
MATHEMATICS H311 — FALL 2015
H. J. Sussmann

HOMEWORK ASSIGNMENT NO. 9, DUE ON TUESDAY,
NOVEMBER 10

The following is a list of 2 (multipart) problems for you to hand in.

Problem 1. The purpose of this problem is to introduce the basic trig-
nometric functions and the number π.

The “sine” and “cosine” functions are functions from IR to IR defined as
follows: if x ∈ IR, then

sinx =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
,(0.1)

cosx =
∞∑
n=0

(−1)n
x2n

(2n)!
,(0.2)

(0.3)

that is,

sinx =
∑

n∈IN, n odd

(−1)
n−1
2
xn

n!
,(0.4)

cosx =
∑

n∈IN∪{0}, n even

(−1)
n
2
xn

n!
,(0.5)

or

sinx = x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− · · · ,(0.6)

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
− · · · .(0.7)

I. Prove that for every x the series for sinx and cosx converge abso-
lutely, so sin and cos are well defined functions from IR to IR. (Use
comparison with a geometric series.)

II. Prove, using series multiplication, that the identities

sin (x+ y) = sinx cos y + cosx sin y,

cos (x+ y) = cosx cos y − sinx sin y ,
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(called the addition formulas for the trigonometric functions) hold for
every x ∈ IR and every y ∈ IR. (NOTE: The only hard part of the
proof is doing the algebra, grouping terms together to get to the point
where you are able to apply the binomial theorem as we did in class
to prove that ex+y = exey. I recommend that you work with Formulas
(0.4) and (0.5), because this will make the algebraic work easier.)

III. Prove that
sin (−x) = − sinx

and
cos (−x) = cosx

for every real x.

IV. Prove that

sin2 x+ cos2 x = 1 for every x ∈ IR .

(HINT: Observe first that cos 0 = 1. Then write 0 = x + (−x) and
apply the addition formulas together with the results of Part III.

V. Conclude from Part IV that

−1 ≤ sinx ≤ 1 and − 1 ≤ cosx ≤ 1 for every x ∈ IR .

VI. Prove that

sinx ≤ x whenever x ∈ IR and x ≥ 0 .(0.8)

(HINT: Write the series for sinx as

sinx = x · f(x) ,

where

f(x) =
∞∑
n=0

(−1)n
x2n

(2n+ 1)!
.

Observe that for 0 ≤ x ≤
√

6 the series for f(x) is an alternating series,
and conclude from this that 0 ≤ f(x) ≤ 1 whenever 0 ≤ x ≤

√
6, so

sinx ≤ x whenever 0 ≤ x ≤
√

6. Since
√

6 > 1, conclude that (0.8)
holds.)
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VII. Prove that

sinx ≥ 2x

3
whenever x ∈ IR and 0 ≤ x ≤

√
2 .(0.9)

(HINT: Use the same method as in Part VI. Since the series for f(x)

is an alternating series for 0 ≤ x ≤
√

6, conclude that f(x) ≥ 1 − x2

6

for 0 ≤ x ≤
√

6, and derive from this the conclusion that f(x) ≥ 2
3 for

0 ≤ x ≤
√

2.)

VIII. Prove that
sin 0.7 < cos 0.7 .

and
sin 1.1 > cos 1.1 .

(HINT: Conclude from Part VI that sin 0.7 < 0.7, so sin2 0.7 < 1
2 .

Using Part IV, prove that cos2 0.7 > 1
2 , so sin 0.7 < cos 0.7. Then use

Part VII to show that sin 1.1 > 22
30 . Then sin2 1.1 > 1

2 , and you can
use Part IV to prove that cos2 1.1 < 1

2 .)

IX. In this part, you are allowed to use the fact that the sine and
cosine functions are continuous. (This will be proved later in the
course.)

Prove that there exists a real number α such that1

0.7 < α < 1.1(0.10)

and

sinα = cosα =
1√
2
.(0.11)

(HINT: sin 0.7 < cos 0.7 and sin 1.1 > cos 1.1. Then use the Interme-
diate Value Theorem.)

