MATHEMATICS 300 - SPRING 2015
 Introduction to Mathematical Reasoning
 H. J. Sussmann
 INSTRUCTOR'S NOTES
 BASED ON THE FEBRUARY 27 LECTURE BY PROF. LISA CARBONE

1 More on the natural numbers and induction

Recall that a natural number n is even if there exists $k \in \mathbb{N}$ such that $n=2 k$. Similarly n is odd if there exists $k \in \mathbb{N}$ such that $n=2 k-1$.

Theorem 1. Every natural number is either even or odd.
Proof. Let $P(n)$ be the statement " n is either even or odd", for natural numbers n. We want to prove that $(\forall n \in \mathbb{N}) P(n)$.

We will prove this by induction. For this purpose, we will prove that $P(1)$ and that $(\forall n)(P(n) \Longrightarrow P(n+1))$.

Base case. $\quad P(1)$ is true, because $P(1)$ says that " 1 is even or odd", and that is true because 1 is odd.

Inductive step. We prove that $(\forall n \in \mathbb{N})(P(n) \Longrightarrow P(n+1))$.
Let n ne an arbitrary natural number.
We want to prove that $P(n) \Longrightarrow P(n+1)$. To prove this, we assume $P(n)$ and prove $P(n+1)$.

So assume that $P(n)$ is true. Then n is even or n is odd. To prove that $P(n+1)$ is true, we consider the cases when n is even and when n is odd. If n is even, then we may pick $k \in \mathbb{N}$ such that $n=2 k$. Then $n+1=2 k+1=2(k+1)-1$, and $k+1 \in \mathbb{N}$. So $n+1$ is odd. Hence $n+1$ is even or odd, so $P(n+1)$ is true. If n is odd, then we may pick $k \in \mathbb{N}$ such that $n=2 k-1$, so $n+1=2 k$, and then $n+1$ is even, so $n+1$ is even or odd, so $P(n+1)$ is odd.

So we have proved that $P(n+1)$ is true in both cases, so $P(n+1)$ is true.

Since we have proved $P(n+1)$ assuming $P(n)$, we have shown that $P(n) \Longrightarrow P(n+1)$. Since this has been established for arbitrary $n \in \mathbb{N}$, we have proved that $(\forall n \in \mathbb{N})(P(n) \Longrightarrow P(n+1))$. This concludes the inductive step.

Hence, by the PMI, $P(n)$ is true for all $n \in \mathbb{N}$.
Q.E.D.

Theorem 2. If n is a natural number and $n \neq 1$ then $n-1$ is a natural number.
Proof. For $n \in \mathbb{N}$, let $P(n)$ be the statement " $n \neq 1 \Longrightarrow n-1 \in \mathbb{N}$ ".
We want to prove that $(\forall n \in \mathbb{N}) P(n)$.
We will prove this by induction. For this purpose, we will prove that $P(1)$ and that $(\forall n)(P(n) \Longrightarrow P(n+1))$.
Base case. $\quad P(1)$ is true, because $P(1)$ says that " $1 \neq 1 \Longrightarrow 1-1 \in \mathbb{N}$ " and this is true because it is an implication whose premiss (" $1 \neq 1$ ") is false.
Inductive step. We must show that $(\forall n \in \mathbb{N})(P(n) \Longrightarrow P(n+1))$.
Let $n \in \mathbb{N}$ be arbitrary. We want to prove that $P(n) \Longrightarrow P(n+1)$. To show this, we assume $P(n)$ and prove $P(n+1)$.

So assume $P(n)$. That means that
(*) $n \neq 1 \Longrightarrow n-1 \in \mathbb{N}$.
Then $P(n+1)$ says
(\#) $n+1 \neq 1 \Longrightarrow(n+1)-1 \in \mathbb{N}$.
But $(n+1)-1=n$, and $n \in \mathbb{N}$, so the conclusion (" $n+1)-1 \in \mathbb{N}$ ") of the implication (\#) is true. Hence (\#) is true. That is, $P(n+1)$ is true. So we have proved $P(n+1)$.

Since we have proved $P(n+1)$ assuming $P(n)$, we have shown that $P(n) \Longrightarrow P(n+1)$. Since this has been established for arbitrary $n \in \mathbb{N}$, we have proved that $(\forall n \in \mathbb{N})(P(n) \Longrightarrow P(n+1))$. This concludes the inductive step.

Hence, by the PMI, $P(n)$ is true for all $n \in \mathbb{N}$. Q.E.D.
Theorem 3. If $n \in \mathbb{N}$ then there is no natural number q such that $n<q<$ $n+1$.

Proof. For $n \in \mathbb{N}$, let $P(n)$ be the statement "there is no natural number q such that $n<q<n+1$ ". We want to prove that $(\forall n \in \mathbb{N}) P(n)$.

