MATHEMATICS 432 — SPRING 2016
H. J. Sussmann

HOMEWORK ASSIGNMENT NO. 1,
DUE ON THURSDAY, JANUARY 29
HAND IN PROBLEMS 3, 4, 6, 7, 9, 10

2. Book, Exercise 1.1.5 on Page 7.

4. A conic section is a curve obtained by intersecting a conic surface with a plane. *(You should read the article entitled “conic section” in Wikipedia. And, in particular, you should look at the pictures.)* Let S be the surface in \mathbb{R}^3 consisting of all the points (x, y, z) that satisfy $x^2 + y^2 = z^2$, so S is a conic surface. Let P be the plane in \mathbb{R}^3 with equation $z = ax + b$, where a and b are real numbers such that $0 < a < 1$ and $b > 0$. Show that $S \cap P$ is an ellipse.

6. Book, Exercise 1.2.4 on Page 12. *(NOTE: This problem is very important.)* The fact that “the straight-line segment is the shortest distance between two points” is one of the oldest and most useful mathematical results. A large part of our course will be devoted to the study of curved surfaces, and one of the main things we will study for a curved surface S is precisely which curves in S have this property of being “the shortest path between two points”. These curves are called “geodesics”, and understanding them is not at all a trivial task. Take, for example, the surface of the Earth. What is the shortest path from New York City to Beijing? Since both cities are approximately at the same latitude (40° North), you may think that the shortest way to fly from New York to Beijing is to follow the 40° parallel, i.e., to fly due West from New York until you get to Beijing. But this is not at all the case! The parallel is not a geodesic. Planes fly from New York to Beijing follow a polar route, because it is much shorter. Describing the
geodesics on a curved space is difficult and important. We will have a lot to say about this question later.