
MATHEMATICS H311 — FALL 2015
H. J. Sussmann

HOMEWORK ASSIGNMENT NO. 7, DUE ON FRIDAY,
OCTOBER 23

The following is a list of 4 problems. In each problem, it is indicated
which parts you are asked to hand in.

Problem 1. (TO HAND IN) (NOTE: PART III IS THE HARD-
EST AND MOST CHALLENGING. Try to do it, but do not
worry too much if you cannot figure it out.)

A sequence x = (xn)∞n=1 of real numbers is

1. summable, if the series
∑∞

n=1 xn is absolutely convergent,

2. square-summable, if the series
∑∞

n=1 x
2
n is convergent, (NOTE: Here I

could equally well have said “absolutely convergent”. Since
∑∞

n=1 x
2
n

is a series of nonnegative terms, the series is convergent if and only if
it it absolutely convergent,)

3. cube-summable, if the series
∑∞

n=1 x
3
n is absolutely convergent.

(For example: the sequence
(

1
n

)∞
n=1

is square-summable but not summable;

the sequence
(

1√
n

)∞
n=1

is cube-summable but not square-summable.)

The sum of two sequences x = (xn)∞n=1, y = (yn)∞n=1, is the sequence
x + y given by x + y = (xn + yn)∞n=1.

The product of two sequences x = (xn)∞n=1, y = (yn)∞n=1, is the sequence
x · y given by x · y = (xn · yn)∞n=1.

I. Prove each of the following statements:

1. The sum of two square-summable sequences is square-summable.

2. The sum of two cube-summable sequences is cube-summable.

3. The product of two square-summable sequences is summable.

4. The product of a summable sequence and a bounded sequence is
summable.

II. Prove or disprove each of the following statements:

1. The product of two cube-summable sequences is square-
summable.
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2. The product of two cube-summable sequences is square-
summable.

3. The product of two cube-summable sequences is square-
summable.

4. The product of two cube-summable sequences is square-
summable.

5. The product two cube-summable sequences is cube-summable.

6. The product two cube-summable sequences is square-summable.

7. The product two cube-summable sequences is summable.

III. Prove that

1. If a sequence x = (xn)∞n=1 has a the property that for every
summable sequence y = (yn)∞n=1 the product sequence x · y is
summable, then x is bounded. (HINT: Suppose x is unbounded.
Produce a contradiction by finding a summable sequence y =
(yn)∞n=1 such that x · y is not summable. For this purpose, find
a subsequence (xnk

)∞k=1 of x such that the numbers xnk
are very

large (say larger than k, or than k2, something of that sort). Then
construct the yn by letting each ynk

be equal to xnk
divided by

some power |xnk
|p. And let yn = 0 if n is not one of the nk.

Figure out how to choose p so that the sequence y is summable
but the product sequence x · y is not.)

2. If a sequence x = (xn)∞n=1 has the property that for every square-
summable sequence y = (yn)∞n=1 the product sequence x · y is
summable, then x is square-summable. (This could be hard, and
this times I am not giving you a hint. Do it if you can but, as I
said before, don’t worry if you cannot figure it out.)

Problem 2. This problem is about the “extended real line”. We choose
two objects that are not real numbers and are not equal to each other, and
call them “plus infinity” and “minus infinity”. We use the symbols +∞
and −∞ for these two new objects. We then form a new set, called the
extended real line, by addding +∞ and −∞ to the real line IR. We use the
symbol IR for the extended real line, so

IR = IR ∪ {+∞} ∪ {−∞} .



Homework No. 7, Fall 2015 3

Having introduced the new objects +∞ and −∞, we give some definitions
that tell us how these new objects are used1.

Definition. Let (xn)∞n=1 be a sequence of. real numbers.

1. We say that (xn)∞n=1 goes to plus infinity, and write

lim
n→∞

xn = +∞ ,

if for every real number M there exists a natural number N such that

(∀n)
(
n ≥ N =⇒ xn ≥M) .

2. We say that (xn)∞n=1 goes to minus infinity, and write

lim
n→∞

xn = −∞ ,

if for every real number M there exists a natural number N such that

(∀n)
(
n ≥ N =⇒ xn ≤M) .

3. We say that the sum of the series
∑∞

n=1 xn is plus infinity, and write

∞∑
n=1

xn = +∞ ,

if the sequence (Sn)∞n=1 of partial sums of the series (where the Sn are
defined by letting Sn =

∑n
k=1 xk) goes to +∞, i.e., if for every real

number M there exists a natural number N such that

(∀n)
(
n ≥ N =⇒

n∑
k=1

xk ≥M) .