We will prove this by induction. For this purpose, we will prove that $P(1)$ and that $(\forall n)(P(n) \Longrightarrow P(n+1))$.

Base case. $\quad P(1)$ is true, because $P(1)$ says that there are no natural numbers between 1 and 2 , and this is true because of Theorem 2 of the previous lecture. ("Every natural number greater than 1 is greater than or equal to 2. .")
Inductive step. We must show that $(\forall n \in \mathbb{N})(P(n) \Longrightarrow P(n+1))$.
Let $n \in \mathbb{N}$ be arbitrary. We want to prove that $P(n) \Longrightarrow P(n+1)$. To show this, we assume $P(n)$ and prove $P(n+1)$.

So assume $P(n)$. That means that
(*) There does not exist a natural number q such that $n<q<n+1$.
We want to prove that $P(n+1)$ is true, i.e.,
(\#) There does not exist a natural number q such that $n+1<q<n+2$.
We prove this by contradiction. Suppose that a natural number q such that $n+1<q<n+2$ exists. Pick one such number and call it q_{0}. Then $q_{0} \in \mathbb{N}$ and $n+1<q_{0}<n+2$. It then follows that $q_{0} \neq 1$ (because $q_{0}>n+1$ and $n+1>1$, so $q_{0}>1$).

So, by Theorem 2, $q_{0}-1$ is a natural number. And it is clear that $n<q_{0}-1<n+1$. So there exists a natural number q such that $n<q<n+1$. But this contradicts $\left(^{*}\right)$.

So we have proved (\#). Hence $P(n+1)$ is true.
Since we have proved $P(n+1)$ assuming $P(n)$, we have shown that $P(n) \Longrightarrow P(n+1)$. Since this has been established for arbitrary $n \in \mathbb{N}$, we have proved that $(\forall n \in \mathbb{N})(P(n) \Longrightarrow P(n+1))$. This concludes the inductive step.

Hence, by the PMI, $P(n)$ is true for all $n \in \mathbb{N}$. Q.E.D.

1.1 Inductive definitions

We have defined " x^{2} ", for a real number x, to mean " $x . x$ ". And we can define " x " to mean " $(x \cdot x) \cdot x$ ", or, if you prefer, " $x^{2} \cdot x$ ". But how can we define " x " for an arbitrary natural number n ? One possibility would be to write something like this

$$
x^{n}=\underbrace{x \times x \times \cdots \times x}_{n \text { times }}
$$

But this is very unclear. I do not know what ". .." means, precisely (and if you think you do, please tell me!). And, in any case, ". . ." is not one of the
basic symbols that are all the symbols we are allowed to use. (That is, 0,1 , $+,-, \times, \div,=,<, \leq, \geq,>,(),, \forall, \exists, \wedge, \vee, \Longrightarrow, \Longleftrightarrow, \sim, \in, \mathbb{R}, \mathbb{N}, \mathbb{Z}$, plus letter variables, and symbols defined later, such as $2,3,4, \mid$, and $\subseteq)$.

The way to define " x " correctly is by means of an inductive definition: we first define x^{1} to be x, and then define x^{n+1} to be $x^{n} \cdot x$, for every n. That is, we write:
Definition 1. (Inductive definition of positive integer powers of a real number) For all $a \in \mathbb{R}$, we set

$$
\begin{aligned}
a^{1} & =a, \\
a^{n+1} & =a^{n} . a \quad \text { for } n \in \mathbb{N}
\end{aligned}
$$

We also set $a^{0}=1$.
Using this definition, we can write down what a^{n} is for any n.
Suppose, for example, that we want to know what a^{5} is. By the second line of our inductive definition of a^{n},

$$
a^{5}=a^{4} \cdot a
$$

This answers our question about a^{5}, in terms of a^{4}. And what is a^{4} ? Again, using the second line of the inductive definition, we find

$$
a^{4}=a^{3} \cdot a
$$

So

$$
a^{5}=\left(\left(a^{3}\right) \cdot a\right) \cdot a
$$

And what is a^{3} ? Once again, we can use the second line of the inductive definition, and find

$$
a^{3}=a^{2} \cdot a
$$

So

$$
a^{5}=\left(\left(\left(a^{2}\right) \cdot a\right) \cdot a\right) \cdot a .
$$

One more step yields

$$
a^{2}=a^{1} \cdot a,
$$

so

$$
a^{5}=\left(\left(\left(a^{1} \cdot a\right) \cdot a\right) \cdot a\right) \cdot a
$$

And, finally, the first line of the inductive definition, tells us that $a^{1}=a$, so we end up with

$$
a^{5}=(((a \cdot a) \cdot a) \cdot a) \cdot a
$$

Here are a few examples of inductive definitions:

Inductive definition of the factorial. The "factorial" of a natural number n is supposed to be the product $1 \times 2 \times 3 \times \cdots \times n$. That is, the factorial of n is the product of all the natural numbers from 1 to n. Here is the inductive definition:

Definition 2. The factorial of a natural number n is the number n ! given by

$$
\begin{aligned}
1! & =1 \\
(n+1)! & =n!\times(n+1) \quad \text { for } n \in \mathbb{N}
\end{aligned}
$$

In addition, we define

$$
0!=1
$$

so n ! is defined for every nonnegative integer n.

