
MATHEMATICS 300 — SPRING 2015
Introduction to Mathematical Reasoning

H. J. Sussmann
HOMEWORK ASSIGNMENT NO. 8, DUE

ON FRIDAY, APRIL 10

Problem 1. In this problem, I am asking you to prove or disprove several
statements. To prove one of these statements (which you should be able to
do, if the statement is true1) you can use induction or well-ordering. (And
you probably will need to prove first, as a lemma, the result for the special
case n = 2.) To disprove it (which you should be able to do, if the statement
is false), you should give a counterexample.

I will give you the solutions for the first two, and you are asked to do the
other ones. You should read these solutions very carefully, and use
the same pattern for all the other questions.

Statement I. Prove or disprove the following statement: If n is a natural
number and x1, . . . , xn are odd integers, then the product

∏n
k=1 xk is odd.

(In other words: the product of several odd integers is odd.)

Solution. This statement is true. In order to prove it, we will first prove a
lemma:

Lemma. If x and y are odd integers, then the product xy is odd.

Proof of the lemma. Let x, y be arbitrary odd integers. Since x and y are
odd, we may pick integers j, k such that x = 2j + 1 and y = 2k + 1. Then

xy = (2j + 1)(2k + 1) = 4jk + 2j + 2k + 1 = 2(2jk + j + k) + 1 .

Since 2jk + j + k is an integer, it follows that xy is odd. Q.E.D.

Proof of Statement I. We use induction on n. Let P (n) be the statement
“If x1, . . . , xn are odd integers, then the product

∏n
k=1 xk is odd”. We want

to prove that (∀n ∈ IN)P (n).

1Let me be very precise here. I am not saying that every true mathematical statement
can be proved. In fact, there is a very deep result, known as the “Gödel Incompleteness
Theorem”, that says that there are mathematical statements that are true but cannot be
proved. All I am saying is that all the statements in this set of problems that are true can
be proved, and you should be able to prove them.
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The base case. P (1) says that “if x1 is an odd integer, then the product∏1
k=1 xk is odd”. But, according to the inductive definition of “

∏
”, we have

1∏
k=1

xk = x1 ,

so P (1) says that “if x1 is odd then x1 is odd”, and this is obviously true.

The inductive step. We have to prove that

(∀n ∈ IN)(P (n) =⇒ P (n+ 1)) .(1)

For this purpose, we will take n to be an arbitrary natural number, assume
P (n), and prove P (n+ 1).

Let n ∈ IN be arbitrary.

Assume P (n).

We want to prove P (n+ 1).

That is, we want to prove that

(∀x1, . . . , xn, xn+1 ∈ Z)
(
x1, . . . , xn, xn+1 are odd =⇒

n+1∏
k=1

xk is odd
)
.(2)

To prove (2), we will take x1, . . . , xn, xn+1 to be arbitrary integers,
assume that these integers are odd, and prove that

∏n+1
k=1 xk is odd.

Let x1, . . . , xn, xn+1 be arbitrary integers,

Assume that x1, . . . , xn, xn+1 are odd.

We want to prove that
∏n+1

k=1 xk is odd.

We know, from the inductive definition of “
∏

”, that2

n+1∏
k=1

xk =
( n∏
k=1

xk

)
.xn+1 .(3)

2Pay attention to the use of parentheses! I you had written “
∏n
k=1 xk.xn+1”,

without parentheses, rather than “
(∏n

k=1 xk

)
.xn+1”, this would have meant a totally

different thing, namely, the product of x1.xn+1 times x2.xn+1 times . . . times xn.xn+1,
which is actually equal to

(∏n
k=1 xk

)
xnn+1.
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The inductive assumption P (n) says that “if x1, . . . , xn
are odd integers, then the product

∏n
k=1 xk is odd”. In

our case, we are assuming that x1, . . . , xn, xn+1 are odd
integers, so in particular x1, . . . , xn are odd integers. Then∏n

k=1 xk is odd.