1In case you ask “who are +∞ and −∞?”, the answer is “it does not matter”. Plus
infinity could be the set IR itself, or the ordered pair (2, π), or George Washington, or the
planet Mars. And −∞ could be the triple (6, 5, 4), or my uncle Jimmy. All that matters
is that +∞ and −∞ should not be real numbers, and that they should not be equal to
each other. They are labels that we will use for certain things. For example, later we will
agree to say, about certain sequences such as (n)∞n=1, that those sequences “go to plus
infinity”, or that “the limit of the sequence is plus infinity. But this does not mean that
such sequences converge, or that they have a limit. The sequence (n)∞n=1 is divergent, not
convergent, and it does not have a limit. And when we write “limn→∞ = +∞”, this does
not mean that the sequence converges, or that it has a limit. Saying of a sequence that
it goes to infinity does not mean that the sequence has a limit and that the limit is +∞,
any more than saying “I believe in nothing” means that “I believe in something and the
thing I believe in is called ’nothing’ ”.
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4. We say that the sum of the series
∑∞

n=1 xn is minus infinity, and write

∞∑
n=1

xn = −∞ ,

if the sequence (Sn)∞n=1 of partial sums of the series goes to −∞, i.e.,
if for every real number M there exists a natural number N such that

(∀n)
(
n ≥ N =⇒

n∑
k=1

xk ≤M) .

And we add the following remark, as a clarification: the definition of what
it means for a sequence or a series to converge is unchanged. A sequence
(xn)∞n=1 converges if there exists a real number2 a such that limn→∞ xn = a.
The sequence (xn)∞n=1 diverges if it does not converge. It follows that if
limn→∞ xn = +∞ or limn→∞ xn = −∞ then the sequence (xn) diverges.

Now we are ready to start proving things:

I. (TO HAND IN) PROVE that limn→∞
√
n = +∞.

IIa. (TO HAND IN) For each of the following sequences indicate whether

(a) the sequence converges,

(b) the sequence goes to plus infinity,

(c) the sequence goes to minus infinity,

(d) none of (a), (b), (c) holds,

and explain why.

1.
(√

n+1
3√n+5

)
)∞
n=1

,

2. (n− n2)∞n=1,

3.
(

3√n+1
3√n+5

)
)∞
n=1

,

4.
(

3√n+1√
n+5

)
)∞
n=1

,

5.
(
nn

n! )
)∞
n=1

,

6.
(

n!
nn )
)∞
n=1

.

2And I do mean a real number; not +∞ or −∞.
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IIb. (TO HAND IN) For each of the following series indicate whether

(a) the series converges,

(b) the sum of the series is plus infinity,

(c) the sum of the series is to minus infinity,

(d) none of (a), (b), (c) holds.

and explain why.

1.
∑∞

n=1
1
n ,

2.
∑∞

n=1
1
n2 ,

3.
∑∞

n=1
1√
n

,

4.
∑∞

n=1(
1
n − n),

5.
∑∞

n=1
nn

n! ,

6.
∑∞

n=1
n!
nn ,

7.
∑∞

n=1 2−nn3,

8.
∑∞

n=1 2−nnn,

9.
∑∞

n=1(
√
n + 1−

√
n).

III. (TO HAND IN) PROVE that

1. if (xn) is an increasing sequence of real numbers, then either the
sequence converges or limn→∞ xn = +∞,

2. if (xn) is a decreasing sequence of real numbers, then either the
sequence converges or limn→∞ xn = −∞.

IV. CONCLUDE from the results of Part III that

1. if
∑∞

n=1 xn is an series of nonnegative real numbers, then either
the series converges or

∑∞
n=1 xn = +∞,

2. if
∑∞

n=1 xn is an series of nonpositive real numbers, then either
the series converges or

∑∞
n=1 xn = −∞,

3. if the terms of a series
∑∞

n=1 xn are eventually3 nonnegative then
either the series converges or

∑∞
n=1 xn = +∞,

4. if the terms of a series
∑∞

n=1 xn are eventually nonpositive then
either the series converges or

∑∞
n=1 xn = −∞.

3We say that something happens eventually if it happens for all n greater than some
N . Precisely: a predicate P (n) holds eventually if (∃N ∈ IN)(∀n ∈ IN)(n ≥ N =⇒ P (n)).
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V. PROVE that if the terms xn of a sequence are eventually positive4

then limn→∞ xn = +∞ if and only if limn→∞
1
xn

= 0.

Problem 3. This problem continues the discussion of the extended real line
that was started in Problem 2. Now that we have created the extended real
line, we would like to extend to it the order relation <. So we would like to
say what “x < y” means for two extended real numbers x, y. The answer is
quite simple:

Definition. Let x, y be extended real numbers. We say that x is smaller than
y, or less than y, and write x < y, if either

1. x ∈ IR, y ∈ IR, and x < y,

or

2. x ∈ IR and y = +∞,

or

3. x = −∞ and y ∈ IR,

or

4. x = −∞ and y = +∞.

We then define the relations ≤, >, ≥, in the following way: “x ≤ y” means
“x < y or x = y”, “x > y” means “y < x”, and “x ≥ y” means “x > y or
x = y”.

Armed with these definitions, I want you to prove a couple of completely
trivial things:

I. Prove that the new order relation satisfies the transitive law, the
trichotomy law, and the irreflexivity law:

(∀x, y, z ∈ IR)
(

(x < y ∧ y < z) =⇒ x < z
)

(∀x, y ∈ IR)(x < y ∨ x = y ∨ y < x)

(∀x, y ∈ IR)(x < y =⇒ x 6= y)) .