Inductive definition of summation.

Definition 3. For a natural number n, and real numbers $a_{1}, a_{2}, \ldots, a_{n}$, we define the sum (or summation) of the a_{j} for j from 1 to n to be the number $\sum_{j=1}^{n} a_{j}$ determined as follows:

$$
\begin{aligned}
& \sum_{j=1}^{1} a_{j}=a_{1} \\
& \sum_{j=1}^{n+1} a_{j}=\left(\sum_{j=1}^{n} a_{j}\right)+a_{n+1} \quad \text { for } \quad n \in \mathbb{N}
\end{aligned}
$$

And we also define $\sum_{j=1}^{0} a_{j}=0$.

Inductive definition of product.

Definition 4. For a natural number n, and real numbers $a_{1}, a_{2}, \ldots, a_{n}$, we define the product of the a_{j} for j from 1 to n to be the number $\prod_{j=1}^{n} a_{j}$ determined as follows:

$$
\begin{aligned}
& \prod_{j=1}^{1} a_{j}=a_{1} \\
& \prod_{j=1}^{n+1} a_{j}=\left(\prod_{j=1}^{n} a_{j}\right) \times a_{n+1} \quad \text { for } \quad n \in \mathbb{N}
\end{aligned}
$$

And we also define $\prod_{j=1}^{0} a_{j}=1$.

1.1.1 Some examples of proofs using inductive definitions

Theorem 4. For all $n \in \mathbb{N}$

$$
\sum_{k=1}^{n}(2 k-1)=n^{2}
$$

(That is, the sum of the first n odd numbers is a perfect square, namely, n^{2}.)
Proof. For $n \in \mathbb{N}$, let $P(n)$ be the statement " $\sum_{k=1}^{n}(2 k-1)=n^{2}$ ". We want to prove that $(\forall n \in \mathbb{N}) P(n)$.

We will prove this by induction. For this purpose, we will prove that $P(1)$ and that $(\forall n)(P(n) \Longrightarrow P(n+1))$.
Base case. $\quad P(1)$ is true, because $P(1)$ says that $\sum_{k=1}^{1}(2 k-1)=1^{2}$, which is true because $\sum_{k=1}^{1}(2 k-1)=1$ and $1^{2}-1$.
Inductive step. We prove that $(\forall n \in \mathbb{N})(P(n) \Longrightarrow P(n+1))$.
Let n ne an arbitrary natural number. We want to prove that $P(n) \Longrightarrow$ $P(n+1)$. To prove this, we assume $P(n)$ and prove $P(n+1)$.

So assume that $P(n)$ is true. Then

$$
\sum_{k=1}^{n}(2 k-1)=n^{2}
$$

We want to prove that $P(n+1)$ is true, i.e., that

$$
\begin{equation*}
\sum_{k=1}^{n+1}(2 k-1)=(n+1)^{2} \tag{1.1}
\end{equation*}
$$

But, by the inductive definition of "summation",

$$
\sum_{k=1}^{n+1}(2 k-1)=\sum_{k=1}^{n}(2 k-1)+(2(n+1)-1)
$$

And our inductive assumption tells us that

$$
\sum_{k=1}^{n}(2 k-1)=n^{2}
$$

So

$$
\begin{aligned}
\sum_{k=1}^{n+1}(2 k-1) & =\sum_{k=1}^{n}(2 k-1)+(2(n+1)-1) \\
& =n^{2}+(2(n+1)-1) \\
& =n^{2}+(2 n+2-1) \\
& =n^{2}+2 n+1 \\
& =(n+1)^{2}
\end{aligned}
$$

Hence (1.1) is true. So we have proved that $P(n+1)$ is true, assuming $P(n)$.
Since we have proved $P(n+1)$ assuming $P(n)$, we have shown that $P(n) \Longrightarrow P(n+1)$. Since this has been established for arbitrary $n \in \mathbb{N}$, we have proved that $(\forall n \in \mathbb{N})(P(n) \Longrightarrow P(n+1))$. This concludes the inductive step.

Hence, by the PMI, $P(n)$ is true for all $n \in \mathbb{N}$.
Q.E.D.

Theorem 5. For all $n \in \mathbb{N}$

$$
\sum_{k=1}^{n} k^{2}=\frac{n^{3}}{3}+\frac{n^{2}}{2}+\frac{n}{6}
$$

Proof. For $n \in \mathbb{N}$, let $P(n)$ be the statement " $\sum_{k=1}^{n} k^{2}=\frac{n^{3}}{3}+\frac{n^{2}}{2}+\frac{n}{6}$ ". We want to prove that $(\forall n \in \mathbb{N}) P(n)$.

We will prove this by induction. For this purpose, we will prove that $P(1)$ and that $(\forall n)(P(n) \Longrightarrow P(n+1))$.
Base case. $\quad P(1)$ is true, because $P(1)$ says that

$$
\sum_{k=1}^{1} k^{2}=\frac{1}{3}+\frac{1}{2}+\frac{1}{6}
$$

and this is true because $\sum_{k=1}^{1} k^{2}=1$ and $\frac{1}{3}+\frac{1}{2}+\frac{1}{6}=1$.
Inductive step. We prove that $(\forall n \in \mathbb{N})(P(n) \Longrightarrow P(n+1))$.
Let n ne an arbitrary natural number. We want to prove that $P(n) \Longrightarrow$ $P(n+1)$. To prove this, we assume $P(n)$ and prove $P(n+1)$.

So assume that $P(n)$ is true. Then

$$
\sum_{k=1}^{n} k^{2}=\frac{n^{3}}{3}+\frac{n^{2}}{2}+\frac{n}{6}
$$

We want to prove that $P(n+1)$ is true, i.e., that

$$
\begin{equation*}
\sum_{k=1}^{n+1} k^{2}=\frac{(n+1)^{3}}{3}+\frac{(n+1)^{2}}{2}+\frac{n+1}{6} \tag{1.2}
\end{equation*}
$$

But, by the inductive definition of "summation",

$$
\sum_{k=1}^{n+1} k^{2}=\sum_{k=1}^{n} k^{2}+(n+1)^{2}
$$

And our inductive assumption tells us that

$$
\sum_{k=1}^{n} k^{2}=\frac{n^{3}}{3}+\frac{n^{2}}{2}+\frac{n}{6}
$$

So

$$
\begin{aligned}
\sum_{k=1}^{n+1} k^{2} & =\left(\sum_{k=1}^{n} k^{2}\right)+(n+1)^{2} \\
& =\frac{n^{3}}{3}+\frac{n^{2}}{2}+\frac{n}{6}+(n+1)^{2}
\end{aligned}
$$

Now we have to prove that

$$
\begin{equation*}
\frac{n^{3}}{3}+\frac{n^{2}}{2}+\frac{n}{6}+(n+1)^{2}=\frac{(n+1)^{3}}{3}+\frac{(n+1)^{2}}{2}+\frac{n+1}{6} \tag{1.3}
\end{equation*}
$$

But

$$
(n+1)^{2}=n^{2}+2 n+1
$$

so

$$
\frac{n^{3}}{3}+\frac{n^{2}}{2}+\frac{n}{6}+(n+1)^{2}=\frac{n^{3}}{3}+\frac{3 n^{2}}{2}+\frac{13 n}{6}+1
$$

and

$$
\begin{aligned}
\frac{(n+1)^{3}}{3}+\frac{(n+1)^{2}}{2}+\frac{n+1}{6} & =\frac{n^{3}+3 n^{2}+3 n+1}{3}+\frac{n^{2}+2 n+1}{2}+\frac{n+1}{6} \\
& =\frac{n^{3}}{3}+n^{2}+n+\frac{1}{3}+\frac{n^{2}}{2}+n+\frac{1}{2}+\frac{n}{6}+\frac{1}{6} \\
& =\frac{n^{3}}{3}+\frac{3 n^{2}}{2}+\frac{13 n}{6}+1
\end{aligned}
$$

So both sides of (1.3) are equal to $\frac{n^{3}}{3}+\frac{3 n^{2}}{2}+\frac{13 n}{6}+1$. Hence (1.3) is true, and therefore (1.2) is true. Sp $P(n+1)$ is true. So we have proved that $P(n+1)$ is true, assuming $P(n)$.

Since we have proved $P(n+1)$ assuming $P(n)$, we have shown that $P(n) \Longrightarrow P(n+1)$. Since this has been established for arbitrary $n \in \mathbb{N}$, we have proved that $(\forall n \in \mathbb{N})(P(n) \Longrightarrow P(n+1))$. This concludes the inductive step.

Hence, by the PMI, $P(n)$ is true for all $n \in \mathbb{N}$.
Q.E.D.