And we are also assuming that xn+1 is odd.

So (3) tells us that
∏n+1

k=1 xk is the product of two odd
integers.

And the lemma tells us that the product of two odd inte-
gers is odd.

Therefore
∏n+1

k=1 xk is odd.

We have proved that
∏n+1

k=1 xk is odd under the assumption
that the integers x1, . . . , xn, xn+1 are odd.

And this was established for arbitrary integers x1, . . . , xn, xn+1.

So we have proved (2).

That is, we have proved P (n+ 1).

Since we have proved P (n+1) assuming P (n), it follows that P (n) =⇒
P (n+ 1).

Since we have proved P (n) =⇒ P (n+1) for arbitrary n ∈ IN, we have shown
that (1) holds.

This completes the inductive step.

It then follows from the Principle of Mathematical Induction that

(∀n ∈ IN)P (n) ,

which is our desired conclusion. Q.E.D.

Statement II. Prove or disprove the following statement: If n is a natural
number and x1, x2, . . . , xn are odd integers, then the sum

∑n
k=1 xk is odd.

Solution. Statement II is false. To see this, here is a counterexample: take
n = 2, x1 = 5, x2 = 3. Then x1 and x2 are odd, but the sum

∑n
k=1 xk is

equal to 8, which is not odd.

Statement III. Prove or disprove the following statement: If n is a natural
number and x1, x2, . . . , xn are real numbers that are all different from zero,
then the sum

∑n
k=1 xk is different from zero.
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Statement IV. Prove or disprove the following statement: If n is a natural
number and x1, x2, . . . , xn are real numbers that are all different from zero,
then the product

∏n
k=1 xk is different from zero.

Statement V. Prove or disprove the following statement: If p is an integer,
n is a natural number, and x1, x2, . . . , xn are integers such that p divides xk
for every k ∈ IN such that k ≤ n, then the sum

∑n
k=1 xk is divisible by p.

(That is3,

(∀p ∈ Z)(∀n ∈ IN)(∀x1, . . . , xn ∈ Z)(
(∀k ∈ IN)(k ≤ n =⇒ p|xk) =⇒ p|

∑
xk

)
.

In other words, “if an integer p divides several integers, then it divides the
sum of those integers”. Recall that “|” stands for “divides”4.)

Statement VI. Prove or disprove the following statement: If p is an integer,
n is a natural number, and x1, x2, . . . , xn are integers such that the product∏n

k=1 xk is divisible by p, then xj is divisible by p for some j ∈ IN such that
j ≤ n. (That is5,

(∀p ∈ Z)(∀n ∈ IN)(∀x1, . . . , xn ∈ Z)(
p|

n∏
k=1

xk =⇒ (∃j ∈ IN)(1 ≤ j ≤ n ∧ p|xj)
)
.

In other words, “if an integer p divides a product of several integers, then it
must divide one of those integers”.)

Statement VII. Prove or disprove the following statement: If p is a prime
number, n is a natural number, and x1, . . . , xn are integers such that the
product

∏n
k=1 xk is divisible by p, then xj is divisible by p for some j ∈ IN

3Pay attention to the parentheses!
4Many students seem to think that the vertical bar “|” denotes a fraction. It doesn’t!.

The expression “3|6” means “3 divides 6”, or, if you prefer, “6 is divisible by 3”. It is not
the name of the fraction 3

6 . In general, if x, y are integers, then “x|y” is a statement,
whereas “xy ” is the name of a number.

5Pay attention to the parentheses!
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such that j ≤ n. (That is6,

(∀p ∈ Z)
(
p is prime =⇒

(∀n ∈ IN)(∀x1, . . . , xn ∈ Z)
(
p|

n∏
k=1

xk =⇒ (∃j ∈ IN)(1 ≤ n ∧ p|xj)
))

.