II. (TO HAND IN) Prove that every subset A of IR has a least upper
bound5.

4“Positive” means “> 0”.
5The precise definitions are as follows: An upper bound in IR of a subset A of IR is a

member u of IR such that (∀a ∈ A)a ≤ u. A least upper bound in IR of a subset A of IR

is a member s of IR such that s ≤ u for every upper bound u of A in IR. The definitions
of “lower bound” and “greatest lower bound” are similar.
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III. (TO HAND IN) Prove, in particular, that the least upper bound
of the empty set ∅ is −∞ and the greatest lower bound of ∅ is +∞.

IV. (TO HAND IN) Prove that a series
∑∞

n=1 xn is absolutely conver-
gent if and only if

∑∞
n=1 |xn| < +∞.

Problem 4. This problem continues the discussion of the extended real line
that was started in Problem 2 and pursued in Problem 3. Our next step is
to try to extend to IR the operations of addition, subtraction, multiplication,
and division. So we would like to say who “x + y”, “x − y”, “x · y” and
“x÷ y” are, for any two extended real numbers x, y. The answer is not as
simple as for the order relation.

First, let us clarify what it is that we want to achieve. Let # be a
binary operation. (For example, # could be +, or −, or ·, or ÷.) If it was
just a matter of assigning a value to x#y, for the cases when we do not
already know what those values are6, then we could, for example, decree
that 5 + (+∞) is 73, or some other crazy thing like that. What we really
want is to define # on the extended real line in such a way that the algebraic
limit theorems are still valid. For example, we want it to be true if a, b are
extended real numbers, that

(A1) If x = (xn)∞n=1, y = (yn)∞n=1 are sequences of real numbers such that
limn→∞ xn = a and limn→∞ yn = b, then limn→∞(xn + yn) = a + b.

Can this be done? The answer is that we can make (A1) true if a and b are
ordinary real numbers (as we already know), and also if one of the two is an
ordinary real number and the other one is +∞ or −∞, or if both are +∞,
or if both are −∞. But it cannot be done if one of them is +∞ and the
other one is −∞. More succintly:

(A1a) The sum a+b of two extended real numbers is well defined except when
one of the numbers is +∞ and the other one is −∞.

And now that I have told you what the answer is, I am asking you to prove
it:

I. Prove (A1a). For this purpose, you have to prove that

1. If (xn)∞n=1 is a sequence of real numbers that converges to a real
number a, and (yn)∞n=1 is a sequence of real numbers such that
limn→∞ yn = +∞, then limn→∞(xn + yn) = +∞.

6We know that x + y, x − y and x · y are well defined for every pair of real numbers
x, y, and that x

y
is well defined if x ∈ IR, y ∈ IR, and y 6= 0.
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2. If (xn)∞n=1 is a sequence of real numbers that converges to a real
number a, and (yn)∞n=1 is a sequence of real numbers such that
limn→∞ yn = −∞, then limn→∞(xn + yn) = −∞.

3. If (xn)∞n=1 and (yn)∞n=1 are sequences of real numbers such that
limn→∞ xn = +∞ and limn→∞ yn = +∞, then it follows that
limn→∞(xn + yn) = +∞.

4. If (xn)∞n=1 and (yn)∞n=1 are sequences of real numbers such that
limn→∞ xn = −∞ and limn→∞ yn = −∞, then it follows that
limn→∞(xn + yn) = −∞.

5. There does not exist an extended real number a such that

(*) If (xn)∞n=1 and (yn)∞n=1 are sequences of real numbers such
that limn→∞ xn = +∞ and limn→∞ yn = −∞, then it follows
that limn→∞(xn + yn) = a.

Once you have proved these five statements, it will follow that one can
define a + b as follows:

a + b = +∞ if a ∈ IR ∧ b = +∞ or if a = +∞∧ b =∈ IR ;

a + b = −∞ if a ∈ IR ∧ b = −∞ or if a = −∞∧ b =∈ IR ;

(+∞) + (+∞) = +∞ ;

(−∞) + (−∞) = −∞ ;

(+∞) + (−∞) and (−∞) + (∞) are not well defined.

II. Do exactly the same as we did in Part I for the subtraction opera-
tion. That is, determine for which pairs of extended real numbers a, b
the difference a− b is well defined. (NOTE: This is very easy, because
it’s almost the same as for the addition operation.)

III. (TO HAND IN) Do exactly the same as we did in Part I for
the multiplication operation. That is, determine for which pairs of
extended real numbers a, b the product a · b is well defined. (NOTE:
This is trickier. For example, the products 0 · (+∞) and 0 · (−∞) are
not well defined.)

IV. (TO HAND IN) Do exactly the same as we did in Part I for the
division operation. That is, determine for which pairs of extended real
numbers a, b the quotient a ÷ b is well defined. (NOTE: This is also
tricky. For example, the quotients 0 ÷ 0 and (+∞) ÷ (+∞) are not
well defined.


