
MATHEMATICS 300 — SPRING 2015
Introduction to Mathematical Reasoning

H. J. Sussmann

REVIEW PROBLEMS FOR THE
MARCH 6 MIDTERM EXAM

The following list of problems consists mostly of questions that
are answered in the notes, or are discussed in the book, or were
discussed in class. But there are several problems that you will
have to think about.

The set of problems in the March 6 midterm exam
is going to be a subset of the set of problems in this
list.

1. Define “finite set” and “infinite set”.

2. Define “divisible”.

3. Define “prime number”.

4. Define “subset”.

5. Define “empty set”.

6. Define “power set”.

7. Define “inductive set”.

8. Prove that IN, the set of all natural numbers, is an infinite set.

9. Prove that the set of prime numbers is infinite (Euclid’s Theorem).

10. Prove that if n is a natural number and n ≥ 2 then n has a prime
factor.

11. For each of the following, indicate whether it is a one-argument func-
tion, a two-argument function, a one-argument predicate, or a two-
argument predicate. (Note: “function” means exactly the same as
“operation”, and “predicate” means exactly the same as “relation”.):
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(a) equal,

(b) absolute value,

(c) divisible,

(d) divides,

(e) prime number,

(f) even number,

(g) odd number,

(h) addition of real numbers,

(i) multiplication of real numbers,

(j) subtraction of real numbers,

(k) minus (that is, the negative of a real number),

(l) square (that is, the square of a real number),

(m) subset,

(n) power set.

12. Using the definitions of 2, 3, 4, 5 and 6 (that is: 2 = 1 + 1, 3 = 2 + 1,
4 = 3 + 1, 5 = 4 + 1, 6 = 5 + 1) prove that 3× 2 = 6.

13. Define “absolute value”.

14. Translate the following statement into formal language (using quanti-
fiers) and prove it. (The translation is worth 30%, and the proof is
worth 70%.):

(*) If a, b, c are arbitrary real numbers such that a+ b = a+ c, then
b = c.

15. Translate the following statement into formal language (using quanti-
fiers) and prove it. (The translation is worth 30%, and the proof is
worth 70%.):

(*) If a, b, c are arbitrary real numbers such that a.b = a.c, and a 6= 0,
then b = c.

16. Translate the following statement into formal language (using quanti-
fiers) and prove it. (The translation is worth 30%, and the proof is
worth 70%.):
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(*) If x is an arbitrary real number, then x.0 = 0.

17. Translate the following statement into formal language (using quanti-
fiers) and prove it. (The translation is worth 30%, and the proof is
worth 70%.):

(*) If x, y are arbitrary real numbers such that x.y = 0, then x = 0
or y = 0.

18. Translate the following statement into formal language (using quanti-
fiers) and prove it. (The translation is worth 30%, and the proof is
worth 70%.):

(*) If a, b, c are arbitrary real numbers such that a ≥ b and b ≥ c,
then a ≥ c.

(Note: the definition of “≥” is as follows: if x, y are real numbers,
we say that x is greater than or equal to y, and write “x ≥ y ”, if
y < x ∨ y = x.)

19. Give an example of three sentences P , Q, R such that one of the sen-
tences “P =⇒ (Q =⇒ R)”, “(P =⇒ Q) =⇒ R” is true but the other
one is false.

20. Translate the following statement into formal language (using quanti-
fiers) and prove it. (The translation is worth 30%, and the proof is
worth 70%.):

(*) If p, q, r are arbitrary real numbers such that p is less than or
equal to q and q is less than r, then p is less thatn r.

(Note: the definition of “less than or equal to” is as follows: if x, y
are real numbers, we say that x is less than or equal to y, and write
“x ≤ y”, if x < y ∨ x = y.)

21. Translate the following statement into formal language (using quanti-
fiers) and prove it. (The translation is worth 30%, and the proof is
worth 70%.):

(*) If q is an arbitrary real number such that q 6= 0, then q2 > 0.

22. Explain why the following proof is wrong.
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Claim. 0 6= 2.

Proof. 0 6= 1 by Axiom FA11.

Adding the inequality “0 6= 1” to itself, we get 0 + 0 6= 1 + 1, that
is, 0 6= 2. Q.E.D.

23. Prove that 1 > 0.

24. Translate the following statement into formal language (using quanti-
fiers) and prove it. (The translation is worth 30%, and the proof is
worth 70%.):

(*) If q is an arbitrary real number such that q > 0, then q + 1
q
≥ 2.

25. Translate the following statement into formal language (using quanti-
fiers) and prove it. (The translation is worth 30%, and the proof is
worth 70%.):

(*) If q is an arbitrary real number such that q > 0, then 6q+ 1
q
≥ 2
√

6.

