
MATHEMATICS H311 — FALL 2015
H. J. Sussmann

HOMEWORK ASSIGNMENT NO. 6, DUE ON
TUESDAY, OCTOBER 13

The following is a list of 5 problems that I am asking you to do.

1. (TO HAND IN.) This problem is about the definition of “interval”.
You have seen what a bounded closed interval is, what a bounded open
interval is, what a bounded half-open half-closed interval is, what an
open half-line is, and what a closed half-line is. But you probably
have not seen a general definition of “interval” that covers all these
possibilities. In this problem I give you the general definition, and ask
you to prove that this agrees with, and brings together into one unified
framework, the definitions of the various kinds of intervals you know.

The definition of “interval” is as follows:

DEFINITION. Let I be a subset of the real line IR. We say that I
is an interval if the following is true:

(INT) If a, b, c are arbitrary real numbers such that a < b < c, and
a and c belong to I, it follows that b ∈ I. In other words: if
I ⊆ IR, then I is an intevral if and only if

(∀a, b, c ∈ IR)
(

(a < b ∧ b < c ∧ a ∈ I ∧ c ∈ I) =⇒ b ∈ I
)
.

Prove, using the above definition of “interval”, that

(i) The empty set is an interval.

(ii) If p ∈ IR then the set {p} is an interval.

(iii) If p ∈ IR, q ∈ IR, and p < q, then the sets

[p, q]
def
= {x ∈ IR : p ≤ x ≤ q} ,

(p, q)
def
= {x ∈ IR : p < x < q} ,

[p, q)
def
= {x ∈ IR : p ≤ x < q} ,

(p, q]
def
= {x ∈ IR : p < x ≤ q}

are intervals.
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(iv) If p ∈ IR then the sets

[p,+∞)
def
= {x ∈ IR : p ≤ x} ,

(p,+∞)
def
= {x ∈ IR : p < x} ,

(−∞, p] def
= {x ∈ IR : x ≤ p} ,

(−∞, p) def
= {x ∈ IR : x < p}

are intervals.

(v) The set IR is an interval.

(vi) If I is an interval then I is necessarily one of the sets listed in
Parts (i), (ii), (iii). (iv), (v) above. In other words: if I is an
interval then either

I = ∅ ,

or
(∃p ∈ IR) I = {p} ,

or

(∃p, q ∈ IR)
(
p < q ∧

(
I = [p, q] ∨ I = (p, q) ∨ I = [p, q) ∨ I = (p, q]

))
,

or

(∃p ∈ IR)
(
I = [p,+∞) ∨ I = (p,+∞) ∨ I = (−∞, p] ∨ I = (−∞, p)

)
,

or
I = IR .

The most important part of this problem is
Question (vi).

2. (TO HAND IN.) Prove (using the general definition of “interval”
given in Problem 1, together with the intermediate value theorem and
the extreme value theorem) that

(i) If I ⊆ IR, I is an interval, and f : I 7→ IR is a continuous function,
then f(I) is an interval. (That is: “a continuous function maps
intervals to intervals”.)
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(ii) If I ⊆ IR, I is a closed bounded interval, and f : I 7→ IR is a
continuous function, then f(I) is a closed bounded interval. (That
is: “a continuous function maps closed bounded intervals to closed
bounded intervals”.)

NOTE:

a. If f is a function and S is a set, then f(S) is “the image of S
under f”, that is, the set of all values f(x) of f for all x ∈ S.
(Formally: f(S) = {y : (∃x ∈ domain(f) ∩ S)f(x) = y.)

b. A closed bounded interval is a subset I of IR having the property
that (∃p, q ∈ IR) I = {x ∈ IR : p ≤ x ≤ q}.

3. (TO HAND IN.) Prove or disprove that

(i) If I is a bounded open interval and f : I → IR is a continuous
function, then f(I) is a bounded set.

(ii) If I is a bounded open interval and f : I → IR is a continuous
function, then f(I) is an open interval.

(iii) If I is a bounded open interval and f : I → IR is a continuous
function, then f(I) cannot be a bounded closed interval.

NOTE:

1. A bounded subset of IR is a subset S of IR such that there exists
a real number b such that

|x| ≤ b for every x ∈ S .

A bounded open interval is a subset I of IR such that

(∃p, q ∈ IR)I = {x ∈ IR : p < x < q} .

An open half-line is a subset I of IR such that

(∃p ∈ IR)
(
I = {x ∈ IR : p < x} ∨ I = {x ∈ IR : x < p}

)
.

The full real line is the set IR. An open interval is a set which is
either an open bounded interval, or an open half-line, or the full
real line.
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4. (TO HAND IN.) In this problem you are allowed to use the following
facts (which will be proved in the course very soon):

(#) If y ∈ IR and k is an odd natural number, then there exists a
unique real number x such that xk = y.

