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1 The fundamental theorem of arithmetic

The fundamental theorem of arithmetic (FTA), also called

– the unique factorization theorem,

or

– the unique prime factorization theorem,

is supposed to say the following, roughly:

(FTA, tentative version) Every natural number greater than or
equal to 2 has a unique prime factorization.

1.1 Is a prime factorization a set of primes?

The above statement is not completely precise, and some clarification is re-
quired.

First of all, what do we mean by “prime factorization”?
The first possible definition that may come to our mind is that a “fac-

torization” of a natural number n is a set S of natural numbers such that
the product of all the members of S is n. And a “prime factorization” of a
natural number n is a factorization of n whose members are prime numbers.

So, for example, since 6 = 2 × 3, and 2 and 3 are prime numbers, we
could say that the set {2, 3} is a prime factorization of 6.

This, however, is not a good idea. To see why, look for example at
the number 12. Clearly, 12 = 2×2×3. So, what is the “prime factorization”
of 12. You may be tempted to say that “it is the set {2, 2, 3}”, right? But
“the set {2, 2, 3}” is none other than the set {2, 3}. Sets do not have
repeated members! For a set S, there are objects x that are members of S
and objects that are not members, and there is nothing else. (For example,
there is no such thing as “being a member of a set twice”. If S is a set,
then an object x either is a member of S or is not a member.) And two sets
that have the same members are the same set. For “the set {2, 2, 3}”, 2 is a
member, 3 is a member, and no other object is a member. And for the set
{2, 3}” it is also true that 2 is a member, 3 is a member, and no other object
is a member. So the members of the set {2, 2, 3} are exactly the same as
the members of the set {2, 3}. Hence the set {2, 2, 3} is the same as the set
{2, 3}. And the product of the members of this set is 6, not 12. So it would
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appear that 12 does not have a prime factorization, because the only possible
prime factorization of 12—if we define “prime factorization” as a set— is in
fact a prime factorization of 6, not of 12.

This means that we have to change the definition of “prime factorization”:
instead of being a set, a “prime factorization” is going to be a finite list.

To make this precise, we need to say a few words about finite lists.

1.2 Finite lists

First, let us introduce some notation: for a natural number n, we are going
to use INn to denote the set of all natural numbers j such that j ≤ n. That
is

INn = {j ∈ IN : j ≤ n} .
A finite list has a length, which is a natural number, and, for each natural
number j such that j ∈ INn, where n is the length of the list, an entry.

There are finite lists and infinite lists. In this section, we will
only be talking about finite lists, so we am going to use “list”
throughout to mean “finite list”. Later we will want to consider
lists that may be infinite, so we will have to say “finite list” when
we want to talk about a finite list.

We will use various symbols, such as capital letters or boldface lower-case
letters, for lists. And, if a is a list, we will write

a = (aj)
n
j=1

or
a = (aj)j∈INn

to indicate that a is a list of length n whose j-entry, for each j ∈ INn, is aj.

Example 1. If we want to introduce the list of all U.S. presidents from
George Washington to Barack Obama, in chronological order, and call it p,
we can say

Let
p = (pj)

44
j=1

where, for j ∈ IN44, pj is the j-th president of the U.S.

And, if we then want to introduce the list of U.S presidents in backward
chronological order, and call it q, we can say
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Let q = (qj)
44
j=1 where, for j ∈ IN44, qj = p45−j.

(This is what we can do if we have already introduced p, so the reader knows
who p and the pj are.) �

When the length of a list is a small number, we can just write the entries
from left to right, separated by commas, and with a left parenthesis at the
beginning and right parenthesis at the end.

Example 2. If we want to introduce the list of the first five prime numbers,
and call it p, we can write

Let p = (pj)
5
j=1 where, for j ∈ IN5, pj is the j-th prime

number.

Or we can write

Let p = (pj)
5
j=1 where p1 = 2, p2 = 3, p3 = 5, p4 = 7, and

p5 = 11.

Or we can just write

Let p = (2, 3, , 5, 7, 11).

But, if we want to introduce the list of the first 200 primes, and call it p,
then of course the only reasonable choice is to write

Let p = (pj)
200
j=1 where, for j ∈ IN200, pj is the j-th prime

number.

Remark 1. Often, one writes

p = (p1, . . . , pn) ,

or
p = (p1, p2, . . . , pn) ,

instead of p = (pj)
n
j=1. I strongly prefer the (pj)

n
j=1 notation, but I will accept

the other one. �

Remark 2. Pay attention to the following:

1. Sets have members, not entries.

2. Lists have entries, not members.
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3. In the set notation, we use braces, as in “the set {1, 2, 3, 4}′′, or “the
set {x ∈ IR : x > 0}”.

4. In the list notation, we use parentheses1, as in “the list (2, 2, 3, 4)”,
or “the list p = (pj)

n
j=1”. �

1.3 Equality of lists

Two lists p = (pj)
n
j=1, q = (qj)

m
j=1, are equal if

1. n = m,

and

2. pj = qj for every j ∈ INn. (That is, (∀j ∈ INn)pj = qj.)

Example 3. The lists (2, 2, 3) and (3, 2, 2) are not equal because, for exam-
ple, the first entry of the first list is not equal to the fist entry of the second
list.

But, of course, the sets {2, 2, 3} and {3, 2, 2} are equal. �

Problem 1.What would be wrong if, in Example 3, I had written

The lists (2, 2, 3) and (3, 2, 2) are not equal because, for
example, p1 6= q1.

Answer: What is wrong is that we haven’t the faintest idea of who p1 and
q1 are, because we haven’t been told. �

1.4 Prime factorizations

Definition 1. A prime factorization of a natural number n is a finite list
p = (pj)

m
j=1 such that

(1) pj is a prime number for every j ∈ INm. (That is, all the entries in the
list are prime numbers.)

1Not all books usse the same notation, so if you are reading a mathematics book you
have to make sure to check which notations it is using. For example, some books use
braces for lists, so they would write “the list {pj}nj=1”. I strongly prefer the parenthesis
notation, and in this course this is the official notation.
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(2)
∏m

j=1 pj = n. �

Example 4. The list (2, 2, 3) is a prime factorization of the number 12,
because each of the three entries (2, 2, and 3) is a prime number, and the
product 2× 2× 3 is equal to 12. �

Example 5. The list (3, 2, 2) is also a prime factorization of 12, and is dif-
ferent from the prime factorization (2, 2, 3) of Example 4. �

So the number 12 has at least two different prime factorizations. And yet we
want the prime factorization of a natural number to be unique!

To solve this problem we have to introduce the concept of an “ordered
prime factorization”.

Definition 2. A list p = (pj)
m
j=1 whose entries are real numbers is ordered

if

(ORD) pj ≤ pj+1 for every j ∈ INm such that j < m. �

Definition 3. An ordered prime factorization of a natural number n is a
prime factorization p = (pj)

m
j=1 of n which is an ordered list. �

Example 6. The list (2, 2, 3) is an ordered prime factorization of 12, but the
list (3, 2, 2) is not. �

1.5 A correct statement of the FTA

From now on, if p = (pj)
k
j=1 is a list of real numbers, we write

“
∏

p” for “
∏k

j=1 pj”. So, for example, if p = (pj)
5
j=1, where pj

is the j-th prime for each j ∈ IN5, then
∏

p = 2, 310.
And here is a correct, almost perfect2 statement of the FTA:

Theorem 1. (An almost perfect version of

the fundamental theorem of arithmetic.)

Every natural number n such that n > 1

has a unique ordered prime factorization.

2I say “almost perfect” because the statement can be made even nicer and more elegant,
thus obtaining a truly “perfect” statement. We will do this later.



