MATHEMATICS H311 - FALL 2015 H. J. Sussmann
 HOMEWORK ASSIGNMENT NO. 1, DUE ON WEDNESDAY, SEPTEMBER 9

1. Book, Exercise 1.5.4 on Page 30. (HINTS: For Part (a), use the function arctan, suitably translated and rescaled. For Part (c), remember the "infinite hotel phenomenon": suppose there is an "infinite hotel", with rooms labelled by the natural numbers, so that there is Room 1, Room 2 , Room 3, and so on, one room-called Room n-for every natural number n. Suppose that all the rooms are occupied, and then a new guest arrives and you want to find a room for this guest. If the hotel was finite, then you would have to say "sorry, we are full; there is no room for you." But in the case of an infinite hotel you can find a room for the new guest as follows: for each $n \in \mathbb{N}$, move the guest that occupies Room n to Room $n+1$. (So the guest in Room 1 is moved to Room 2, the guest in Room 2 is moved to Room 3, and so on.) Now every one of the guests that was there before still has a room, but Room 1 is free, so you can put the new guest in Room 1.)
2. Prove that if S is an arbitrary set then there does not exist a one-to-one function from $\mathcal{P}(S)$ to S. (Here $\mathcal{P}(S)$ is the power set of S, that is, the set of all subsets of S. In other words, $\mathcal{P}(S)=\{X: X \subseteq S\}$.) HINT: This problem is closely related to Cantor's Theorem, i.e., Theorem 1.6.2 on Page 34 of the book.
3. Exercise 1.4.8 on Page 24 of the book.

NOTE: I promised in class that there was going to be a homework question on proving that the axiom" $0 \neq 1$ " cannot be proved from the other axioms of an ordered field. This question is going to appear in the set of homework problems for Week 2.

