (2k-1) = n^2.$$

We want to prove that P(n+1) is true, i.e., that

(1.1)
$$\sum_{k=1}^{n+1} (2k-1) = (n+1)^2.$$

But, by the inductive definition of "summation",

$$\sum_{k=1}^{n+1} (2k-1) = \sum_{k=1}^{n} (2k-1) + (2(n+1)-1).$$

And our inductive assumption tells us that

$$\sum_{k=1}^{n} (2k-1) = n^2.$$

Instructor's Notes, Spring 2015

So

$$\sum_{k=1}^{n+1} (2k-1) = \sum_{k=1}^{n} (2k-1) + (2(n+1)-1)$$
$$= n^{2} + (2(n+1)-1)$$
$$= n^{2} + (2n+2-1)$$
$$= n^{2} + 2n + 1$$
$$= (n+1)^{2}.$$

Hence (1.1) is true. So we have proved that P(n+1) is true, assuming P(n).

Since we have proved P(n + 1) assuming P(n), we have shown that $P(n) \Longrightarrow P(n + 1)$. Since this has been established for arbitrary $n \in \mathbb{N}$, we have proved that $(\forall n \in \mathbb{N})(P(n) \Longrightarrow P(n + 1))$. This concludes the inductive step.

Hence, by the PMI, P(n) is true for all $n \in \mathbb{N}$. Q.E.D.

Theorem 5. For all $n \in \mathbb{N}$

$$\sum_{k=1}^{n} k^2 = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}.$$

Proof. For $n \in \mathbb{N}$, let P(n) be the statement " $\sum_{k=1}^{n} k^2 = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}$ ". We want to prove that $(\forall n \in \mathbb{N})P(n)$.

We will prove this by induction. For this purpose, we will prove that P(1) and that $(\forall n)(P(n) \Longrightarrow P(n+1))$.

Base case. P(1) is true, because P(1) says that

$$\sum_{k=1}^{1} k^2 = \frac{1}{3} + \frac{1}{2} + \frac{1}{6},$$

and this is true because $\sum_{k=1}^{1} k^2 = 1$ and $\frac{1}{3} + \frac{1}{2} + \frac{1}{6} = 1$. Inductive step. We prove that $(\forall n \in \mathbb{N})(P(n) \Longrightarrow P(n+1))$.

Let n ne an arbitrary natural number. We want to prove that $P(n) \Longrightarrow P(n+1)$. To prove this, we assume P(n) and prove P(n+1).

So assume that P(n) is true. Then

$$\sum_{k=1}^{n} k^2 = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}.$$

•

We want to prove that P(n+1) is true, i.e., that

(1.2)
$$\sum_{k=1}^{n+1} k^2 = \frac{(n+1)^3}{3} + \frac{(n+1)^2}{2} + \frac{n+1}{6}.$$

But, by the inductive definition of "summation",

$$\sum_{k=1}^{n+1} k^2 = \sum_{k=1}^n k^2 + (n+1)^2.$$

And our inductive assumption tells us that

$$\sum_{k=1}^{n} k^2 = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}.$$

 So

$$\sum_{k=1}^{n+1} k^2 = \left(\sum_{k=1}^n k^2\right) + (n+1)^2$$
$$= \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6} + (n+1)^2$$

Now we have to prove that

(1.3)
$$\frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6} + (n+1)^2 = \frac{(n+1)^3}{3} + \frac{(n+1)^2}{2} + \frac{n+1}{6}.$$

But

$$(n+1)^2 = n^2 + 2n + 1 \,,$$

 \mathbf{SO}

$$\frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6} + (n+1)^2 = \frac{n^3}{3} + \frac{3n^2}{2} + \frac{13n}{6} + 1,$$

and

$$\frac{(n+1)^3}{3} + \frac{(n+1)^2}{2} + \frac{n+1}{6} = \frac{n^3 + 3n^2 + 3n + 1}{3} + \frac{n^2 + 2n + 1}{2} + \frac{n+1}{6}$$
$$= \frac{n^3}{3} + n^2 + n + \frac{1}{3} + \frac{n^2}{2} + n + \frac{1}{2} + \frac{n}{6} + \frac{1}{6}$$
$$= \frac{n^3}{3} + \frac{3n^2}{2} + \frac{13n}{6} + 1.$$

Instructor's Notes, Spring 2015

So both sides of (1.3) are equal to $\frac{n^3}{3} + \frac{3n^2}{2} + \frac{13n}{6} + 1$. Hence (1.3) is true, and therefore (1.2) is true. Sp P(n+1) is true. So we have proved that P(n+1) is true, assuming P(n).

Since we have proved P(n + 1) assuming P(n), we have shown that $P(n) \Longrightarrow P(n + 1)$. Since this has been established for arbitrary $n \in \mathbb{N}$, we have proved that $(\forall n \in \mathbb{N})(P(n) \Longrightarrow P(n + 1))$. This concludes the inductive step.

Hence, by the PMI, P(n) is true for all $n \in \mathbb{N}$. Q.E.D.