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Introduction to Mathematical Reasoning

H. J. Sussmann

REVIEW PROBLEMS FOR THE
APRIL 24 MIDTERM EXAM

The following list of problems consists mostly of questions that
are answered in the notes, or are discussed in the book, or were
discussed in class. But there are a few problems for which you
will have to do some thinking.

The problems in the April 24 midterm exam are
going to be identical or very similar to problems in
this list.

1. Define “rational number” and “irrational number”.

2. Define “divisible”.

3. Define “prime number”.

4. Define “subset”.

5. Define “empty set”.

6. Define “power set”.

7. Define “inductive set”.

8. Define “union” (of two sets).

9. Define “intersection” (of two sets).

10. Define “coprime”.

11. Define “greatest common divisor”.



12. For each of the following pairs A,B of sets, determine whether the sets
A,B are equal, and in each case explain why they are, or why they are
not, equal.

1. A = {2, 3, 4}, B = {4, 3, 2}.
2. A = {2, 3, 4}, B = {4, 3, 2, 2}.
3. A = {2, 3, 4}, B = {4, 3, 1}.
4. A = IN, B = {n ∈ Z : n ≥ 0}.
5. A = IN, B = {n ∈ Z : n > 0}.
6. A = IR, B = Q.

7. A = {x ∈ IR : x2 = 2x+ 1}, B = {x ∈ Z : x2 = 2x+ 1}.
8. A = {x ∈ IR : x2 = 2x+ 8}, B = {x ∈ Z : x2 = 2x+ 8}.

13. Let A = {x ∈ IR : x2 = 2x+1}, B = {x ∈ IR : x2 = 2x+8}. Determine
A ∪B and A ∩B.

14. Prove or disprove each of the following statements (remember that
capital letters stand for sets, so for example the quantifier “(∀X)” says
“for all sets X”) :

1. (∀X)∅ ⊆ X.

2. (∀X)∅ ∈ X.

3. (∀X)X ∪ ∅ = X.

4. (∀X)X ∪ ∅ = ∅.
5. (∀X)X ∩ ∅ = X.

6. (∀X)X ∩ ∅ = ∅.
7. (∀X)(∀Y )(X ∪ Y = ∅ =⇒ X = Y ).

8. (∀X)(∀Y )(X ∩ Y = ∅ =⇒ X = Y ).

15. Consider the statement

(*) If A,B,C are sets such that A is a subset of B and B is a subset
of C, then A is a subset of C.

I. Write statement (*) in formal language, using the appropriate
quantifiers and logical connectives.



II. Prove statement (*).

16. The distributive law of union with respect to intersection says that:

(*) If A,B,C are sets then A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

I. Write statement (*) in formal language, using the appropriate
quantifiers and logical connectives.

II. Prove statement (*).

17. The distributive law of intersection with respect to union says:

(*) If A,B,C are sets then A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

I. Write statement (*) in formal language, using the appropriate
quantifiers and logical connectives.

II. Prove statement (*).

18. Prove that if A,B are sets then (A ∪B) ∩ A = A.

19. Prove that if A,B are sets then (A ∩B) ∪ A = A.

20. The division theorem says that

(*) If a, b are integers, and b 6= 0, then there exist unique integers q, r
such that a = bq + r and 0 ≤ r < |b|.

I. Write statement (*) in formal language, using the appropriate
quantifiers and logical connectives, and without using the “!” sym-
bol. (This means that, instead of saying “(∃!x) · · ·”, you have to
say what this means without using “!”.)

II. Prove the existence part.

21. The division theorem says that

(*) If a, b are integers, and b 6= 0, then there exist unique integers q, r
such that a = bq + r and 0 ≤ r < |b|.



I. Write statement (*) in formal language, using the appropriate
quantifiers, and logical connectives, and without using the “!”
symbol. (This means that, instead of saying “(∃!x) · · ·”, you have
to say what this means without using “!”.)

II. Prove the uniqueness part.

22. State the well-ordering principle, both in ordinary language and in
formal language.

23. The Fibonacci numbers fn are defined by

f1 = 1 ,

f2 = 1 ,

fn+2 = fn + fn+1 for n ∈ IN .

Prove that the parity of the Fibonacci numbers is “odd-odd-even-odd-
odd-even-· · ·”. Precisely, prove that

(∀n ∈ IN)(f3n−2 is odd ∧ f3n−1 is odd ∧ f3n is even) .

24. The Fibonacci numbers fn are defined by

f1 = 1 ,

f2 = 1 ,

fn+2 = fn + fn+1 for n ∈ IN .

Define real numbers ϕ, ψ by

ϕ =
1 +
√

5

2
, ψ =

1−
√

5

2
.

I. Verify that ϕ2 = ϕ+ 1 and ψ2 = ψ + 1.

II. Prove Binet’s formula:

(∀n ∈ IN)fn =
1√
5

(ϕn − ψn) .

(HINT: For the proof, use the well-ordering principle.)



25. The coprime representation theorem says that

(*) If r is a rational number, then there exist integers m,n such that
n 6= 0, m and n are coprime, and r = m

n
.

I. Write statement (*) in formal language, using COP (x, y) for “x
and y are coprime”.

II. Prove statement (*).

(HINT: For the proof, use the well-ordering principle.)

26. Prove that
√

2 is irrational.

27. Prove that
√

3 is irrational.

28. Prove that
√

5 is irrational.

29. Prove that
√

6 is irrational.

30. Prove that
√

12 is irrational.

31. Prove that
√

2 +
√

3 is irrational.

32. Prove that
√

2 +
√

3 +
√

5 is irrational.