26. Translate the following statement into formal language (using quanti-
fiers) and prove it. (The translation is worth 30%, and the proof is
worth 70%.):

(*) If p, q are arbitrary real numbers, then pq ≤ 8p2 + q2

32
.

27. Translate the following statement into formal language (using quanti-
fiers) and prove it. (The translation is worth 30%, and the proof is
worth 70%.):

(*) If p, q are arbitrary real numbers, then the absolute value of pq is
the product of the absolute values of p and q.

28. State and prove the triangle inequality for real numbers.

29. Prove that (∀x ∈ IR)(∀y ∈ IR) | |x| − |y| | ≤ |x− y|.

30. In this problem

• IR2 is the set of all pairs (a, b) of real numbers.

• The members of IR2 are called two-dimensional vectors.
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• The length of a two-dimensional vector ~v = (a, b) is the number

‖~v‖ given by ‖~v‖ =
√
a2 + b2.

• The dot product of two two-dimensional vectors ~v = (a, b), ~w =
(c, d), is the number ~v · ~w given by ~v · ~w = ac+ bd.

Prove the Cauchy-Schwarz inequality:

(∀~v ∈ IR2)(∀~w ∈ IR2)~v · ~w ≤ ‖~v‖ ‖~w‖ .

31. In this problem

• IR2 ia the set of all pairs (a, b) of real numbers.

• The members of IR2 are called two-dimensional vectors.

• The length of a two-dimensional vector ~v = (a, b) is the number

‖~v‖ given by ‖~v‖ =
√
a2 + b2.

• The dot product of two two-dimensional vectors ~v = (a, b), ~w =
(c, d), is the number ~v · ~w given by ~v · ~w = ac+ bd.

Prove the triangle inequality:

(∀~v ∈ IR2)(∀~w ∈ IR2) ‖~v + ~w‖ ≤ ‖~v‖+ ‖~w‖ .

You are allowed to use the Cauchy-Schwarz inequality:

(∀~v ∈ IR2)(∀~w ∈ IR2)~v · ~w ≤ ‖~v‖ ‖~w‖ .

32. For each of the following sentences, indicate whether the sentence is
true or false, and explain why.

(a) 6 < 5 ∨ 4 > 3,

(b) 6 < 5 ∧ 4 > 3,

(c) 6 < 5 =⇒ 4 > 3,

(d) 6 < 5 =⇒ 4 < 3,

(e) (∀x ∈ IR)(x2 ≤ 0 ∧ x 6= 0),

(f) (∀x ∈ IR)(x2 ≤ 0 ∨ x 6= 0),

(g) (∀x ∈ IR)(x2 ≤ 0 =⇒ x 6= 0),



6 Sussmann – Math 300 – Spring 2015

(h) (∃x ∈ IR)(x2 < 0 =⇒ x 6= 0),

(i) (∃x ∈ IR)(x2 < 0 =⇒ 4 < 3),

(j) (∃x ∈ IR)x2 < 0 =⇒ 4 < 3,

(k) (∀x ∈ IR)(x2 < 0 =⇒ 4 < 3),

(l) (∀x ∈ IR)(x2 ≤ 0 =⇒ 4 < 3),

(m) (∀x ∈ IR)x2 ≤ 0 =⇒ 4 < 3.

33. For each of the following sentences,

i. Translate the sentence into English.

ii. Indicate whether the sentence is true or false, and explain why.

(a) (∃m ∈ IN)(∀n ∈ IN)m ≤ n.

(b) (∃m ∈ IN)(∀n ∈ IN)m < n.

(c) (∃m ∈ Z)(∀n ∈ Z)m ≤ n.

(d) (∀n ∈ Z)(∃m ∈ Z)m ≤ n.

(e) (∀n ∈ Z)(∃m ∈ Z)m < n.

34. Determine whether the following proof is correct or not, and explain
why. (NOTE: It may be that the claim is false. And if that is the case
then the proof must be wrong as well, and you are asked to explain
why the proof is wrong. If the claim is true, then the proof could be
correct or not, and you are asked to explain if it is correct or not, and
if it is not correct then to explain why.)

Claim. If a, b, c are integers such that a divides c and b divides c
and a+ b is odd then a+ b divides c.

Proof.

Let a, b, c be arbitrary integers.

Assume that a divides c and b divides c and a+ b is odd.

We want to prove that a+ b divides c.

Since a divides c, we can write c = ak, k ∈ Z.

