MATHEMATICS H311 — FALL 2015

H. J. Sussmann

HOMEWORK ASSIGNMENT NO. 8, DUE ON FRIDAY,
OCTOBER 30
The following is a list of 5 problems for you to hand in.
Problem 1. A period of a function $f: \mathbb{R} \mapsto \mathbb{R}$ is a real number p such that

$$
f(x+p)=f(x) \quad \text { for every } \quad x \in \mathbb{R} .
$$

A function $f: \mathbb{R} \mapsto \mathbb{R}$ is periodic if there exists a nonzero real number p which is a period of f. (N $\overline{\mathrm{OTE}:} 0$ is, trivially, a period of any function $f: \mathbb{R} \mapsto \mathbb{R}$. So if we didn't require p to be nonzero it would follow that every function is periodic.)
Prove the following statements:
I. A continuous periodic function $f: \mathbb{R} \mapsto \mathbb{R}$ has a maximum and a minimum.
II. If $f: \mathbb{R} \mapsto \mathbb{R}$ is a nonconstant continuous periodic function then

1. f has a smallest positive period (that is, there exists a real number p such that (i) $p>0$, (ii) p is a period of f, and (iii) if q is any period of f such that $q>0$, then $q \geq p$). NOTE: If P is the set of all positive periods of f, then you must prove that $P \neq \emptyset$ (which is very easy), that the set P is bounded below (also very easy), that the infimum p of P is itself a period (which is also easy) and, finally, that $p>0$. (This is the hard part. You will need some work to do it.)
2. If p is the smallest positive period of f, then every period of f is an integer multiple of p. (That is, if q is a period then there exists an integer n such that $q=n p$.)
III. There exists a periodic function $f: \mathbb{R} \mapsto \mathbb{R}$ whose set of positive periods is nonempty but does not have a smallest member. (Naturally, the function f cannot be continuous.)

Problem 2. If S is a set, a metric (or distance) on S is a function d : $S \times S \mapsto \mathbb{R}$ such that

1. (nonnegativity) $d(x, y) \geq 0$ for every ordered pair $(x, y) \in S \times S$;
2. (symmetry) $d(x, y)=d(y, x)$ for every ordered pair $(x, y) \in S \times S$;
3. (the triangle inequality) $d(x, z) \leq d(x, y)+d(y, z)$ for every triple (x, y, z) of members of S.
4. (separation) If x, y are any two members of S such that $x \neq y$, then $d(x, y)>0$.

DEFINITION. A metric space is a set S equipped with a metric $d: S \times S \mapsto \mathbb{R}$.

Prove the following statements
I. If we take S to be \mathbb{R}, the set of real numbers, and define

$$
d(x, y)=|x-y| \quad \text { for } \quad x, y \in \mathbb{R},
$$

then d is a metric on S, so S, equipped with d, is a metric space.
II. If S is any metric space, with metric d, and S^{\prime} is any subset of S, then S^{\prime} is a metric space, with metric $d^{\prime}: S^{\prime} \times S^{\prime} \mapsto \mathbb{R}$ defined by ${ }^{1}$

$$
d^{\prime}(x, y)=d(x, y) \quad \text { for } \quad x, y \in S^{\prime}
$$

Problem 3. In this problem we discuss how to turn the two-dimensional plane \mathbb{R}^{2} into a metric space.

Recall that the symbol \mathbb{R}^{2} denotes the set of all ordered pairs $\vec{v}=(x, y)$ of real numbers. The set \mathbb{R}^{2} is called the plane, or the Euclidean plane, or, sometimes, two-dimensional space.

The members (points) or \mathbb{R}^{2} are two-dimensional vectors.
The sum of two vectors $\vec{v}_{1}=\left(x_{1}, y_{1}\right), \vec{v}_{2}=\left(x_{2}, y_{2}\right)$, is the vector $\vec{v}_{1}+\vec{v}_{2}$ given by

$$
\vec{v}_{1}+\vec{v}_{2} \xlongequal{\text { def }}\left(x_{1}+x_{2}, y_{1}+y_{2}\right) .
$$

The dot product (or scalar product, or inner product) of two vectors $\vec{v}_{1}=\overline{\left(x_{1}, y_{1}\right), \vec{v}_{2}}=\left(\overline{\left.x_{2}, y_{2}\right) \text {, is the real number } \vec{v}_{1} \cdot \vec{v}_{2}}\right.$ given by

$$
\vec{v}_{1} \cdot \vec{v}_{2} \stackrel{\text { def }}{=} x_{1} y_{1}+x_{2} y_{2} .
$$

