MATHEMATICS H311 — FALL 2015
H. J. Sussmann

HOMEWORK ASSIGNMENTS NOS. 10 AND 11, DUE
ON TUESDAY, NOVEMBER 17 AND TUESDAY,
NOVEMBER 24.

This s a long list of problems. You should practice and
figure out how to do all these problems'.

The problems marked “D10” are part of Assignment No.
10, to be handed n on November 17. The problems marked
“D117 are part of Assignment No. 11, to be handed in on
November 2. The other problems are also very important
and you should try to do as many of them as you can.

Problem 1. Book, page 93, Exercise 3.2.1.
Problem 2. Book, page 93, Exercise 3.2.2.
Problem 3. (D10) Book, page 93, Exercise 3.2.3.
Problem 4. (D10) Book, page 93, Exercise 3.2.4.
Problem 5. Book, page 93, Exercise 3.2.5.
Problem 6. Book, page 93, Exercise 3.2.6.

Problem 7. (D10) Book, page 93, Exercise 3.2.7. Make sure that you
understand the difference between the set A (the closure of A) and L, the
set of limit points of A. Both sets are closed, but they can be quite different.
For example, A is necessarily a subset of A, but it can happen that A is not
a subset of L.

Problem 8. (D10) Book, page 93, Exercise 3.2.8.
Problem 9. Book, pages 93-94, Exercise 3.2.9.
Problem 10. Book, page 94, Exercise 3.2.10.
Problem 11. (D10) Book, page 94, Exercise 3.2.11.

Problem 12. (D10) Book, page 94, Exercise 3.2.12. (NOTE: The state-
ment of this problem contains a typo. You should change the word “divides”
into “divide”.)

t’s always a good strategy to practice a lot by doing lots and lots of problems. In
the particular case of this list, there is an extra reason: each one of these problems has a
good chance of appearing in the next midterm exam and/or the final exam.
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Problem 13. (D10) Book, page 94, Exercise 3.2.13.

Problem 14. (D10) Book, page 94, Exercise 3.2.14.

Problem 15. Book, page 94, Exercise 3.2.15.

Problem 16. (D10) Book, page 99, Exercise 3.3.2, Parts (a), (b), (d), (e).

Problem 17. Book, page 100, Exercise 3.3.3. This was done in class. I am
putting it in to remind you that you have to know how to do this problem.

Problem 18. Book, page 100, Exercise 3.3.4.

Problem 19. Book, page 100, Exercise 3.3.5. I don’t like the wording of
this problem. The words “The arbitrary” should, in my view, be replaced by
“An arbitrary”, both in Part (a) and Part (b). Also, Part (a) is unclear,
because the intersection of the empty family of compact subsets of R is IR,
which is not compact, but I don’t know if this is what the author wanted you
to say, or if by “arbitrary family” he meant “arbitrary nonempty family”.

Problem 20. (D10) Book, page 100, Exercise 3.3.6. The word “verify”
means “prove”. The statement has two typos: the two sentences that begin
with the word “which” should have a question mark at the end.

Problem 21. Book, page 101, Exercise 3.3.8.
Problem 22. (D11) Book, page 99, Exercise 3.3.1.
Problem 23. (D11) Book, page 101, Exercise 3.3.11.
Problem 24. (D11) Book, page 101, Exercise 3.3.13.

Problem 25. (D11) In this problem we discuss the meaning and basic
properties of the notion of “continuous function” from a metric space X to
a metric space Y. The most important part of this problem is Part
1.

Definition 1. Let X, Y be metric spaces with distance functions dx, dy,
and let f : X — Y be a function. We say that f is continuous? if the
following is true:

(*) Whenever (z,,)2% is a sequence of points of X that converges to a
point z of X, it follows that (f(zy))02; (which is a sequence of points

of Y) converges to f(z). O

2Can you guess why I have underlined the word “continuous”?
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I. Prove that if X, Y, Z are metric spaces with distance functions dx,
dy,dz,and f: X — Y, g:Y — Z are continous functions, then the
composite function go f: X — Z is continuous.

II. Prove that if X is a metric space with distance function dx, d is
a natural number, and f : X — R% ¢ : Y — R? are continuous
functions®, then the sum f + ¢ is a continuous function from X to
IR?. (The sum of f and g is the function f 4 g given by (f + g)(x) =
f(z) + g(x) for every x € X.)

I1I. Prove that if X is a metric space with distance function dy, d is
a natural number, and f : X — R% ¢ : Y — R? are continuous
functions, then the dot product f - ¢ is a continuous function from
X to R. (The dot product of f and g is the function f - g given by

(f - 9)(@) = f(x) - g(x) for every a € X.)

Problem 26. (D11) The purpose of this problem is to introduce the notion
of “open subset” of a metric space, and to prove several important facts
about open sets. The proofs are all very similar (almost identical) to the
proofs of the same properties for the case of open subsets of R. All three
parts of this problem are very important.

Definition 2. If X is a metric space with distance dx, ¢ is a positive real
number, and z is a point of X, the e-neighborhood of x is the set V.(x) given
by

Vo(z)® {ue X :dx(u,z) <e}. O

Definition 3. If X is a metric space with distance dx, then a subset U of
X is open if for every x € U there exists a positive real number £ such that
Ve(z) CU.

The following definition was given earlier, and we repeat it now.

Definition 4. If X is a metric space with distance dx, then a sequence
(r)5% of points of X converges to a point x of X if lim,_,o dx (zp, ) = 0.
We write lim,,_,o z, = z to indicate that (z,)52; converges to . O

Definition 5. If X is a set, a topology on X is a set T such that

3Remember that R? is a metric space, with the metric that we defined in Homework
Assignment No. 9.
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1. T C P(X); that is, T is a set all whose members are subsets of X.
(I am using P(X) to denote the power set of X, that is, the set of all
subsets of X.)