X. Prove that there exists a smallest real number α such that (0.10) and
(0.11) hold. (HINT: Let S be the set of all real numbers α for which
(0.10) and (0.11) hold. Then S 6= ∅ by Part IX. And S is obviously
bounded below. Let β be the infimum of S. Prove that β ∈ S.)

1You probably know from high-school trigonometry that the smallest positive angle θ
for which sin θ = cos θ = 1√

2
is “45 degrees”, that is, π

4
. And you also know that π is

about 3.14. So π
4

is about 0.785. So the bound 0.7 < α < 1.1 puts α in the correct range.
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XI. If α is the number of Part X, we define the number π
to be 4α. Hence 2.8 < π < 4.4 which, fortunately, is in the correct
range. (Later we will discuss how to calculate π much more accurately
than that.)

Prove that
sin

π

2
= 1,

cos
π

2
= 0,

sinπ = 0,

cosπ = −1,

sin 2π = 0,

and
cos 2π = 1.

(HINT: Use the addition formulas for the sine and cosine functions,
starting with the fact that sin π

4 = cos π4 = 1√
2

.)

XII. Prove that the sine and cosine functions are periodic with period 2π,
that is:

sin (x+ 2π) = sinx

and
cos (x+ 2π) = cosx

for every real number x.

Problem 2. In this problem we discuss how to turn the spaces IRd (i.e.,
the d-dimensional Euclidean spaces) into metric spaces.

If d is a natural number, the symbol IRd denotes the set of all d-tuples

~v = (vj)
d
j=1

of real numbers. Precisely, we use INd to denote the set defined by

{n ∈ IN : n ≤ d} ,

so INd is the set {1, 2, . . . , d}. Then a finite sequence of length d, or d-tuple,
or finite list of length d, is a function whose domain is INd. We will use the
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notation2 (vj)
d
j=1 for “the d-tuple whose j-th entry is vj for j = 1, . . . , d ”.

And we also sometimes write3 (v1, v2, . . . , vd) instead (vj)
d
j=1.

If ~v = (vj)
d
j=1 is a d-tuple then, for each j ∈ INd, vj is the j-th component,

or j-th coordinate, of ~v. (So, for example, v1 is the first coordinate of ~v, v2
is the second coordinate of ~v, v3 is the third coordinate of ~v, and so on, until
we get to vd, the d-th coordinate of ~v.

Naturally, a d-tuple ~v = (vj)
d
j=1 is a d-tuple of real numbers if all the

components of ~v are real numbers, i.e., if (∀j ∈ INd)vj ∈ IR.
As explained before, the expression IRd stands for the set of all d-tuples of

real numbers. The members (or “points”) of IRd are called d-dimensional real
vectors, and the set IRd is called d-dimensional space, or d-dimensional real
space, or d-dimensional Euclidean space4.

The space IR2 is called the plane, or the Euclidean plane, or, sometimes,
two-dimensional space.

The space IR3 is called three-dimensional space, or three-dimensional
Euclidean space.

The sum of two d-dimensional vectors ~v = (vj)
d
j=1, ~w = (wj)

d
j=1, is the

vector ~v + ~w given by

~v + ~w
def
= (vj + wj)

d
j=1 ,

so ~v + ~w is the vector (xj)
d
j=1 whose components are given by

xj = vj + wj for j = 1, 2, . . . , d .

The product of a scalar5 r by a vector ~v is the vector r~v given by

r~v
def
= (rvj)

d
j=1 if ~v = (vj)

d
j=1 .

(So, for example, if ~v = (v1, v2, v3, v4) and r ∈ IR, then r~v is the vector
(rv1, rv2, rv3, rv4).)

2Notice the obvious similarity of this with the notation (vj)
∞
j=1 for infinite sequences.

3But we do not write {v1, v2, . . . , vd} for a d-tuple. The expression {v1, v2, . . . , vd}
stands for a set, not a d-tuple. The d-tuple is written (v1, v2, . . . , vd).

