Some Basic Concepts in the Foundations of Quantum Statistical Mechanics

Roderich Tumulka

Department of Mathematics

RUTGERS UNIVERSITY

Genova, 23 May 2013
Quantum mechanics

For system of N particles, wave function $\psi_t : \mathbb{R}^{3N} \to \mathbb{C}$

Schrödinger equation $i\hbar \frac{\partial \psi}{\partial t} = \hat{H}\psi$

with $\hat{H} = \text{Hamilton operator}$

$$\hat{H}\psi = -\sum_{k=1}^{N} \frac{\hbar^2}{2m_k} \nabla_k^2 \psi + V\psi$$

$V(q_1, \ldots, q_N) = \text{potential energy, } q \in \mathbb{R}^3$

- e.g., $V(q_1, \ldots, q_N) = \sum_{j=1}^{N} U(q_j) + \sum_{1 \leq j < k \leq N} W(q_j - q_k)$

- $U = \text{external potential, e.g., } U(q) = \begin{cases} -mgq_3 & \text{if } q \in \Lambda \\ \infty & \text{if } q \notin \Lambda \end{cases}$
 (i.e., confined to a bounded volume $\Lambda \subset \mathbb{R}^3$)

- $W = \text{interaction potential, e.g., Coulomb potential } W(q) = \frac{1}{|q|}$
Quantum mechanics, applied to a macro-system

- Consider macroscopic quantum system S (say, $N > 10^{20}$ particles)
- isolated, evolves unitarily according to the Schrödinger equation
- confined to a bounded volume $\Lambda \subset \mathbb{R}^3$
- as a consequence, \hat{H} has pure point spectrum (i.e., no continuous spectrum)
- $\hat{H} = \sum_\alpha E_\alpha |\phi_\alpha\rangle \langle \phi_\alpha|$
A chapter of math: the trace

- The trace of an \(n \times n \) matrix \(A \) is \(\text{tr} A = \sum_{i=1}^{n} A_{ii} \).
- The trace of an \(\infty \times \infty \) matrix \(A \) is \(\text{tr} A = \sum_{i=1}^{\infty} A_{ii} \).
- The series may or may not converge.
- For an operator \(\hat{A} \) on Hilbert space \(\mathcal{H} \), choose any orthonormal basis (ONB) \(B = \{ b_i : i = 1, 2, \ldots \} \) and define \(\text{tr} \hat{A} = \sum_i \langle b_i | \hat{A} | b_i \rangle \).
- If \(\dim \mathcal{H} = \infty \), then the trace is ill-defined (e.g., infinite) for some operators. It is well defined for all operators in the trace class \(\{ \hat{A} : \text{tr}(\sqrt{\hat{A}^* \hat{A}}) < \infty \} \).
- For \(\hat{A} \in \text{trace class} \), \(\text{tr} \hat{A} \) does not depend on the choice of ONB.
- Note that
 - If \(\hat{A} \) is diagonalizable (e.g., self-adjoint with pure point spectrum), then \(\text{tr}(\hat{A}) \) is the sum of the eigenvalues.
 - \(\text{tr}(\hat{A} \hat{B} \cdots \hat{Y} \hat{Z}) = \text{tr}(\hat{Z} \hat{A} \hat{B} \cdots \hat{Y}) \) (invariant under cyclic permutation)
 - \(\text{tr} \) is linear
 - \(\text{tr}(\hat{A} | \psi \rangle \langle \psi |) = \langle \psi | \hat{A} | \psi \rangle \)
 - \(\text{tr}(\hat{A}^*) = \text{tr}(\hat{A})^* \)
Density operator vs. distribution of the wave function

- Hilbert space \mathcal{H}, e.g., $L^2(\mathbb{R}^3, \mathbb{C})$
- unit sphere $S(\mathcal{H}) = \{ \psi \in \mathcal{H} : \|\psi\| = 1 \}$
- probability distribution μ on $S(\mathcal{H})$
- equivalence relation $\mu \cong \nu : \Leftrightarrow$ empirically indistinguishable

$\Leftrightarrow \hat{\rho}_\mu = \hat{\rho}_\nu$, where
\[
\hat{\rho}_\mu = \int_{S(\mathcal{H})} \mu(d\psi) \langle \psi | \phi \rangle \langle \phi | \psi \rangle
\]
is the pertaining density operator (DO, also known as density matrix) (= covariance operator of μ, provided $E_\mu |\psi\rangle = 0$.)

Proof: For every conceivable yes-no experiment there is a positive operator \hat{E} (i.e., self-adjoint with spectrum in $[0, \infty)$) such that $P(\text{yes}) = \langle \psi | \hat{E} | \phi \rangle$. Thus, if ψ has distribution μ, $P(\text{yes}) = \int_{S(\mathcal{H})} \mu(d\psi) \langle \psi | \hat{E} | \phi \rangle = \int_{S(\mathcal{H})} \mu(d\psi) \operatorname{tr}(\hat{E} |\psi\rangle \langle \psi|) = \operatorname{tr}(\hat{E} \hat{\rho}_\mu)$. \square
Density operators

\[\hat{\rho}_\mu = \int_{\mathbb{S}(\mathcal{H})} \mu(d\psi) |\psi\rangle \langle \psi| \]

- \(\hat{\rho} \) is a DO \(\iff \hat{\rho} \) is positive with \(\text{tr}(\hat{\rho}) = 1 \).
- Proof: Check that \(\langle \phi|\hat{\rho}_\mu|\phi\rangle \geq 0 \) and \(\text{tr}(\hat{\rho}_\mu) = 1 \).