6 Sussmann – Math 300 – Spring 2015

1.6 The proof

We have to prove existence and uniqueness of the ordered prime factorization.
The existence of a prime factorization of any natural number n such that

n > 1 has been proved before, in Theorem 2 on page 4 of the lecture notes
on well-ordering.

But here we need to prove the existence of an ordered prime factorization.
Intuitively, this is obvious. Let n ∈ IN be arbitrary. Asssume that n > 1.
Take a prime factorization p = (pj)

m
j=1 of n. (Such a factorization exists by

Theorem 2 on page 4 of the lecture notes on well-ordering. And then Rule
∃use enables us to pick one and call it p.) Then reorder p, by forming a new
list q = (qj)

m that has the same entries as p, but in increasing order. This
gives us an ordered prime factorization of n, proving that such a factorization
exists. If you are satisfied with this proof of existence, you may
skip the following lemma, and move on directly to the beginning
of the proof of uniqueness.

How can we do prove the existence of the ordered list q in a completely
precise, rigorous way? Here is one way. We can prove, by induction on k,
the following lemma:

Lemma 1. If k ∈ IN, and p = (pj)
k
j=1 is a list of primes, then there exists

an ordered list q of primes such that
∏

q =
∏

p.

Proof of the lemma. I AM WORKING ON THIS PROOF. IT
WILL BE INCLUDED IN THE FINAL VERSION OF THESE
NOTES.

Using Lemma 1, the existence part of the FTA follows easily: let n be an
arbitrary natural number such that n ≥ 2. By Theorem 2 on page 4 of the
lecture notes on well-ordering, there exists a list of primes whose product is
n, so we may pick one such list and call it p. Then, by Lemma 1, there exists
an ordered list of primes whose product is equal to

∏
p. So we may pick

such a list and call it q. But then q is an ordered prime factorization of n.
So an ordered prime factorization of n exists. This concludes the proof of
existence.

The uniqueness proof. This is the most delicate part. We have to prove
that if we have two ordered prime factorizations p, q, of a natural number
n, it follows that p = q. In other words: we have to assume that
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() We have two lists

p = (pj)
k
j=1 , q = (qj)

`
j=1 ,

such that

(1) all the pj and all the qj are prime numbers,

(2) p and q are ordered lists (that is, pj ≤ pj+1 whenever j ∈ IN,
j < k, and qj ≤ qj+1 whenever j ∈ IN, j < `),

(3)
∏k

j=1 pj =
∏`

j=1 qj,

and we want to conclude that p = q.
To prove that p = q, we have to show that

(∀k ∈ IN)(∀` ∈ IN)(∀p)(∀q)A(k, `,p,q) ,(1.1)

where

A(k, `,p,q) is the statement:

If p and q are ordered lists of primes of lengths k, `, and
∏

p =
∏

q,
then p = q.

We would like to do a proof by induction. But one can do induction with
respect to one natural number variable, not with respect to two natural
number variables, or with respect to variables of other kinds such as lists.

So we have to express what we want to prove as a satatement of the form
(∀k ∈ IN)P (k). But this is easy to do:

Statetemnt (1.1) says
(∀k ∈)P (k) ,(1.2)

where

P (k) is the statement:

(∀` ∈ IN)(∀p)(∀q)A(k, `,p,q) .

To prove (1.1) we will prove (1.2). And, since (1.2) is of the form that
lends itself to a proof by induction, we will prove (1.2) by induction.



8 Sussmann – Math 300 – Spring 2015

The base case. We have to prove P (1). But P(1) says that “if p is an
ordered list of just one prime, q is an ordered list of primes, and

∏
p =

∏
q,

then p = q”.
Equivalently, P(1) says that “if p is a prime number, q is an ordered list

of primes, and p =
∏

q, then q has length one, so it consists of a single prime
q, and q = p”.

But this is obviously true, because, if q = (qj)
`
j=1, and p =

∏`
j=1 qj, then

` must be equal to 1, because p is prime, and a prime number cannot be
written as a product of two or more primes.

