
1 Z11 and ISBN numbers

As explained earlier, Z11 is a set consisting of 11 members, namely, the
integers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.

The members of Z10 are called digits. The members of Z2 are called bits.
By analogy with these two widely used names, we are going to call the mem-
bers of Z11 elvits. So an elvit is one of the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Notice that there are eleven elvits.

1.1 ISBN numbers

ISBN numbers are used to catalog and identify books. Each book has an
ISBN number.

An ISBN number is a sequence

(m1,m2,m3,m4,m5,m6,m7,m8,m9,m10)

of ten elvits. When we work with ISBN numbers, the name of the elvit
“10” is “X”, so

Z11 =
{

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, X
}
.

The first nine of these ten elvits are required to belong to the set{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9

}
, so m10 is the only elvit in an ISBN number that is

permitted to have the value X.
Furthermore, m10 is a redundant symbol, included for error-correcting

purposes. It is always given by the formula

m10 =
9∑
j=1

jmj , (1.1.1)

that is,

m10 = m1 + 2m2 + 3m3 + 4m4 + 5m5 + 6m6 + 7m7 + 8m8 + 9m9 .

Why do we use Z11 rather than Z10? And why do we use Equation
(1.1.1)? I will explain this eventually. But before we do that, let us verify
the formula for some books.

EXAMPLE 1. Our textbook has the ISBN number 0534399002. Let us
verify (1.1.1), making sure we remember that we are working in Z11, so all
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the operations are performed modulo 11.

m1 + 2m2 + 3m3 + 4m4 + 5m5 + 6m6 + 7m7 + 8m8 + 9m9

= 0 + 2× 5 + 3× 3 + 4× 4 + 5× 3 + 6× 9 + 7× 9 + 8× 0 + 9× 0
= 0 +X + 9 + 5 + 4 +X + 8 + 0 + 0
= 0 + 10 + 9 + 5 + 4 + 10 + 8 + 0 + 0 reduced modulo 11
= 46 reduced modulo 11
= 2 .

So it works!

EXAMPLE 2. The book “An Introduction to Analysis,” by William R.
Wade, has the ISBN number 0-13-093089-X. Let us verify (1.1.1).

m1 + 2m2 + 3m3 + 4m4 + 5m5 + 6m6 + 7m7 + 8m8 + 9m9

= 0 + 2× 1 + 3× 3 + 4× 0 + 5× 9 + 6× 3 + 7× 0 + 8× 8 + 9× 9
= 0 + 2 + 9 + 0 + 45 + 18 + 0 + 64 + 81
= 11 + 1 + 7 + 9 + 4
= 1 + 7 + 9 + 4
= 21
= 10
= X .

Once again, it works!

I suggest you look at a few books that you can find at home or in the
library, look at heir ISBN numbers, and check that in all cases Formula
(1.1.1) is true.

Now that you are convinced that ISBN numbers do indeed obey Formula
(1.1.1), the three questions that you ought to be asking yourself are:

1. Why do we use Z11?,
2. Why do we include m10, which contains absolutely no new information,

since it is completely determined by the first 9 elvits?,
3. Why do we use Formula (1.1.1)?

You will get the answers to these questions a little bit further in this
handout. But it would be a good idea if you started thinking about them
right now. Here is a hint:

The crucial distinction is that Z11 is a field, but Z10
is not.
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1.2 What is a field?

A field is a system F of objects on which are specified (1) members 0 and 1 of
F, and (2) binary operations of addition (sending x, y to x+ y), subtraction
(sending x, y to x − y), multiplication (sending x, y to x × y, or x · y), and
division (sending x, y to x

y ), in such a way that the 13 axioms of “The axioms
of arithmetic, Part I” (that is, the axioms of arithmetic that deal with 0, 1,
addition, subtraction, multiplication, and division) are satisfied, if you put
F instead of IR.