33. Prove that
√

2 + 3
√

2 is irrational.

34. For each of the following four statements:

I. Write the statement in formal language.

II. Prove it or disprove it.

1. The sum of two rational numbers is a rational number.

2. The sum of two irrational numbers is an irrational number.

3. The sum of a rational number and an irrational numbers is an
irrational number.

4. The product of a rational number and an irrational numbers is an
irrational number.



35. Bézout’s lemma says that

(*) The greatest common divisor of two integers a, b that are not both
equal to zero is the smallest integer linear combination of a and b.

I. Write statement (*) in formal language, using the appropriate
quantifiers and logical connectives, and using “GCD(x, y)” for
“the greatest common divisor of x and y”.

II. Prove statement (*).

36. Find the greatest common divisor of 33 and 47 and express it as an
integer linear combination of 33 and 47.

37. Find the greatest common divisor of 24 and 46 and express it as an
integer linear combination of 24 and 46.

38. Find the greatest common divisor of 24 and 49 and express it as an
integer linear combination of 24 and 49.

39. Euclid’s lemma says that

(*) If p is a prime number, a and b are integers, and p divides the
product ab, then p divides a or p divides b.

I. Write statement (*) in formal language, using the appropriate
quantifiers and logical connectives, and using “x|y” for “x divides
y” and “PR(x)” for “x is a prime number”.

II. Prove statement (*). (HINT: use Bézout’s lemma.)

40. Consider the statement

(*) If p, q are coprime integers, a is an integer, p divides a and q
divides a, then pq divides a.

I. Write statement (*) in formal language, using the appropriate
quantifiers and logical connectives, and using “x|y” for “x divides
y”, “CR(x)” for “x is a prime number”, and “COP (x, y)” for “x
and y are coprime”.

II. Prove statement (*). (HINT: use Bézout’s lemma.)



41. Prove, without using any general theorems such as Bézout’s lemma or
its corollaries, or the fundamental theorem of arithmetic, that if an
integer is divisible by 7 and by 11 then it is divisible by 77. (HINT:
22− 21 = 1.)

42. Prove, without using any general theorems such as Bézout’s lemma or
its corollaries, or the fundamental theorem of arithmetic, that if an
integer is divisible by 5 and by 13 then it is divisible by 65. (HINT:
26− 25 = 1.)

43. Consider the statement

(*) If a is an odd integer then there exists an integer k such that
a = 4k + 1 or a = 4k + 3.

I. Write statement (*) in formal language, using the appropriate
quantifiers and logical connectives.

II. Prove statement (*). (HINT: use the division theorem.)

44. Consider the statement

(*) If a is an odd integer then there exists an integer k such that
a2 = 4k + 1, and there does not exist an integer k such that
a2 = 4k or a2 = 4k + 2 or a2 = 4k + 3.

I. Write statement (*) in formal language, using the appropriate
quantifiers and logical connectives.

II. Prove statement (*). (HINT: use the division theorem.) (Note:
you will have to use the division theorem a few times, both for a
and for a2. And the uniqueness part of the theorem is going to
play a crucial role.)

45. Prove that if x = (xj)
n
j=1 is a finite list of nonzero real numbers, then

the product
∏n

j=1 xj is nonzero. (That is, if you prefer: if x1, x2, . . . , xn
are real numbers that are all different from zero, then the product
x1x2 · · ·xn is also different from zero.) NOTE: The special case n = 2 is
a theorem that we proved earlier in the course, but you are not allowed
to use this theorem. You should give a completely self-contained proof,
including the proof for n = 2.



46. Prove that if p is a prime number, and a = (aj)
n
j=1 is a finite list of inte-

gers such that p divides the product
∏n

j=1 aj, then p must divide one of
the factors. (That is, if you prefer: if p is a prime number, a1, a2, . . . , an

are integers, and p
∣∣∣a1a2 · · · an , then p|aj for some j∈{k ∈ IN : k ≤ n}.

NOTE: The special case n = 2 is Euclid’s Lemma, which was proved
earlier in the course, but you are not allowed to use this result. You
should give a completely self-contained proof, including the proof for
n = 2. (In other words: you have to prove Euclid’s lemma.)

47. Prove that if n is a natural number and n ≥ 2 then there exists a finite
list p = (pj)

m
j=1 of prime numbers such that

∏m
j=1 pj = n.

48. Prove the uniqueness assertion of the fundamental theorem of arith-
metic:

(*) If p = (pj)
m
j=1 and q = (qj)

r
j=1 are ordered finite lists of prime

numbers such that
∏m

j=1 pj =
∏r

j=1 qj, then p = q.

(NOTE: a list x = (xj)
m
j=1 of real numbers is ordered if xj ≤ xj+1 for

j ∈ IN, 1 ≤ j ≤ m − 1. And “p = q” means “r = m and pj = qj for
every j in the set {k ∈ IN : k ≤ m}”.)

49. Prove that if n ∈ IN and n has a prime factorization n = p1p2p3 and
another prime factorization n =

∏m
j=1 qj, where the pj and the qj satisfy

p1 ≤ p2 ≤ p3 and q1 ≤ q2 ≤ · · · ≤ qm−1 ≤ qm, then it follows that
m = 3, q1 = p1, q2 = p2, q3 = p3. (This is a special case of the
uniqueness assertion of the fundamental theorem of arithmetic. Do not
use the fundamental theorem of arithmetic. Prove the result directly, by
using the same method that we used in the proof of the general theorem.
That is, start by proving that p3 = qm, and then p1p2 =

∏m−1
j=1 qj, and

so on.)