Conversely, for a positive trace-one operator \(\hat{\rho} \), diagonalize it, \(\hat{\rho} = \sum_n p_n |\chi_n\rangle \langle \chi_n| \). The eigenvalues \(p_n \geq 0 \) add up to 1. Define distribution \(\mu \) so that \(\mu\{\chi_n\} = p_n \) and otherwise 0. Then \(\hat{\rho}_\mu = \hat{\rho} \). □

- If \(\mu \) is concentrated on a single vector, \(\mu\{\psi\} = 1 \), then \(\hat{\rho}_\mu = |\psi\rangle \langle \psi| \) ("pure state").
- \(\mu \mapsto \hat{\rho}_\mu \) is not injective, but many-to-one: \(\hat{\rho}_\mu = \hat{\rho}_\nu \not\Rightarrow \mu = \nu \). Ex:
 1. If \(D := \text{dim} \mathcal{H} < \infty \) then there exists a uniform probability distribution \(u = u_{\mathbb{S}(\mathcal{H})} \) proportional to surface area on \(\mathbb{S}(\mathcal{H}) \). Then \(\rho_u = D^{-1} \hat{1} \) with \(\hat{1} = \text{identity operator} \).
 2. Let \(B = \{b_n : n = 1, \ldots, D\} \) be an orthonormal basis of \(\mathcal{H} \). Let \(\mu \) give probability \(D^{-1} \) to each \(b_n \). Then \(\rho_\mu = D^{-1} \hat{1} \) (independently of the choice of \(B \)).
Use density operator

for calculating probability distribution of the result \(Z \) of an experiment:

\[
\mathbb{P}(Z = z) = \text{tr}(\hat{\rho} \, \hat{E}(z)),
\]

with \(\hat{E}(z) = \) positive operators such that

\[
\sum_z \hat{E}(z) = \hat{I}
\]

Ex: \(\hat{E}(z) = \) projection to the eigenspace of observable \(\hat{A} \) with eigenvalue \(z \)

Use distribution

- if every system of an ensemble has a wave function
- for typicality statements that hold for most wave functions (relative to \(\mu \)):
 \[
 \mu\{\omega : p(\omega)\} > 1 - \varepsilon
 \]
Some more math: Gaussian distribution in 2 dimensions

\[\rho(x, y) = \frac{1}{Z} e^{-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2}} \]

E.g., 2 independent Gaussian-distributed random variables \(X, Y \)

If \(\sigma_x = \sigma_y \), then rotationally symmetric (otherwise elliptical)
Gaussian distribution in 3 dimensions

\[\rho(x, y, z) = \frac{1}{Z} e^{-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2} - \frac{z^2}{2\sigma_z^2}} \]

or, if the orthonormal basis (ONB) gets rotated by \(\hat{R} \in SO(3) \):

\[\rho(x) = \rho(x_1, x_2, x_3) = \frac{1}{Z} \exp\left(-\frac{1}{2}(x_1, x_2, x_3) \hat{P} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \right) = \frac{1}{Z} e^{-\frac{1}{2}\langle x|\hat{P}x\rangle} \]

mit \(\langle x|y \rangle = \sum_{i=1}^{3} x_i y_i \) und \(\hat{P} = \hat{R}^{-1} \begin{pmatrix} \sigma_x^{-2} & 0 & 0 \\ 0 & \sigma_y^{-2} & 0 \\ 0 & 0 & \sigma_z^{-2} \end{pmatrix} \hat{R} \)

Thus, \(\hat{P} \) is symmetric and positive definite, otherwise arbitrary. Covariance matrix \(\hat{C} = (C_{ij})_{ij} \), \(C_{ij} = \mathbb{E}(X_iX_j) \). We have that \(\hat{P} = \hat{C}^{-1} \).

Example: Maxwell’s distribution of velocities in the ideal gas

\[\rho(v) = \frac{1}{Z} \exp\left(-\frac{m|v|^2}{2kT} \right) \]

\(m = \text{mass/molec.} \), \(T = \text{abs. temp.} \), \(k = \text{Boltzmann const.} \approx 10^{-23} \text{ J/K} \)
Macro-states and thermal equilibrium
State: point \(X = (q_1, \ldots, q_N, p_1, \ldots, p_N) \) in phase space

energy shell
\(\Gamma = \{ X : E \leq H(X) \leq E + \delta E \} \)

depending on a choice of macro-variables, partition \(\Gamma \) into macro-states \(\Gamma_\nu \)
corresponding to different (small ranges of) values of the macro-variables,

\[
\Gamma = \bigcup_\nu \Gamma_\nu.
\]

Often, one cell \(\Gamma_{eq} \) has the overwhelming majority of volume,

\[
\frac{\text{vol } \Gamma_{eq}}{\text{vol } \Gamma} \approx 1.
\]

Def: A system is in equilibrium \(\iff \) its phase point lies in the set \(\Gamma_{eq} \).
Example: gas in a box (1)

$N \approx 10^{23}$ tiny billiard balls in a box, moving according to Newtonian mechanics (uniform motion between collisions, perfect reflection at collision between balls or ball–wall).

Macro-state

Subdivide box into cells C_i (say, of size $(1 \text{ mm})^3$).
Subdivide velocity space into cells V_j.
For each $C_i \times V_j$, specify number of balls (rounded to billions) with position in C_i and velocity in V_j.

Ludwig Boltzmann (1844–1906)
Every macro-state corresponds to a subset Γ_ν of phase space \mathbb{R}^{6N}.

Basic facts:

- