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1 More on the natural numbers and induc-

tion

Recall that a natural number n is even if there exists k ∈ IN such that n = 2k.
Similarly n is odd if there exists k ∈ IN such that n = 2k − 1.

Theorem 1. Every natural number is either even or odd.

Proof. Let P (n) be the statement “n is either even or odd”, for natural
numbers n. We want to prove that (∀n ∈ IN)P (n).

We will prove this by induction. For this purpose, we will prove that P (1)
and that (∀n)(P (n) =⇒ P (n+ 1)).

Base case. P (1) is true, because P (1) says that “1 is even or odd”, and
that is true because 1 is odd.

Inductive step. We prove that (∀n ∈ IN)(P (n) =⇒ P (n+ 1)).
Let n ne an arbitrary natural number.
We want to prove that P (n) =⇒ P (n + 1). To prove this, we assume

P (n) and prove P (n+ 1).
So assume that P (n) is true. Then n is even or n is odd. To prove

that P (n + 1) is true, we consider the cases when n is even and when n
is odd. If n is even, then we may pick k ∈ IN such that n = 2k. Then
n+ 1 = 2k + 1 = 2(k + 1)− 1, and k + 1 ∈ IN. So n+ 1 is odd. Hence n+ 1
is even or odd, so P (n+ 1) is true. If n is odd, then we may pick k ∈ IN such
that n = 2k − 1, so n + 1 = 2k, and then n + 1 is even, so n + 1 is even or
odd, so P (n+ 1) is odd.

So we have proved that P (n+1) is true in both cases, so P (n+1) is true.
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Since we have proved P (n + 1) assuming P (n), we have shown that
P (n) =⇒ P (n + 1). Since this has been established for arbitrary n ∈ IN,
we have proved that (∀n ∈ IN)(P (n) =⇒ P (n + 1)). This concludes the
inductive step.

Hence, by the PMI, P (n) is true for all n ∈ IN. Q.E.D.

Theorem 2. If n is a natural number and n 6= 1 then n − 1 is a natural
number.

Proof. For n ∈ IN, let P (n) be the statement “n 6= 1 =⇒ n− 1 ∈ IN”.
We want to prove that (∀n ∈ IN)P (n).
We will prove this by induction. For this purpose, we will prove that P (1)

and that (∀n)(P (n) =⇒ P (n+ 1)).

Base case. P (1) is true, because P (1) says that “1 6= 1 =⇒ 1− 1 ∈ IN” and
this is true because it is an implication whose premiss (“1 6= 1”) is false.

Inductive step. We must show that (∀n ∈ IN)(P (n) =⇒ P (n+ 1)).
Let n ∈ IN be arbitrary. We want to prove that P (n) =⇒ P (n + 1). To

show this, we assume P (n) and prove P (n+ 1).
So assume P (n). That means that

(*) n 6= 1 =⇒ n− 1 ∈ IN.

Then P (n+ 1) says

(#) n+ 1 6= 1 =⇒ (n+ 1)− 1 ∈ IN.

But (n + 1) − 1 = n, and n ∈ IN, so the conclusion (“(n + 1) − 1 ∈ IN”)
of the implication (#) is true. Hence (#) is true. That is, P (n + 1) is true.
So we have proved P (n+ 1).

Since we have proved P (n + 1) assuming P (n), we have shown that
P (n) =⇒ P (n + 1). Since this has been established for arbitrary n ∈ IN,
we have proved that (∀n ∈ IN)(P (n) =⇒ P (n + 1)). This concludes the
inductive step.

Hence, by the PMI, P (n) is true for all n ∈ IN. Q.E.D.

Theorem 3. If n ∈ IN then there is no natural number q such that n < q <
n+ 1.

Proof. For n ∈ IN, let P (n) be the statement “there is no natural number
q such that n < q < n+ 1”. We want to prove that (∀n ∈ IN)P (n).

We will prove this by induction. For this purpose, we will prove that P (1)
and that (∀n)(P (n) =⇒ P (n+ 1)).
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Base case. P (1) is true, because P (1) says that there are no natural numbers
between 1 and 2, and this is true because of Theorem 2 of the previous lecture.
(“Every natural number greater than 1 is greater than or equal to 2.”)

Inductive step. We must show that (∀n ∈ IN)(P (n) =⇒ P (n+ 1)).
Let n ∈ IN be arbitrary. We want to prove that P (n) =⇒ P (n + 1). To

show this, we assume P (n) and prove P (n+ 1).
So assume P (n). That means that

(*) There does not exist a natural number q such that n < q < n+ 1.

We want to prove that P (n+ 1) is true, i.e.,

(#) There does not exist a natural number q such that n+ 1 < q < n+ 2.

We prove this by contradiction. Suppose that a natural number q such that
n+ 1 < q < n+ 2 exists. Pick one such number and call it q0. Then q0 ∈ IN
and n+ 1 < q0 < n+ 2. It then follows that q0 6= 1 (because q0 > n+ 1 and
n+ 1 > 1, so q0 > 1).

So, by Theorem 2, q0 − 1 is a natural number. And it is clear that
n < q0−1 < n+1. So there exists a natural number q such that n < q < n+1.
But this contradicts (*).

So we have proved (#). Hence P (n+ 1) is true.
Since we have proved P (n + 1) assuming P (n), we have shown that

P (n) =⇒ P (n + 1). Since this has been established for arbitrary n ∈ IN,
we have proved that (∀n ∈ IN)(P (n) =⇒ P (n + 1)). This concludes the
inductive step.

Hence, by the PMI, P (n) is true for all n ∈ IN. Q.E.D.

1.1 Inductive definitions

We have defined “x2”, for a real number x, to mean “x.x”. And we can
define “x3” to mean “(x.x).x”, or, if you prefer, “x2.x”. But how can we
define “xn” for an arbitrary natural number n? One possibility would be to
write something like this

xn = x× x× · · · × x︸ ︷︷ ︸
n times

But this is very unclear. I do not know what “· · ·” means, precisely (and if
you think you do, please tell me!). And, in any case, “· · ·” is not one of the
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basic symbols that are all the symbols we are allowed to use. (That is, 0, 1,
+, −, ×, ÷, =, <, ≤, ≥, >, (, ), ∀, ∃, ∧, ∨, =⇒, ⇐⇒ , ∼, ∈, IR, IN, Z, plus
letter variables, and symbols defined later, such as 2, 3, 4, |, and ⊆).

The way to define “xn” correctly is by means of an inductive definition:
we first define x1 to be x, and then define xn+1 to be xn.x, for every n. That
is, we write:

Definition 1. (Inductive definition of positive integer powers of a
real number) For all a ∈ IR, we set

a1 = a ,

an+1 = an.a for n ∈ IN .

We also set a0 = 1. �

Using this definition, we can write down what an is for any n.
Suppose, for example, that we want to know what a5 is. By the second

line of our inductive definition of an,

a5 = a4.a.

This answers our question about a5, in terms of a4. And what is a4? Again,
using the second line of the inductive definition, we find

a4 = a3.a.

So
a5 = ((a3).a).a.

And what is a3? Once again, we can use the second line of the inductive
definition, and find

a3 = a2.a

So
a5 = (((a2).a).a).a.

One more step yields
a2 = a1.a ,

so
a5 = (((a1.a).a).a).a.

And, finally, the first line of the inductive definition, tells us that a1 = a, so
we end up with

a5 = (((a.a).a).a).a.

Here are a few examples of inductive definitions:
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Inductive definition of the factorial. The “factorial” of a natural num-
ber n is supposed to be the product 1×2×3×· · ·×n. That is, the factorial of
n is the product of all the natural numbers from 1 to n. Here is the inductive
definition:

Definition 2. The factorial of a natural number n is the number n! given
by

1! = 1 ,

(n+ 1)! = n!× (n+ 1) for n ∈ IN .

In addition, we define
0! = 1 ,

so n! is defined for every nonnegative integer n.

Inductive definition of summation.

Definition 3. For a natural number n, and real numbers a1, a2, . . . , an, we
define the sum (or summation) of the aj for j from 1 to n to be the number∑n

j=1 aj determined as follows:

1∑
j=1

aj = a1 ,

n+1∑
j=1

aj =
( n∑
j=1

aj

)
+ an+1 for n ∈ IN .

And we also define
∑0

j=1 aj = 0.

Inductive definition of product.

Definition 4. For a natural number n, and real numbers a1, a2, . . . , an, we
define the product of the aj for j from 1 to n to be the number

∏n
j=1 aj

determined as follows:
1∏
j=1

aj = a1 ,

n+1∏
j=1

aj =
( n∏
j=1

aj

)
× an+1 for n ∈ IN .

And we also define
∏0

j=1 aj = 1.
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1.1.1 Some examples of proofs using inductive definitions

Theorem 4. For all n ∈ IN

n∑
k=1

(2k − 1) = n2.

(That is, the sum of the first n odd numbers is a perfect square, namely, n2.)

Proof. For n ∈ IN, let P (n) be the statement “
∑n

k=1(2k − 1) = n2 ”. We
want to prove that (∀n ∈ IN)P (n).

We will prove this by induction. For this purpose, we will prove that P (1)
and that (∀n)(P (n) =⇒ P (n+ 1)).

Base case. P (1) is true, because P (1) says that
∑1

k=1(2k − 1) = 12, which
is true because

∑1
k=1(2k − 1) = 1 and 12 − 1.

Inductive step. We prove that (∀n ∈ IN)(P (n) =⇒ P (n+ 1)).
Let n ne an arbitrary natural number. We want to prove that P (n) =⇒

P (n+ 1). To prove this, we assume P (n) and prove P (n+ 1).
So assume that P (n) is true. Then

n∑
k=1

(2k − 1) = n2 .

We want to prove that P (n+ 1) is true, i.e., that

n+1∑
k=1

(2k − 1) = (n+ 1)2 .(1.1)

But, by the inductive definition of “summation”,

n+1∑
k=1

(2k − 1) =
n∑
k=1

(2k − 1) + (2(n+ 1)− 1) .

And our inductive assumption tells us that

n∑
k=1

(2k − 1) = n2 .
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So

n+1∑
k=1

(2k − 1) =
n∑
k=1

(2k − 1) + (2(n+ 1)− 1)

= n2 + (2(n+ 1)− 1)

= n2 + (2n+ 2− 1)

= n2 + 2n+ 1

= (n+ 1)2 .

Hence (1.1) is true. So we have proved that P (n+ 1) is true, assuming P (n).
Since we have proved P (n + 1) assuming P (n), we have shown that

P (n) =⇒ P (n + 1). Since this has been established for arbitrary n ∈ IN,
we have proved that (∀n ∈ IN)(P (n) =⇒ P (n + 1)). This concludes the
inductive step.

Hence, by the PMI, P (n) is true for all n ∈ IN. Q.E.D.

Theorem 5. For all n ∈ IN
n∑
k=1

k2 =
n3

3
+
n2

2
+
n

6
.

Proof. For n ∈ IN, let P (n) be the statement “
∑n

k=1 k
2 = n3

3
+ n2

2
+ n

6
”.

We want to prove that (∀n ∈ IN)P (n).
We will prove this by induction. For this purpose, we will prove that P (1)

and that (∀n)(P (n) =⇒ P (n+ 1)).

Base case. P (1) is true, because P (1) says that

1∑
k=1

k2 =
1

3
+

1

2
+

1

6
,

and this is true because
∑1

k=1 k
2 = 1 and 1

3
+ 1

2
+ 1

6
= 1.

Inductive step. We prove that (∀n ∈ IN)(P (n) =⇒ P (n+ 1)).
Let n ne an arbitrary natural number. We want to prove that P (n) =⇒

P (n+ 1). To prove this, we assume P (n) and prove P (n+ 1).
So assume that P (n) is true. Then

n∑
k=1

k2 =
n3

3
+
n2

2
+
n

6
.
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We want to prove that P (n+ 1) is true, i.e., that

n+1∑
k=1

k2 =
(n+ 1)3

3
+

(n+ 1)2

2
+
n+ 1

6
.(1.2)

But, by the inductive definition of “summation”,

n+1∑
k=1

k2 =
n∑
k=1

k2 + (n+ 1)2 .

And our inductive assumption tells us that

n∑
k=1

k2 =
n3

3
+
n2

2
+
n

6
.

So

n+1∑
k=1

k2 =
( n∑
k=1

k2
)

+ (n+ 1)2

=
n3

3
+
n2

2
+
n

6
+ (n+ 1)2 .

Now we have to prove that

n3

3
+
n2

2
+
n

6
+ (n+ 1)2 =

(n+ 1)3

3
+

(n+ 1)2

2
+
n+ 1

6
.(1.3)

But
(n+ 1)2 = n2 + 2n+ 1 ,

so
n3

3
+
n2

2
+
n

6
+ (n+ 1)2 =

n3

3
+

3n2

2
+

13n

6
+ 1 ,

and

(n+ 1)3

3
+

(n+ 1)2

2
+
n+ 1

6
=

n3 + 3n2 + 3n+ 1

3
+
n2 + 2n+ 1

2
+
n+ 1

6

=
n3

3
+ n2 + n+

1

3
+
n2

2
+ n+

1

2
+
n

6
+

1

6

=
n3

3
+

3n2

2
+

13n

6
+ 1 .
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So both sides of (1.3) are equal to n3

3
+ 3n2

2
+ 13n

6
+ 1. Hence (1.3) is true, and

therefore (1.2) is true. Sp P (n+ 1) is true. So we have proved that P (n+ 1)
is true, assuming P (n).

Since we have proved P (n + 1) assuming P (n), we have shown that
P (n) =⇒ P (n + 1). Since this has been established for arbitrary n ∈ IN,
we have proved that (∀n ∈ IN)(P (n) =⇒ P (n + 1)). This concludes the
inductive step.

Hence, by the PMI, P (n) is true for all n ∈ IN. Q.E.D.