2.0eT.
3. XeT.
4. Whenever U, V belongs to 7, it follows that U NV belongs to T.

5. Whenever (U;);cr is an indexed family of members of T, it follows that
the set* |J,;; U; belongs to 7. O
Prove that, if X is a metric space with distance dx, then

1. The set TOP(X) of all open subsets of X is a topology on X.

2. Whenever z,y are two points of X such that x # y, there exist open
subsets U,V of X such that x € U,y € V, and UNV = (. (NOTE:
This is called the separation condition, because it says that any two
different points can be separataed by open sets. A topology that has
this property is called a Hausdorff topology.)

3. For a sequence (z,,)72, of points of X and a point x of X, the following
three conditions are equivalent®:

(a) limy—yo0 xy = x,
(b) For every positive real number ¢, the z,, are eventually® in V.(z).
(c) For every open set U such that « € U, the z,, are eventually in

U.

Problem 27. (D11) In Problem 25 we gave a definition of “continuous
function” from a metric space X to a metric space Y, based on convergence
of sequences. The purpose of this problem 1is to present another point of

4Recall that Uie; Ui is the set {z : (3i € Iz € U}

®To prove that three conditions (a), (b), (c) are equivalent, you do not need to prove
all three equivalences (a)<=>(b), (a)<=(c), (b)<=(c), which would amount to proving
six implications: (a)=-(b), (b)=(a), (b)=-(c¢),(c)=(b), (a)=(c), and (c)=(b).
It suffices to prove that (a)==-(b), (b)==(c), and (c)==-(a), because the other three
implications follow from these three.

SRemember that the statement “P is eventually true for the x,” means “there exists
N € N such that P holds for z, for all n € IN such that n > N”. So, in particular,
the statement “the z, are eventually in V.(x)” means “there exists N € IN such that
(Vn e N)(n > N =z, € Ve(2))”.

”
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view, in which continuous functions are characterized as those for which
“the preimage of an open set is an open set.” The most important part
of this problem is Part II.

Definition 6. If A, B are sets, and f : A +— B is a function, then for every
subset S of B the preimage of S under f to be the subset f~!(S) given by

def

U= {ac A: f(a) € S}.

That is, f~1(9) is the set of all points of A that are mapped by f to a point
of S. O

I. For each of the following choices of A, B, S, f, determine the
preimage f~1(9).

1. A=B =R, S=10,1], and f: A — B is the function given by
f(x) =sinzx.

2. A=B=1R,S=(0,1), and f: A — B is the function given by
f(z) =sinzx.

3. A=R?, B=R, S = (—0,1), and f : A — B is the function
given by f(z,y) = 2% +y°.

4. A=R% B=1R, S = {0}, and f: A — B is the function given
by f(x,y) =3z + 2y — 5.

II. Prove that If X, Y are metric spaces with distance functions dy,
dy, then a function f : X — Y is continuous if and only if

(CT) For every open subset U of Y, the preimage f~!(U) is an open
subset of X.

Problem 28. (D11) The purpose of this problem is to present the usual
notion of closed set in metric space, as defined in the book’, and show that
it has an equivalent formulation that is “purely topological”, that is, makes
use of the topology of X and nothing else. The most important part of
this problem is Part I1.

"Sure, the book just does it for IR, but by now you must have realized that a lot of
what the book does for IR can be done in exactly the same way for any metric spaces.
Warning: it’s not all the same. Some things are different. But we haven’t
encountered any of them yet.
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Definition 7. If X is a metric space with distance function d, the closure

of S is the set S defined by

S={reX:z= li_)rn x, for some sequence (zy)o—; of points of S}.
n—oo

(That is, the closure of S is the set of all points of X that are the limit of a
sequence of points of S.) O

Definition 8. If X is a metric space with distance function d, a subset S
of X is closed if S = S. U

Definition 9. If Aisaset and B is a subset of A, the complement of B in A
is the set A\ B defined by

AB={zx:x2€ ANz ¢ B}.

(That is, A\B is the set of those points of A that are not members of B.)
Usually, when the set A is fixed and we are working with subsets of A,
we write B¢ (rather than A\B) to denote the complement of B in A. [

Prove that, if X is a metric space with distance function d, then
I. If SC X, then S C8S.

II. If S C X, then S is closed if and only if the complement 5S¢ of S in X
is open.

Problem 29. (D11)

Definition 10. Let X be a metric space. A subset K of X is compact if
every sequence (z,)>°_; of members of K has a subsequence that converges
to a member = of K. 0

I. Prove that if X, Y are metric spaces with distance functions dx,
dy, and f : K + Y is a continuous® function, then the set f(K) is
compact. (NOTE: f(K) is the set of all points of the form f(x), for
x € K. That is, f(K) ={y: (3zr € K)f(x) =y}.)

8In case you wonder what a “continuous function from K to X” is, remember that a
subset S of a metric space X is itself a metric space, with distance ds defined by letting
ds(z,y) = dx(z,y) for z,y € X. So we can regard K as a metric space, and then we
know what a “continuous function from K to Y is.
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II. Prove in two difrerent ways the Eztreme Value Theorem: If K is
a compact subset of a metric space X and f : K — IR is continuous,
then f has a maximum and a minimum (that is, there exist points
M,m in K such that f(m) < f(x) < f(M) for every x € K). The
first proof should be using sequences, the way we did it in class for
the case when K is a bounded closed interval [a, b]. The second proof
should be using the result of Part I together with the result of Problem
22 of this problem list.