Since b divides c, we can write c = bk, k ∈ Z.
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Then, adding the two equations, we get 2c = ak + bk, so 2c =
(a+ b)k.

It follows that (a+ b)k is even.

But a+ b is odd, so k must be even. (Reason: if k was odd then,
since a + b is odd, the product (a + b)k would be odd. But we
have just shown that (a+ b)k is even.)

Since k is even, we can write k = 2m, m ∈ Z.

Then 2c = (a+b)×2m, so 2c = 2(a+b)m, and then c = (a+b)m.

Therefore a+ b divides c. Q.E.D.

35. Determine whether the following proof is correct or not, and explain
why. (NOTE: It may be that the claim is false. And if that is the case
then the proof must be wrong as well, and you are asked to explain
why the proof is wrong. If the claim is true, then the proof could be
correct or not, and you are asked to explain if it is correct or not, and
if it is not correct then to explain why.)

Claim. If a, b, c are integers such that a is divisible by c and b is
divisible by c, then a+ b is divisible by c.

Proof.

Let a, b, c be arbitrary integers.

Assume that a is divisible by c and b is divisible by c.

We want to prove that a+ b is divisible by c.

Since a is divisible by c, we can write a = ck, k ∈ Z.

Since b is divisible by c, we can write b = ck, k ∈ Z.

Then, adding the two equations, we get a+ b = ck + ck = c× 2k.

Therefore a+ b is divisible by c. Q.E.D.

36. Determine whether the following proof is correct or not, and explain
why. (NOTE: It may be that the claim is false. And if that is the case
then the proof must be wrong as well, and you are asked to explain
why the proof is wrong. If the claim is true, then the proof could be
correct or not, and you are asked to explain if it is correct or not, and
if it is not correct then to explain why.)
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Claim. If a, b, c are integers such that a is divisible by c and b is
divisible by c, then a+ b is divisible by c.

Proof.

Let a, b, c be arbitrary integers.

Assume that a is divisible by c and b is divisible by c.

We want to prove that a+ b is divisible by c.

Since a is divisible by c, we can write a = ck, k ∈ Z.

Since b is divisible by c, we can write b = cj, j ∈ Z.

Then, adding the two equations, we get a+ b = ck+cj = c(k+ j).

Therefore a+ b is divisible by c. Q.E.D.

37. Determine whether the following proof is correct or not, and explain
why. (NOTE: It may be that the claim is false. And if that is the case
then the proof must be wrong as well, and you are asked to explain
why the proof is wrong. If the claim is true, then the proof could be
correct or not, and you are asked to explain if it is correct or not, and
if it is not correct then to explain why.)

Claim. 1 is the largest natural number.

Proof.

Let n be the largest natural number. [Introducing an object

and giving it a name, using Rule ∃use]
Then n2 ∈ IN [Because the square of a natural number is a
natural

number]

And n2 ≤ n [Because nis the largest natural number,

so n2 cannot be larger than n, so n2 ≤ n]

But n2 ≥ n [Because n ≥ 1, since n ∈ IN, so n2 ≥ n]

So n2 = n [Because n2 ≥ n and n2 ≤ n]

So n2 − n = 0 [adding −n to both sides]

But n2 − n = n(n− 1) [Trivial]

So n(n− 1) = 0 [Rule SEE]

So n = 0 ∨ n− 1 = 0 [Theorem 4 of the Lecture 2-3-4 notes]
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So n = 0 or n = 1. [Trivial]

But n 6= 0 [Because n ∈ IN and 0 /∈ IN]

So n = 1 [Because n = 0 ∨ n = 1 and n 6= 0]

So 1 is the largest natural number. Q.E.D.

38. Determine whether the following proof is correct or not, and explain
why. (NOTE: It may be that the claim is false. And if that is the case
then the proof must be wrong as well, and you are asked to explain
why the proof is wrong. If the claim is true, then the proof could be
correct or not, and you are asked to explain if it is correct or not, and
if it is not correct then to explain why.)

Claim. If a, b are real numbers, then 2ab ≤ a2 + b2.

Proof.

Since 2ab ≤ a2 + b2, we may subtract 2ab from both sides and conclude
that

0 ≤ a2 + b2 − 2ab .(0.1)

But a2 + b2 − 2ab = (a− b)2.

And the square of every real number is nonnegative, so (a− b)2 ≥ 0.

So 0 ≤ a2 + b2 − 2ab, which agrees with (0.1). Q.E.D.

39. Determine whether the following proof is correct or not, and explain
why. (NOTE: It may be that the claim is false. And if that is the case
then the proof must be wrong as well, and you are asked to explain
why the proof is wrong. If the claim is true, then the proof could be
correct or not, and you are asked to explain if it is correct or not, and
if it is not correct then to explain why.)