4In this course, we only work with d-tuples of real numbers. One could also work with
the space Cd of all d-tuples of complex numbers, called d-dimensional complex space,

whose members would be called d-dimensional complex vectors, or with the space Fd of
all d-tuples of memberso of F, where F is some field. But we will not do that here, so for
us “d-dimensional space” means IRd.

5When discussing vectors in IRd, it is customary to refer to the real numbers as
“scalars”.
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The dot product (or scalar product, or inner product) of two vectors

~v = (vj)
d
j=1, ~w = (wj)

d
j=1 is the scalar ~v · ~w given by

~v · ~w def
=

d∑
j=1

vjwj if ~v = (vj)
d
j=1, ~w = (wj)

d
j=1 .

(So, for example, if ~v = (v1, v2, v3, v4) and ~w = (w1, w2, w3, w4), then ~v · ~w
is the real number given by ~v · ~w = v1w1 + v2w2 + v3w3 + v4w4.)

The square-length of a vector ~v = (vj)
d
j=1 is the real number SQL(~v)

given by

SQL(~v)
def
= ~v · ~v .

That is, SQL(~v) is the dot product of ~v with itself. Hence

SQL(~v) =

d∑
j=1

v2j if ~v = (vj)
d
j=1 .

The length of a vector ~v is the square root6 of SQL(~v).

If v ∈ IRd, we write ‖~v‖ to denote the length of ~v, that is,

‖~v‖ def=
√
SQL(~v) .

It follows that

‖~v‖ =

√√√√ d∑
j=1

v2j if ~v = (vj)
d
j=1 .

Furthermore, it follows from the definition that the square of ‖~v‖ is precisely
the number SQL(~v), so from now on we will write ‖v‖2 rather than SQL(~v),
which means that the expression SQL(~v) is never going to appear again.

The distance between two vectors ~v, ~w ∈ IRd is the number dist(~v, ~w)
given by

dist(~v, ~w)
def
= ‖~v − ~w‖ .

6If follows from the definition of the square lenght that the square-length of a vector
~v ∈ IRd is always a nonnegative real number. So the square root of this number exists.
Furthemore, the notation

√
x, for a nonnegative real number x, always stands for the

unique nonnegative square root of x. So in particular the number
√
SQL(~v) is a perfectly

well-defined nonnegative real number.
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I. Prove that dist is a metric on IRd, so IRd, equipped with this met-
ric, is a metric space. NOTE: The hard part is proving the triangle
inequality. This requires some work. You should first prove that

‖~v + ~w‖ ≤ ‖~v‖+ ‖~w‖ for all ~v, ~w ∈ IRd .(0.12)

(Once you have this, the triangle inequality for the metric dist follows
easily).

And to prove (0.12) you can do it by brute force, just writing every-
thing out, which would involve writing lot sof summations, and would
be complicated but doable. Or you could use the following ingenious
trick: First prove that the dot product satisfies the following laws:

1. Commutativity:

~v · ~w = ~w · ~v whenever ~v, ~w ∈ IRd .

2. Distributivity:

(~u+ ~v) · ~w = ~u · ~w + ~v · ~w whenever ~u,~v, ~w ∈ IRd ,

and

~u · (~v + ~w) = ~u · ~v + ~u · ~w whenever ~u,~v, ~w ∈ IRd .

3. Scalar multiplication law:

(r~u) · ~v = ~u · (r~v) = r(~u · ~v) whenever ~u,~v ∈ IRd, r ∈ IR .

Then, using the above laws for sums and products, take two vectors
~v, ~w ∈ IRd, and define a function p : IR 7→ IR by letting

p(r) = (~v + r ~w) · (~v + r ~w) for r ∈ IR .