1.3 Why is Z10 not a field?

The number system Z10 is not a field because in it is not true that “every
number which is not equal to zero has a multiplicative inverse.” Or, in
symbols, if you prefer, the statement

(∀x)(x 6= 0⇒ (∃y)x · y = 1)

is not true in Z10.
How do we know that this is not true? Let us find a counterexample. I

will show that x = 2 is a counterexample. I have to show that

2 6= 0⇒ (∃y)2 · y = 1

isn’t true. Notice that “2 6= 0” is true, fortunately for us. (Why “fortunately
for us”? Because if “2 6= 0” wasn’t true, then the implication that we are
trying to prove, which says that “2 6= 0⇒ (∃y)2 · y = 1 ,” would be true!)

Since “2 6= 0” is true, what we need is to prove that “(∃y)2 · y = 1” isn’t
true. Let us do it by contradiction. Suppose that there exists such a y.
Pick one and call it ȳ. Then 2 · ȳ = 1 in Z10. This means that in Z the
number 2 · ȳ is equal to a multiple of 10 plus 1. But a multiple of 10 plus 1
must be odd, and ȳ is even. So we have reached a contradiction, y doesn’t
exist, and we are done. END OF PROOF

ANOTHER PROOF: In a field, it must be true that

(∀x)(∀y)(x · y = 0⇒ (x = 0 ∨ y = 0)) . (1.3.2)

(Proof: Let a, b be arbitrary members of our field. Suppose that a ·b = 0.
We want to show that a = 0 ∨ b = 0

Clearly, either a = 0 or a 6= 0. We consider the two cases separately.
If a = 0 then of course a = 0 ∨ b = 0, so the conclusion we want holds. If
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a 6= 0, then 1
a exists, and satisfies a · 1

a = 1
a · a = 1. So

b = 1 · b =
(1
a
· a
)
· b =

1
a
·
(
a · b) =

1
a
· 0 = 0 .

(In the above calculation, we have used, in the last step, the fact that ∀x)x ·
0 = 0. This was proved in full detail in the “Homework No. 8” handout.
Notice that the proof gien there only uses the field axioms, so it is valid in
every field.) Therefore a = 0 ∨ b = 0 in this case as well.

So we have seen that the conclusion that a = 0 ∨ b = 0 holds in both
cases, when a = 0 and when a 6= 0. Hence the Proof by Cases Rule tells us
that

a = 0 ∨ b = 0 .

Since this was true for arbitrary members of our field, we have established
(1.3.2).

Now that we know that (1.3.2) is true in any field, let us apply it to Z10.
Supppose Z10 was a field. Then (1.3.2) would be true. In particular, we
could apply it with x = 2, y = 5 and conclude that

2 · 5 = 0⇒ (2 = 0 ∨ 5 = 0)) .

But, in Z10, 2 · 5 is equal to 0. So 2 = 0 ∨ 5 = 0. But “2 = 0 ∨ 5 = 0” is
false, because neither 2 nor 5 is equal to zero. (Here it is important that we
are working in Z10. If we were working in Z5, for example, it would still be
true that 2 · 5 = 0, but this woulkd cause no problem, since in Z5 5 is equal
to 0.) So we have reached a contradiction, showing that Z10 is not a field.

1.4 Why is Z11 a field?

Let us show that, at least, it is true that “every nonzero member of Z11 has
a multiplicative inverse.” Here is the proof:

1× 1 = 1
2× 6 = 1
3× 4 = 1
4× 3 = 1
5× 9 = 1
6× 2 = 1
7× 8 = 1
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8× 7 = 1
9× 5 = 1

10× 10 = 1 .

Now, to prove that Z11 is a field we also have to prove all the other
field axioms, such as, for example, the commutative law of addition (i.e.,
(∀x ∈ Z11)(∀y ∈ Z11)x+ y = y + x), and many other things.

I leave that up to you, if you feel like doing it. But the main part is the
existence of multiplicative inverses, because this is what makes Z11 different
from, say Z10 or Z12.

1.5 Why do we use elvits for ISBN numbers?

In principle, we would like an ISBN number to consist of nine digits. (This
would allow us to have a total of 109—i.e. one billion—ISBN numbers,
which presumably is more than the number of books ever published or to
be published up to, say, the year 2100. For example, as this is being writ-
ten, the U.S. Library of Congress has 14 million books, and a total of 88
million items including manuscripts, maps, music, art prints, photographs,
motion pictures, videotapes, newspapers, pamphlets, recordings and other
materials.)