The square length of a vector $\vec{v}=(x, y)$ is the real number $\|\vec{v}\|^{2}$ given by

$$
\mid \vec{v} \|^{2} \stackrel{\text { def }}{=} \vec{v} \cdot \vec{v}
$$

[^0]That is, $\|\vec{v}\|^{2}$ is the dot product of \vec{v} with itself. Hence

$$
\mid \vec{v} \|^{2}=x^{2}+y^{2} \quad \text { if } \quad \vec{v}=(x, y) .
$$

The length of a vector \vec{v} is the square root of the square length of \vec{v}. We write $\overline{\|\vec{v}\|}$ to denote the length of \vec{v}. It follows that

$$
\|\vec{v}\|=\sqrt{x^{2}+y^{2}} \quad \text { if } \quad \vec{v}=(x, y) .
$$

The distance between two vectors $\vec{v}, \vec{w} \in \mathbb{R}^{2}$ is the number $d(\vec{v}, \vec{w})$ given by

$$
d(\vec{v}, \vec{w}) \stackrel{\text { def }}{=}\|\vec{v}-\vec{w}\| .
$$

Prove that d is a metric on \mathbb{R}^{2}, so \mathbb{R}^{2}, equipped with this metric, is a metric space. (NOTE: The hard part is proving the triangle inequality. This requires some work. You should first prove that

$$
\begin{equation*}
\|\vec{v}+\vec{w}\| \leq\|\vec{v}\|+\|\vec{w}\| \quad \text { for all } \quad \vec{v}, \vec{w} \in \mathbb{R}^{2} . \tag{0.1}
\end{equation*}
$$

(Once you have this, the triangle inequality for the metric d follows easily).
And to prove (0.1) you can do it by brute force, just writing everything out, or by the following ingenious trick: let $p(r)=(\vec{v}+r \vec{w}) \cdot(\vec{v}+r \vec{w})$ for $r \in \mathbb{R}$; observe that $p(r) \geq 0$ for every real number r, write out $p(r)$ as a polynomial $a r^{2}+b r+c$, and use the necessary and sufficient condition for such a polynomial never to have negative values. (The condition is: $a>0$ and $4 a c \leq b^{2}$.) This will give you the Cauchy-Schwarz inequality ${ }^{2}$:

$$
\vec{v} \cdot \vec{w} \leq\|\vec{v}\| \cdot\|\vec{w}\| .
$$

(This is analogous to the one-dimensional inequality $a \cdot b \leq|a| \cdot|b|$ that I am sure you know very well.)

And, finally, once you have proved the Cauchy-Schwarz inequality, the triangle inequality for the metric follows easily.
Problem 4. By now, you already know two examples of metric spaces: the real line \mathbb{R} (with metric d defined by $d(x, y)=|x-y|$ for $x, y \in \mathbb{R}$), and two-dimensional space \mathbb{R}^{2}. This means that in fact you already know infinitely many metric spaces, because every subset of a metric space is a metric space, so every subset of \mathbb{R} and every subset of \mathbb{R}^{2} is a metric space.

In this problem you are asked to prove some theorems about metric spaces. But, as usual, we first need some definitions.

[^1]DEFINITION. Let S be a metric space with metric d. Then

1. A sequence $\left(s_{n}\right)_{n=1}^{\infty}$ of points of S converges to a point $s \in S$ if $\lim _{n \rightarrow \infty} d\left(s_{n}, s\right)=0$. We write

$$
\lim _{n \rightarrow \infty} s_{n}=s
$$

to indicate that $\left(s_{n}\right)_{n=1}^{\infty}$ converges to s.
2. A sequence $\left(s_{n}\right)_{n=1}^{\infty}$ of points of S is a Cauchy sequence if

$$
(\forall \varepsilon \in \mathbb{R})(\varepsilon>0 \Longrightarrow
$$

$$
\left.(\exists N \in \mathbb{N})(\forall n \in \mathbb{N})(\forall m \in \mathbb{N})\left((n \geq N \wedge m \geq N) \Longrightarrow d\left(s_{n}, s_{m}\right)<\varepsilon\right)\right)
$$

Prove the following statements:

1. Every convergent sequence is Cauchy.
2. Every subsequence of a convergent sequence converges to the same limit as the sequence.
3. If \mathbf{s} is a sequence of members of S, and $s \in S$ is such that every subsequence of \mathbf{s} has a subsequence that converges to s, then \mathbf{s} converges to s.

Problem 5. Prove or disprove each of the following statements:

1. If S is a metric space with metric d, then every Cauchy sequence of members of S converges.
2. If S is a metric space with metric d, then if \mathbf{s} is a Cauchy sequence that has a convergent subsequence it follows that \mathbf{s} itself is convergent.
3. If S is a metric space with metric d, then if s is a sequence of members of S such that every subsequence of \mathbf{s} has a convergent subsequence it follows that \mathbf{s} is convergesnt.

[^0]: ${ }^{1}$ The metric d^{\prime} is called the restriction of d to S^{\prime}

[^1]: ${ }^{2}$ Known in Russia as "the Bunyakovsky inequality", or "the Cauchy-SchwarzBunyakovsky inequality".