Claim. If a, b are real numbers, then 2ab ≤ a2 + b2.

Proof.

We prove the claim by contradiction.

Assume that the inequality “2ab ≤ a2 + b2” is not true.

Then 2ab ≥ a2 + b2.

Subtracting 2ab from both sides we get 0 ≥ a2 + b2 − 2ab.

But a2 + b2 − 2ab = (a− b)2.
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So 0 ≥ (a− b)2.

But the square of every real number is nonnegative, so (a −
b)2 ≥ 0.

So we have established two contradictory facts, namely, that
0 ≥ (a− b)2 and that (a− b)2 ≥ 0.

Since assuming that our desired claim was false has led us to a
contradiction, we can conclude that the claim is true, i.e., that
2ab ≤ a2 + b2. Q.E.D.

So 0 ≤ a2 + b2 − 2ab, which agrees with (0.1). Q.E.D.

40. Determine whether the following proof is correct or not, and explain
why. (NOTE: It may be that the claim is false. And if that is the case
then the proof must be wrong as well, and you are asked to explain
why the proof is wrong. If the claim is true, then the proof could be
correct or not, and you are asked to explain if it is correct or not, and
if it is not correct then to explain why.)

Claim. If a, b are real numbers, then 2ab ≤ a2 + b2.

Proof.

We prove the claim by contradiction.

Assume that the inequality “2ab ≤ a2 + b2” is not true.

Then 2ab > a2 + b2.

Subtracting 2ab from both sides we get 0 > a2 + b2 − 2ab.

But a2 + b2 − 2ab = (a− b)2.

So 0 > (a− b)2.

But the square of every real number is nonnegative, so (a −
b)2 ≥ 0.

So we have shown two contradictory facts, namely, that 0 >
(a− b)2 and that (a− b)2 ≥ 0.

Since assuming that our desired claim was false has led us to
a contradiction, we can conclude that the claim is true, i.e.,
that 2ab ≤ a2 + b2. Q.E.D.

41. Translate the following statement into formal language (using quanti-
fiers), determine if it is true or false, and prove it, if it is true, or prove
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that it is false, if it is false. (The translation is worth 30%, and the
proof is worth 70% each.)

(&) If X, Y , Z are arbitrary sets then if X is a subset of Y and Y is a
subset of Z, it follows that X is a subset of Z. false.

42. Translate each of the following four statements into formal language
(using quantifiers), determine if the statement is true or false, and then
prove it, if is true, or prove that it is false, if it is false. (The translations
are worth 5% each, the true-false questions are worth 5% each, and the
proofs are worth 15% each.)

(a) The empty set belongs to every set.

(b) The empty set is a subset of every set.

(c) There exists a set that belongs to every set.

(d) There exists a set that is a subset of every set.

43. Translate the following statement into formal language (using quanti-
fiers) and prove it. (The translation is worth 30%, and the proof is
worth 70%.):

(*) If x is an arbitrary real number, then x2 is equal to 9 if and only
if either x = 3 or x = −3.

44. i. Define “even integer” and “odd integer”.

ii. Using your definitions of “even” and “odd”, prove that the sum
of an even integer and an odd integer is an odd integer.

45. Translate the following statement into formal language (using quanti-
fiers) and prove it. (The translation is worth 30%, and the proof is
worth 70%.):

(*) If a, b, c are real numbers, and c is positive, then |a− b| < c if and
only if b− c < a < b+ c.

46. Translate the following statement into formal language (using quanti-
fiers) and prove it by induction. (The translation is worth 30%, and
the proof is worth 70%.):
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(*) Every natural number is greater than or equal to 1.

47. Translate the following statement into formal language (using quanti-
fiers) and prove it by induction. (The translation is worth 30%, and
the proof is worth 70%.):

(*) Every natural number is equal to 1 or greater than or equal to 2.

48. Translate the following statement into formal language (using quanti-
fiers) and prove it by induction. (The translation is worth 30%, and
the proof is worth 70%.):

(*) Every natural number is equal to 1, or equal to 2, or greater than
or equal to 3.

49. Translate the following statement into formal language (using quanti-
fiers) and prove it by induction. (The translation is worth 30%, and
the proof is worth 70%.):

(*) If n is an arbitrary natural number and n 6= 1 then n − 1 is a
natural number.

50. Translate the following statement into formal language (using quanti-
fiers) and prove it by induction. (The translation is worth 30%, and
the proof is worth 70%.):

(*) The sum of two natural numbers is a natural number.

(HINT: This problem involves a statement with two universally quan-
tified variables. To prove it, you should fix one of the variables and do
induction on the other variable.)

51. Translate the following statement into formal language (using quanti-
fiers) and prove it by induction. (The translation is worth 30%, and
the proof is worth 70%.):

(*) The product of two natural numbers is a natural number.

(HINT: This problem involves a statement with two universally quan-
tified variables. To prove it, you should fix one of the variables and do
induction on the other variable.)
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52. i. Give an inductive definition of “ an ”, for a real number a and a
natural number n.

ii. Prove by induction that if n is an arbitrary natural number then
n < 2n.

53. i. Give an inductive definition of the “factorial” of a natural number.

ii. Compute 6! using the inductive definition.

iii. Prove by induction that if n is an arbitrary natural number then
n! ≤ nn.

54. i. Give an inductive definition of the expression
∑n

k=1 ak (if n is a
natural number and a1, . . . , an are real numbers.

ii. Compute
∑5

k=1 k
3 using the inductive definition.

iii. Prove by induction that if n is an arbitrary natural number then
n! ≤ nn.

55. Consider the statement

(∗) (∀n ∈ IN)
( n∑
k=1

k2 =
n3

3
+
n2

2
+
n

6

)
.

i. Verify (*) for n = 1, 2 and 3.

ii. Prove (*) by induction.

56. Consider the statement

(∗) (∀n ∈ IN)
( n∑
k=1

k3 =
n2(n+ 1)2

4

)
.

i. Verify (*) for n = 1, 2 and 3.

ii. Prove (*) by induction.

57. Prove by induction that

(∗) (∀n ∈ IN)(∀x ∈ IR)(x > 0 =⇒ (1 + x)n ≥ 1 + nx) .
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58. Determine whether the following proof is correct or not, and explain
why. (NOTE: It may be that the claim is false. And if that is the case
then the proof must be wrong as well, and you are asked to explain
why the proof is wrong. If the claim is true, then the proof could be
correct or not, and you are asked to explain if it is correct or not, and
if it is not correct then to explain why.)

Claim. If n is a natural number and (a1, a2, . . . , an) is a list of n real
numbers, then a1 = a2 = · · · = an.

Proof. We prove our conclusion by induction.

Let P (n) be the statement “if (a1, a2, . . . , an) is a list of n real numbers,
then a1 = a2 = · · · = an”.

The base case. If n = 1, then P (n) says that if a1 is a real number
then a1 is equal to itself, which is clearly true. So P (1) is true.

The inductive step. We want to prove that

(#) (∀n ∈ IN)(P (n) =⇒ P (n+ 1)) .

Let n be an arbitrary natural number.

We want to prove that P (n) =⇒ P (n+ 1).

Assume that P (n) is true.

We want to prove that P (n+ 1) is true.

But P (n+1) says that “if (a1, a2, . . . , an, an+1) is a list of n+1
real numbers, then a1 = a2 = · · · = an = an+1”.

So, in order to prove P (n+ 1), we let (a1, a2, . . . , an, an+1) be
an arbitrary list of n + 1 real numbers, and prove that the
n+ 1 numbers in this list are all equal.

The list (a1, a2, . . . , an) is a list of n real numbers,

And our inductive assumption (that P (n) is true) says that
if you have a list of n natural numbers then the numbers in
the list are all equal.

So a1 = a2 = · · · = an.

Also, the list (a2, a3, . . . , an, an+1) is a list of n real numbers,

And our inductive assumption (that P (n) is true) says that
if you have a list of n natural numbers then the numbers in
the list are all equal.
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Therefore a2 = a3 = · · · = an = an+1.

Since a1 = a2 = · · · = an and a2 = a3 = · · · = an = an+1, all
the aj, for j = 1, 2, . . . , n+ 1, are equal.

That is,

(%) a1 = a2 = · · · = an = an+1 .

Since we have proved assertion (%) for a completely arbitrary
list (a1, a2, . . . , an, an+1) of n+ 1 real numbers, it follows that
P (n+ 1) is true.

Since we have proved P (n+1) assuming P (n), we have proved
that P (n) =⇒ P (n+ 1).

Since we have proved that P (n) =⇒ P (n + 1) for an arbitrary
natural number n, we have shown that (#) is true.

Since P (1) is true, and (#) is true, it follows from the principle
of mathematical induction that (∀n ∈ IN)P (n).

In other words, we have proved that, if n is an arbitrary natural
number, and (a1, a2, . . . , an) is a list of n real numbers, then the
numbers a1, a2, . . . , an are all equal. Q.E.D.