Now, as you well know, ISBN numbers are transmitted, copied, rewrit-
ten, etc. Each of these operations can introduce transmission errors. So
it is customary to introduce some redundancy into a signal to use it to
check for errors. (For example, when you change your password for a
computer system you use, you are asked to type in the new password and
then to type it in again. In principle, if you type it in correctly the first
time, there is no need to type it in again, because this would convey no new
information. However, if you made a mistake the first time you typed it in,
you will almost certainly type in a different string of symbols the second
time, because it is extremely unlikely that you will make exactly the same
mistake the second time. And then the computer will know that you made
a mistake somewhere, and ask you start all over again.)

For ISBN numbers, we introduce redundancy by adding an extra symbol
that carries no new information but will enable us to detect the most frequent
types of errors. A simple example of how this could be done, if we were using
Z10, would be to take m10 to be the sum of the other 9 digits, i.e., to take

m10 = m1 +m2 +m3 +m4 +m5 +m6 +m7 +m8 +m9 . (1.5.3)

This would detect errors consisting of getting one digit wrong.
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(Indeed, if you make a mistake in one of your first nine digits, that will
change the sum, so the tramsitted m10 will no longer satisfy (1.5.3). For
example, if the correct m5 is 2, and you send a 7 instead, then the sum m10

will be increased by 5 in Z10.)
Naturally, this method will not detect more complicated errors

such as, for example, if you send two wrong symbols. (For example,
if the correct string is 0636274165, and you send is 0686774165 instead,
getting two digits wrong, then (1.5.3) will still hold, because the errors in
m3 and m5 are both 5, so their sum in Z10 is 0.) But two mistakes are a
lot less likely than one mistake, so this imperfect method will enable us to
detect most errors, even though some errors will still go undetected.

Another limitation of the method is that it will detect errors but it will
not tell you how to correct them, because you will not know which digit
is wrong. (For example, if you receive the string 0636774165, then you know
for sure that it has to be wrong, because 0+6+3+6+7+7+4+1+6 = 0—in
Z10—whereas m10 = 5, so (1.5.3) is not true. But you do not know which
digit was wrong.) Again, this is a limitation of the method that we are
willing to accept, because once we know that there is a mistake we can ask
the sender to send us the number again.

The real problem is that there is another very common type of error
that this method will not detect, namely, transposition errors, in which
two symbols get exchanged. (For example, if the correct 9-digit string is
0636274165, and you send instead 0616274365, so that m3 and m7 are in-
terchanged, the sum of (1.5.3) will be the same.)

If we want to detect transposition errors as well as the simpler ones
consisting of getting one symbol wrong, then we need a formula

m10 = a1m1 + a2m2 + a3m3 + a4m4 + a5m5 + a6m6 + a7m7 + a8m8 + a9m9 ,
(1.5.4)

where the coefficients a1, a2, a3, a4, a5, a6, a7, a8, a9 are all different. But
then, if we insist on working in Z10, and we use (1.5.4) taking the coef-
ficients aj to be all different, we run into another difficulty: at least one of
the aj will have to be even (why?), and then 5aj = 0 in Z10, which means
that if we make an error of 5 in the j-th digit, then we will not detect this
error. In other words: if we work in Z10 there is no way to add an ex-
tra “error-detecting” digit m10 given by a formula (1.5.4) so that
we will detect both (a) errors in the transmission of a single digit,
and (b) transposition errors.

On the other hand, let me prove to you that in Z11 it is possible
to add an extra “error-detecting” digit m10 given by a formula
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(1.5.4) so that we will detect both (a) errors in the transmission
of a single digit, and (b) transposition errors. Indeed, we can use
the formula that is actually used in real life, namely,

m10 = m1 + 2m2 + 3m3 + 4m4 + 5m5 + 6m6 + 7m7 + 8m8 + 9m9 . (1.5.5)

Notice that this corresponds to taking a1 = 1, a2 = 2, a3 = 3, a4 = 4,
a5 = 5, a6 = 6, a7 = 7, a8 = 8, a9 = 9. These are 9 different elvits, and this
is exactly as it should be, since we have already seen that in order to detect
transposition errors you do need that aj to be all different.