(##) If y ∈ IR, y ≥ 0, and k is an even natural number, then there
exists a unique real number x such that x ≥ 0 and xk = y.

The number x of Statements (#), (##) (which exists and is unique if
either k is odd or y ≥ 0) is called the k-th root of y, and we use k

√
y,

or y1/k, to denote it.

(i) Prove that if k is an odd natural number then the function

IR 3 y 7→ k
√
y

is continous. (The notation “IR 3 y 7→ k
√
y” has the following

meaning: “the function IR 3 y 7→ k
√
y ” means “the function f

such that (i) the domain of f is IR, and (ii) for any given y ∈ IR,
f(y) = k

√
y ”. We read “the function IR 3 y 7→ k

√
y ” as follows:

“the function that takes any y in IR to the k-th root of y.”)

(ii) Prove that if k is an even natural number then the function

[0,+∞) 3 y 7→ k
√
y

is continous. (The expression “the function [0,+∞) 3 y 7→ k
√
y ”

is read as follows:

the function that takes any y in [0,∞) to the k-th root of y,

or

the function that takes any nonnegative real number y to the
k-th root of y,

or

the function that maps a nonnegative real number y to the
k-th root of y. )

(iii) Sketch the graphs of the functions IR 3 x 7→ xk for k = 2, 3, 4,
and 5.



Homework No. 6, Fall 2015 5

(iv) Sketch the graphs of the functions IR 3 x 7→ k
√
x, or

[0,+∞) 3 x 7→ k
√
x, for k = 2, 3, 4, and 5.

(v) Explain why, in the statements of (i), (ii) above, we cannot allow
y to be negative and k even. (So either y has to be nonnegative
or k has to be odd.)

5. (TO HAND IN.) In this problem you are given three statements of
theorems, each one with an alleged proof. The theorems are false, and
the proof must therefore be wrong. You are asked to

I. Prove that the theorem is false.

II. Show that the proof is invalid, by finding the mistake or mistakes
in it. Please do not say “the proof is wrong because the
theorem is false”. Of course, if the theorem is false,
then the proof has to be wrong, but I want to know ex-
actly where the mistake in the proof is.

(NOTE: It cannot happen that the theorem is false but the proof is
O.K. If a proof is correct then the conclusion is true. Equiva-
lently, If the conclusion of a proof is false then the proof has
to be incorrect.)

Please do not make vague general comments such as “this proof is badly
written”, or “step 5 is not explained clearly”. Give sharp, precise expla-
nations of exactly where the author of the proof made a mistake, (For
example, you should say things such as “step 453 is not valid because
it goes from ‘x < y’ to ‘x2 < y2’, and this is not permissible in general;
for example, if x = −2 and y = −1, then x < y but it is not true that
x2 < y2 )”.

THEOREM-PROOF 1:

THEOREM. The number 1 is the largest natural number.

PROOF. Let n be the largest natural number.

Then n2 is a natural number, because the product of two natural num-
bers is a natural number.

So n2 ≤ n, because n is the largest natural number, so any natural
number must be ≤ n, and in particular n2 must be ≤ n.
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On the other hand, n ≥ 1, because n is a natural number. So multipy-
ing both sides by n we get n2 ≥ n.

Since n2 ≥ n and n2 ≤ n, it follows that n2 = n.

Therefore n2 − n = 0.

So n(n− 1) = 0.

Since the product of two real numbers is zero only when one the num-
bers is equal to zero, we conclude that n = 0 or n− 1 = 0.

But n = 0 is impossible, because n is a natural number and 0 is not.

So n− 1 = 0.

Hence n = 1

Therefore 1 is the largest natural number . Q.E.D.

THEOREM-PROOF 2:

THEOREM. 0 = 1.

PROOF. Let S be the series
∑∞

n=1(−1)n+1, so

S = 1 + (−1) + 1 + (−1) + (−1) + · · · .

We rewrite S as

S =
(

1 + (−1)
)

+
(

1 + (−1)
)

+
(

1 + (−1)
)

+ · · · ,

and find that
S = 0 + 0 + 0 + · · · ,

so S = 0.

Next we rewrite S as

S = 1 +
(

(−1) + 1
)

+
(

(−1) + 1
)

+
(

(−1) + 1
)

+ · · · ,

and find that
S = 1 + 0 + 0 + 0 + · · · ,

so S = 1.

Hence S = 0 and S = 1. So 0 = 1 . Q.E.D.
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THEOREM-PROOF 3:

THEOREM. If x is a real number and k is a natural number then
there exists a real number u such that uk = x. In other words:

(∀x ∈ IR)(∀k ∈ IN)(∃u ∈ IR)uk = x .