Observe that p(r) ≥ 0 for every real number r, write out p(r) as a
polynomial ar2 + br+ c, and use the necessary and sufficient condition
for such a polynomial never to have negative values. (The condition
is: a > 0 and 4ac ≤ b2. ) This will give you the Cauchy-Schwarz
inequality7:

~v · ~w ≤ ‖~v‖ · ‖~w‖ .
7Known in Russia as “the Bunyakovsky inequality”, or “the Cauchy-Schwarz-

Bunyakovsky inequality”.
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(This is analogous to the one-dimensional inequality a ·b ≤ |a| · |b| that
I am sure you know very well.)

And, finally, once you have proved the Cauchy-Schwarz inequality, the
triangle inequality for the metric follows easily. (Just write

‖~v + ~w‖2 = (~v + ~w)(̇~v + ~w) ,

conclude from that that

‖~v + ~w‖2 = ‖~v‖2 + ‖~w‖2 + 2~v · ~w ,

use the Cauchy-Schwarz inequality, and take square roots of both
sides.)

II. If d is a natural number, then a subset S of IRd is bounded if there
exists a real number B such that

‖~v‖ ≤ B for every ~v ∈ S .

A sequence (~vn)∞n=1 of vectors in IRd is bounded if the set {~vn : n ∈ IN}
is bounded. That is, the sequence (~vn)∞n=1 is bounded if and only if
there exists a real number B such that

‖~vn‖ ≤ B for every n ∈ IN .

If (~vn)∞n=1 is a sequence of vectors in IRd, the general definition of
convergence of a sequence of points of a metric space says that the
sequence (~vn)∞n=1 converges to a vector ~v ∈ IRd if

lim
n→∞

dist(~vn, ~v) = 0 ,

that is, equivalently, if

lim
n→∞

‖~vn − ~v‖ = 0 .

We say that a sequence (~vn)∞n=1 converges coordinatewise to the vector
~v if for each index j ∈ INd, the sequence of j-th coordinates of the ~vn
converges to the j-th coordinate of ~v. That is, if we write the vectors ~vn
as8 ~vn = (vnj)

d
j=1, ~v = (vj)

d
j=1, then (~vn)∞n=1 converges coordinatewise

to vector ~v if and only if

lim
n→∞

vnj = vj for every j ∈ INd ,

8At this point, we need two subscripts: the subscript n identifies which vector in the
sequence (~vn)∞n=1 we are talking about, and the subscript j identifies the coordinate, so
vnj stands for the j-th coordinate of the n-th vector.
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or, if you prefer,

lim
n→∞

vnj = vj for j = 1, 2, . . . , d .

Prove that a sequence (~vn)∞n=1 of vectors in IRd converges to a vector
~v ∈ IRd if and only if (~vn)∞n=1 converges coordinatewise to ~v. (For
example, if d = 2, you have to prove that, if ~vn = (xn, yn), and
~v = (x, y), then limn→∞ ~vn = ~v if and only if limn→∞ xn = x and
limn→∞ yn = y. Equivalently, you have to prove that

lim
n→∞

√
(xn − x)2 + (yn − y)2 = 0

if and only if
lim
n→∞

xn = x and lim
n→∞

yn = y ,

which should be very easy.)

III. Prove the Bolzano-Weierstrass theorem in several variables: If d ∈ IN,
then every sequence (~vn)∞n=1 of vectors in IRd which is bounded has a
convergent subsequence. (HINT: Use the result of Part II.)

IV. A Cauchy sequence in a metric space S with metric d is a sequence
(sn)∞n=1 of points of S such that

(CS) For every positive real number ε there exists a natural number
N such that

d(sn, sm) < ε whenever n,m ∈ IN, n ≥ N, m ≥ N .

A metric space S with metric d is complete if every Cauchy sequence
of points of S converges.

Prove that the metric spaces IRd are complete9. (HINT: You may
consider using the same technique that was used in one dimension:
prove that a Cauchy sequence is necessarily bounded, and prove that
if a Cauchy sequence s has a convergent subsequence then s converges
to a point of S.)

9We have already proved in class (and it is proved in the book) that one-dimensional
space IR si complete. Now I am asking you prove that all the Euclidean spaces IRd are
complete.