I will now prove to you rigorously (with your help) that if the mj are
elvits chosen so that (1.5.5) holds, then every error consisting of
one wrong elvit or two transposed elvits will be detected.

Here is the first half of the proof. Consider the first type of error, namely,
one wrong elvit. Let j be the place where this error is made, so j is one of
the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and the correct elvit mj is replaced by
the wrong elvit m̃j , but all the other elvits mi (for i 6= j) are correct. Let us
deal separately with the cases when j < 10 and j = 10. If j < 10, then the
right-hand side mcomputed

10 of (1.5.5) computed from the transmitted elvits
will be m10 + j(m̃j −mj), but the received 10-th elvit will be the correct
m10.

Since j 6= 0 and m̃j −mj 6= 0,
the product j(m̃j −mj) is also
different from 0

so mcomputed
10 will not be equal to m10 . This means that the received ten-elvit

string will not satisfy (1.5.5), so the error will be detected.
Now let us look at the remaining case, when the wrong elvit is the tenth

one. In that case, the transmitted mj (for j = 1, 2, 3, 4, 5, 6, 7, 8, 9) will be
correct, but the transmitted value m̃10 will be different from the true value
m10. The computed tenth elvit will be m10, but the one received will be
m̃10, which is different. So once again the error will be detected.

This completes the first half of the proof, having to do with detecting
errors in the transmission of a single elvit. Now we have to do the second
part, namely, prove that the formula used in real life also detects transpo-
sition errors. I am leaving this part of the proof for you to
do!
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Let me give you an example. Suppose the correct ISBN number for
a book is 0534399002, but a transmission error is made and the number
actually sent is 0539349002. (This is a transposition error. The 4 and the
first 9 are transposed.) Now the transmitted m10 is 2, but the m10 computed
using Formula (1.5.5) is

1× 0 + 2× 5 + 3× 3 + 4× 9 + 5× 3 + 6× 4 + 7× 9 + 8× 0 + 9× 0 ,

that is,

0 + 10 + 9 + 36 + 15 + 24 + 63 + 0 + 0 reduced modulo 11 ,

which is equal to

19 + 3 + 4 + 2 + 8 reduced modulo 11 ,

i.e., to 3. So our transposition error resulted in a computed m10 equal to 3,
which is different from the transmitted m10, whose value was 2. So we have
detected the error.

Why did this work? Because, in the sum

1× 0 + 2× 5 + 3× 3 + 4× 4 + 5× 3 + 6× 9 + 7× 9 + 8× 0 + 9× 0 ,

which we would have used for the correct ISBN number, the terms 4×4 and
6× 9 got replaced by 4× 9 and 6× 4, so that the contribution of these two
terms to the total sum has been incremented by

(4× 9 + 6× 4)− (4× 4 + 6× 9) ,

that is, by
(6− 4)× 4 + (4− 6)× 9) ,

which is equal to (6−4)×(4−9). In other words, the effect of the transposition
is to change m10 by the product µ× ν, where µ is the difference between the
indices of the elvits that were transposed (for example, if you transpose mi

and mj, and i < j, then µ = j−i), and ν is the difference between the actual
values of the elvits that were transposed (for example, if you transpose mi

and mj, and i < j, then µ = mi−mj). The crucial point is that µ is always
6= 0 (in Z11), and ν is always 6= 0 (because if mi = mj and you transpose
mi and mj then there is no error). So the important thing is that the
inequalities µ 6= 0 and ν 6= 0 imply µ × ν 6= 0, which is true in Z11