NOTE: The proof that follows is absolutely perfect. It is so
well written, so clear and rigorous and detailed, so impec-
cably correct, that you should use it as a model of how to
write proofs. It truly deserves almost full credit, because
it’s so beautiful. Unfortunately, the proof has one invalid
step (just one, only one) and that suffices to kill the whole
proof, and one ends up “proving” a false result. So, for that
reason, if a student wrote a proof like this, I would give it a
zero1. I would do so with tears in my eyes, but I would do
it, because for proofs there has to be no partial credit: one
wrong step suffices to prove any false statement you want,
so proofs with one mistake are totally useless. Believe me,
I would regret doing this as much as Donald Trump regrets
firing people, but I would do it, because I have to.

PROOF. Let x be an arbitrary real number.

Let k be an arbitrary natural number.

We want to prove that (∃u ∈ IR)uk = x.

For this purpose, we first define a subset A of IR as follows:

A = {t ∈ IR : tk ≤ x} .

(That is, A is the set of all real numbers t such that tk ≤ x.)

We will prove that A is bounded above.

1A proof is like a chain. One weak link sufices to make the chain break and become
useless. If a chain is holding a piano right above your head, and one link breaks and the
piano falls on your head and kills you, then you don’t give the chain-maker partial credit,
on the grounds that “after all, only one link broke; all the other links were fine, so the
chain was almost perfect”.
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Let b be the largest of 1 and x (or, if you prefer, we could take
b to be 1 + |x|).
We prove that b is an upper bound for A.

We have to prove that (∀t ∈ A) t ≤ b.

Let t be an arbitrary member of A.

Then either t ≤ 1 or t > 1.

If t ≤ 1 then t ≤ b, because 1 ≤ b.

If t > 1 then t ≤ tk, and tk ≤ x, because t ∈ A, so t ≤ x,
and then t ≤ b, because x ≤ b.

So t ≤ b.

We have proved that t ≤ b if t is an arbitrary member of A.

So b is an upper bound for A.

So the set A is bounded above.

Since A is bounded above, it follows from the completeness axiom that
A has a least upper bound.

Let u be the least upper bound of A.

We now prove that uk = x.

For ths purpose, we will prove that uk ≥ x and uk ≤ x.

Proof that uk ≥ x :

We do it by contradiction.

Suppose that uk < x.

We know that limn→∞(u+ 1
n
) = u.

Then by Theorem 2.3.3 in the book, we can conclude that

lim
n→∞

(
u+

1

n

)k
= uk .(0.1)

If we pick ε = x − uk, then ε > 0 (because we are assuming that
uk < x).

It then follows from (0.1) that we may pick a natural number N
such that |(u+ 1

n
)k − uk| < ε for every n ∈ IN such that n ≥ N .
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In particular, we may apply this with n = N , and conclude that∣∣∣(u+
1

N

)k
− uk

∣∣∣ < ε .

Hence (
u+

1

N

)k
− uk < ε ,

because α ≤ |α| for every α ∈ IR.

Therefore (
u+

1

N

)k
=

(
(u+

1

N
)k − uk

)
+ uk

≤ ε+ uk

= x− uk + uk

= x .

So

(u+
1

N
)k ≤ x .

Therefore u+ 1
N

belongs to A.

But u is the least upper bound of A, so in particular u is an upper
bound for A, that is, (∀v ∈ A)v ≤ u.

Since u+ 1
N
∈ A, we can conclude that

u+
1

N
≤ u .

On the other hand, u+ 1
N
> u, because 1

N
> 0.

So we have proved that

u+
1

N
> u ∧ u+

1

N
≤ u .(0.2)

Clearly, (0.2) is a contradiction.

So we have derived a contradiction, assuming that uk < x. It

follows that uk ≥ x .

Proof that uk ≤ x:.
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Fix a natural number n.

We know that u is the least upper bound of A.

Then the number u − 1
n

cannot be an uppen bound of A,
because the smallest upper bound of A is u.

So there exists a member vn of A such that vn > u− 1
n
.

On the other hand, vn ≤ u, becaunse u is an upper bound for
A and vn ∈ A.

And vkn ≤ x, because vn ∈ A.

So we have found, for each n ∈ IN, a real number vn such that

u− 1

n
< vn ≤ u , and vkn ≤ x .

Since limn→∞ u − 1
n

= u, limn→∞ u = u, and u − 1
n
< vn ≤ u, it

follows from the squeeze theorem that limn→∞ vn = u.

Therefore limn→∞ vkn = uk.

But vkn ≤ x for every n.

Therefore limn→∞ vkn ≤ x.

But limn→∞ vkn = uk.

So uk ≤ x .

So we have proved that uk ≥ x and uk ≤ x. Therefore uk = x.

This proves that there exists a u ∈ IR such that uk = x , which is our de-
sired conclusion. Q.E.D.