In other words: “if p is prime and divides a product of several integers, then
it must divide one of these integers”.)

Statement VIII. Prove or disprove the following statement: If n is a nat-
ural number, and x1, x2, . . . , xn are real numbers, then there exist a j ∈ IN
such that j ≤ n and (∀k ∈ IN)(k ≤ n =⇒ xj ≥ xk). (NOTE: This just says
that every finite set of real numbers has a maximum, i.e., a member of the
set which is greater than or equal to every member of the set.)

Problem 2. In this problem, you are asked to prove or disprove several
statements about linear independence of real numbers over the rationals. I
am giving you the solutions of the first two, and you are asked to do the
other ones.

But first, naturally, I have to give you the definition of “linear indepen-
dence over Q”, and of the related concept of “linear dependence over Q”.

Definition of “linear independence over Q”. If n is a natural number
and x1, x2, . . . , xn are real numbers, we say that the numbers x1, x2, . . . , xn
are linearly independent over Q if, whenever c1, . . . , cn are rational numbers
such that c1x1 + · · · + cnxn = 0, it follows that c1 = c2 = · · · = cn = 0. In
formal language, x1, x2, . . . , xn are linearly independent over Q if and only if

(∀c1, c2, . . . , cn ∈ Q)
( n∑
k=1

ckxk = 0 =⇒ c1 = c2 = · · · = cn = 0
)
.

Definition of “linear dependence over Q”. If n is a natural number
and x1, x2, . . . , xn are real numbers, we say that the numbers x1, x2, . . . , xn
are linearly dependent over Q if they are not linearly independent over Q.

Statement I. Prove or disprove the following statement: 1,
√

2, and
√

3 are
linearly independent over Q.

Solution. This statement is true. Here is a proof.

6Pay attention to the parentheses!
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We want to prove that if c1, c2, c3 are rational numbers such that

c1 × 1 + c2 ×
√

2 + c3 ×
√

3 = 0 ,(4)

it follows that c1 = c2 = c3 = 0.

Let c1, c2, c3 be arbitrary rational numbers.

Assume that (4) holds, that is, that

c1 + c2

√
2 + c3

√
3 = 0 .(5)

We want to prove that c1 = c2 = c3 = 0.

Equation (5) implies that

c2

√
2 + c3

√
3 = −c1 .(6)

Squaring both sides, we get

2c2
2 + 3c2

3 + 2c2c3

√
6 = c2

1 .(7)

Therefore

2c2c3

√
6 = c2

1 − 2c2
2 − 3c2

3 .(8)

Now, there are two possibilities: c2c3 6= 0, and c2c3 = 0.

We are going to show, as a first step towards proving our desired
conclusion, that the first possibility cannot arise. That is, we are
going to show that c2c3 must be equal to 0.

Assume that c2c3 6= 0.

In this case, we can divide both sides of (8) by 2c2c3, and
conclude that

√
6 =

c2
1 − 2c2

2 − 3c2
3

2c2c3

.(9)

Since c1, c2, c3, 2, and 3 are rational, it follows that c2
1, 2c2

2,
3c2

3, and 2c2c3 are rational. Since the sum and difference of
two rational numbers is rational, the number c2

1− 2c2
2− 3c2

3 is
rational. And, since the quotient x

y
of two rational numbers

x, y is rational (as long as y 6= 0), the right-hand side of (9)

is rational. Hence
√

6 is rational .
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But
√

6 is irrational . (Proof: Assume that
√

6 ∈ Q. Then,

by the Coprime Representation Theorem7, we may pick co-
prime integers m,n such that n > 0 and

√
6 = m

n
. Then

n
√

6 = m, so 6n2 = m2. Hence m2 is even. Therefore m is
even. So we may write m = 2k, for some integer k. Then
m2 = 4k2. So 6n2 = 4k2. Therefore 3n2 = 2m2. Hence 3n2

is even, so n is even. But, since m and n are both even, they
have the common factor 2, contradicting the fact that they
are coprime.)

So we have proved the contradictory facts that
√

6 is rational
and
√

6 is irrational. This shows that it is impossible that
c2c3 6= 0.

So c2c3 = 0.

It follows from this that c2 = 0∨c3 = 0. (This is a consequence
of Theorem8 4 on Page 30 of the lecture notes for Lectures
2,3,4, which says that, if the product xy of two real numbers
x, y is equal to zero, then one of the numbers x, y must be
equal to zero.)

Since c2 = 0 ∨ c3 = 0, we consider separately the cases when
c2 = 0 and when c3 = 0.

Suppose that c2 = 0.

Then

c3

√
3 = −c1 .(10)

If c3 was 6= 0, we would be able to divide both sides of
(10) by c3, and conclude that

√
3 = −c1

c3

.(11)

Since c1 and c2 are rational, it follows that
√

3 is rational.
But
√

3 is irational. So we have derived a contradiction.

7The Coprime Representation Theorem says that if r is a rational number then there
exist integers m,n such that (1) n > 0, (2) r = m

n , and (3) m and n are coprime.
8This theorem is extremely important, and we have used it millions of times in proofs

in this course. By looking at the first midterm, I can tell that many students do not under-
stand this result and do not know how to prove it. You should study this theorem—
and its proof—carefully.
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This shows that c3 cannot be 6= 0.

So c3 = 0.

Hence (since we are assuming that c2 = 0), we have shown
that c2 = c3 = 0.

Then (10) implies that c1 = 0 as well.

So we have proved that c1 = c2 = c3 = 0, in the case when
c2 = 0.

An identical argument works if c3 = 0. So in this case it
also follows that c1 = c2 = c3 = 0.

So we have proved that c1 = c2 = c3 = 0 both when c2 = 0
and when c3 = 0. And, since we know that one of these two
possibilities occurs, it follows that c1 = c2 = c3 = 0.

We have proved that c1 = c2 = c3 = 0 under the assumption that
c1 × 1 + c2 ×

√
2 + c3

√
3 = 0 and c1, c2, c3 are arbitrary rational

numbers.

Therefore

(∀c1, c2, c3 ∈ Q)
(
c1 × 1 + c2 ×

√
2 + c3

√
3 = 0 =⇒ c1 = c2 = c3 = 0

)
.

That is, we have shown that 1,
√

2,
√

3 are linearly independent over Q, which
is our desired conclusion. Q.E.D.

Statement II. Prove or disprove the following statement: 1,
√

2,
√

3, and√
2 +
√

3 are linearly independent.

Solution. This statement is false. To prove this, we give a counterexample.
That is, we exhibit rational numbers c1, c2, c3, c4 such that

c1 × 1 + c2

√
2 + c3

√
3 + c4(

√
2 +
√

3) = 0 ,(12)

but
it is not true that c1 = c2 = c3 = c4 = 0 .(13)

We take c1 = 0, c2 = 1, c3 = 1, and c4 = −1. Then it is clear that (12) and
(13) hold. Q.E.D.

Statement III. Prove or disprove the following statement: The real num-
bers 1,

√
2,
√

3, and
√

5 are linearly independent over Q.
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Statement IV. Prove or disprove the following statement: The real num-
bers 1,

√
2, 3
√

2, and 4
√

2 are linearly independent over Q.

Statement V. Prove or disprove the following statement: If x, y are real
numbers, then x, y are linearly independent over Q if and only if x + y and
x− y are linearly independent over Q.

Statement VI. Prove or disprove the following statement: If x, y, z are real
numbers, then x, y, z are linearly independent over Q if and only if x + y,
y + z and x+ z are linearly independent over Q.

Statement VII. Prove or disprove the following statement: If x, y, z are real
numbers, then x, y, z are linearly independent over Q if and only if x − y,
y − z and x− z are linearly independent over Q.