because Z11 is a field.
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PROBLEM 1 (ON Z11): Write a detailed proof that Formula (1.5.5) for
ISBN numbers detects transposition errors, along the lines of the previous
paragraph. That is, prove the following: if a sequence m = (m1,m2, · · · ,m10)
of ten elvits satisfies (1.5.5) then any sequence of m̃ obtained from m by ex-
changing two different elvits (that is, any m̃ = (m̃1, m̃2, · · · , m̃10) such that,
for some i, j for which i 6= j and mi 6= mj , we have m̃k = mk if j 6= k 6= i,
m̃i = mj and m̃j = mi) will fail to satisfy (1.5.5). (WARNING: you will
have to be careful and consider separately two types of interchanges, namely,
those that do not involve m10 and those that do. Alternatively, there is a
cute trick that will enable you to deal with both cases in one swoop. See
if you can figure it out. Hint: In Z11, −a = X · a for all a, where, as we
explained before, X is the name of the number 10 in Z11. Apply this to m10.)

PROBLEM 2 (ON Z11): Suppose we wanted to increase the number of ISBN
numbers by using 11 elvits instead of 10. That is, we would define an ISBN
number to be a sequence (m1,m2, · · · ,m10,m11) of eleven elvits, and we
would use the error-detecting formula

m11 = m1+2m2+3m3+4m4+5m5+6m6+7m7+8m8+9m9+Xm10 . (1.5.6)

(Recall that X is the name of 10 in Z11.) Would this still work to detect
both types of errors?

1.6 A remark on fields

The crucial step in the proof of the first half of our theorem or the error-
detecting properties of Z11-based ISBN numbers was the assertion that

In Z11, if a 6= 0 and b 6= 0 then
a× b 6= 0.

How do we know that this is true? Well, you could check it directly, by
trying all possible pairs of values of a and b (there are only 100 such pairs!)
such that a ∈ Z11, b ∈ Z11, a 6= 0, b 6= 0, and verifying that in each case
a× b 6= 0.

A much easier way to see it is to remember that we proved this (cf.
Page 3), not just for Z11, but for any field. Since Z11 is a field, the general
result can be applied to Z11.
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1.7 When is Zn a field?

In a previous section, we proved that Z11 is a field by directly checking that
every nonzero member of Z11 has a multiplicative inverse, that is, that

(∀x ∈ Z11)(x 6= 0⇒ (∃y ∈ Zn)(x× y = 1)) .

We did by checking every nonzero member of Z11 and,in each case, finding
the multiplicative inverse. But this is a horrible and boring method! Suppose
we wanted to check that Z101 is a field. We would have to list all 100 nonzero
members of Z101 and for each one find a multiplicative inverse. And that
would be a lot of work. So it is better to have a general theorem:

THEOREM. Assume that n ∈ IN and n > 1. Then Zn is a field if and
only if n is prime.

Proof. Assume first that n is not prime. Let us prove that Zn is not a field.
Since n is not prime, we can pick integers k, ` such that k · ` = n, 1 < k < n,
and 1 < ` < n. But then k and ` are nonzero as members of Zn, but their
product k× ` is Zn is equal to zero, since k · ` = n. Hence (1.3.2) is not true
in Zn. But (1.3.2) is true in any field. So Zn is not a field.

Now assume that n is prime, and let us prove that Zn is a field. As we
already explained before, the crucial point is to prove that every nonzero
member of Zn has a multiplicative inverse, that is, that

(∀x ∈ Zn)(x 6= 0⇒ (∃y ∈ Zn)(x× y = 1)) .

Let a be an arbitrary nonzero member of Zn. Then a ∈ IN, a > 0, and
a < n. Let c be the greatest common divisor of a and n. Then c = 1,
because n is prime. On the other hand, we know that the greatest common
divisor of two integers is an integer linear combination of these two integers.
So we may pick integers u, v such that ua + vn = 1. Using the Division
Theorem, pick integers q, r such that u = nq + r and 0 ≤ r < n. Then
r ∈ Zn. Furthermore,

ra = (u− nq)a = ua− nqa = 1− vn− nqa = 1 + (−v − qa)n .

But this means that ra, reduced modulo n, equals 1. Hence the product
r×na (that is, the product of r and a in Zn), is equal to 1, so r is the desired
multiplicative inverse of a. ♦
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