So P (1) is true, and the proof of the base case is complete.

The inductive step. We have to prove that

(∀k ∈ IN)(P (k) =⇒ P (k + 1)) .(1.3)

Let k ∈ IN be arbitrary.

Assume P (k) is true.

We want to prove P (k) + 1.

That is, we want to prove that

(*) If

(1) p is an ordered list of primes of length k + 1,

(2) q is an ordered list of primes of length `,

(3)
∏

p =
∏

q.

then p = q.

To prove (*), assume that (1), (2), (3) hold.

We want to prove that p = q.

Let p = (pj)
k+1
j=1 , q = (qj)

`
j=1.

Then ∏
p =

k+1∏
j=1

pj =
( k∏
j=1

pj

)
pk+1 .

It follows that
pk+1|

∏
p .

Since
∏

p =
∏

q, we can conclude that

pk+1|
∏

q .
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So

pk+1|
∏̀
j=1

qj .

By the generalized Euclid lemma, pk+1 must divide one of the
numbers qj. So we may pick an index j∗ ∈ IN` such that

pk+1|qj∗ .

Then, since pk+1 and qj∗ are natural numbers, it follows that

pk+1 ≤ qj∗ .

Since the list q is ordered, qj∗ ≤ q`. Hence

pk+1 ≤ q` .(1.4)

So we have proved that “the last of the p’s is less than or
equal to the last of the q’s”. Clearly, we can use exactly the
same argument to prove that “the last of the q’s is less than
or equal to the last of the p’s”, that is, that

q` ≤ pk+1 .(1.5)

It then follows from (1.4) and (1.5) that

pk+1 = q` .(1.6)

Then ∏
q =

∏̀
j=1

qj =
( `−1∏
j=1

qj

)
q`

and ∏
p =

k+1∏
j=1

pj =
( k∏
j=1

pj

)
pk+1 =

( k∏
j=1

pj

)
q` .

Since
∏

q =
∏

p, we can conclude that

( k∏
j=1

pj

)
q` =

( `−1∏
j=1

qj

)
q` .
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Hence
k∏
j=1

pj =
`−1∏
j=1

qj .

So, if we define lists p′, q′, by letting

p′ = (pj)
k
j=1 , q′ = (qj)

`−1
j=1k ,

we have:

(1’) p′ is an ordered list of primes of length k,

(2’) q′ is an ordered list of primes of length `− 1,

(3’)
∏

p′ =
∏

q.

Our inductive hypothesis says that P (k) is true, and this tells
us that

p′ = q′ .

In particular, the lists p′, q′ have the same length, that is,

k = `− 1 .

But then
k + 1 = ` ,(1.7)

so the lists p, q have the same length.
Furthermore, since p′ = q′, we have

(∀j ∈ INk)pj = qj .

But we have proved that pk+1 = q`, i.e., that pk+1 = qk+1

(because ` = k + 1). Hence the equality “pj = qj, that we
know holds for all j ∈ INk, also holds for j = k + 1. So

(∀j ∈ INk+1)pj = qj .(1.8)

Equations (1.7) and (1.8) say, precisely, that p = q

So we have proved that p = q assuming (1), (2), and (3).

Hence we have proved (*).

That is, we have proved P (k + 1).

Since we proved P (k+1) assuming P (k), we have proved that P (k) =⇒
P (k + 1).

Since this was proved for an arbitrary k ∈ IN, we have proved that (∀k ∈
IN)(P (k) =⇒ P (k + 1)). This completes the inductive step.
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By the Principle of Mathematical induction, we can conclude that (∀k ∈
IN)P (k). This completes our proof. Q.E.D.

1.7 The perfect statement of the FTA

Mathematicians like to have their theorems as simple and general as possible.
The FTA, as we have stated it, has a condition that makes it inelegant,
namely, the requirement that n > 1.

Wouldn’t it be nicer if we could just say:

Theorem 2. (The fundamental theorem of

arithmetic.) Every natural number has a

unique ordered prime factorization.

This is clearly more elegant, isn’t it? It’s much simpler than our previous
version, and it is also more general, because it applies to all natural numbers,
even to the number 1.

But, of course, just because a statement is nice, it doesn’t mean that it
is true3.

Is our new statement of the FTA true? The answer is “yes”, but we have
to be careful about what this means.

Notice that the only difference between the previous statement of the
FTA and our new statement is that the new statement says that the number
1 also has a unique ordered prime factorization. And we have to ask the
obvious question: what is that factorization?

The answer is: the ordered prime factorization of 1 is the empty list. Let
me explain.

First of all, until now we said that every list has a length, and that this
length is a natural number. We now change that, and add a new list: the
empty list.

The empty list is a list of length zero, that has no entries whatsoever. We
use the symbol ∅ to denote this list4.

3For example, the statement “every natural number is a product of even primes” is
very nice, but it just happens to be completely false.

4You may worry that “∅” already stands for the empty set. You need not worry. If one
does things carefully, it turns out that the empty set and the empty list true are the same
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Then the empty list is a list of primes. This can be rigoruously
proved as follows: we want to prove that every entry of the empty list is a
prime number. That is, we want to prove that

(∀x)(x is an entry of ∅ =⇒ x is a prime number) .

To prove this, we do what we usually do to prove a universal sentence: we
let x be arbitrary, and set out to prove that

x is an entry of ∅ =⇒ x is a prime number .

Now, “x is an entry of ∅ =⇒ x is a prime number” is an implication, and the
premiss of this implication is false. So the implication is true, and we have
proved what we wanted to prove.

Finally, it turns out that
∏
∅ = 1 . If you have trouble believing this, I

will give you two reasons:

Reason No.1:
∏
∅ = 1 because mathematicians have agreed that this is so.

In other words, the statement “
∏
∅ = 1” is true by convention, because

mathematicians have agreed that the product of the empty list is equal to
one5.

Reason No.2: Mathematicians are reasonable people, so if they decided that∏
∅ = 1 they must have had a good reason.
Here is the reason. The inductive definition of “

∏
” tells us that

n+1∏
i=1

ai =
( n∏
i=1

ai

)
an+1(1.9)

if n is a natural number. This means that
n∏
i=1

ai =

∏n+1
i=1 ai
an+1

(1.10)

thing, so it is perfectly all right to use “∅” both to denote the empty set and to denote
the empty list. But it takes some work to establish this, so for the moment just accept
that the empty list is called “∅”.

5This is like many other conventions. Why is Pluto not a planet? Because astronomers
have decided that it is isn’t. Why is 1 not a prime number? Because mathematicians have
decided that it isn’t. Why do we drive on the right side of the street? Because at some
point it was decided (in the U.S and many other countries, but not in all countries) that
the right side of the street is the side on which people should drive. Why are cows called
“cows” rather than, say, “zebras”? Because people have agreed that that is the name of
those animals.
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for n ∈ IN. Now suppose we want to make Formula (1.10) also true for n = 0.
Then we must have

0∏
i=1

ai =

∏1
i=1 ai
a1

.(1.11)

But the list (ai)
0
i=1 is the empty list, because there are no indices i such that

1 ≤ i ≤ 0. And
1∏
i=1

ai = a1 .

So ∏
∅ =

a1

a1

,(1.12)

and then ∏
∅ = 1 .(1.13)

This is not a rigorous proof. (Why should Formula (1.10) be valid for n = 0?
We have not given a reason. And what if a1 = 0?) But it is an argument
showing that the convention that

∏
∅ = 1 is a reasonable one.

In any case, once you agree that
∏
∅ = 1, it follows6 that our nicer version

of the FTA is true.

6We should also prove that the empty list is ordered. But that’s easy to do. You should
try to do it.


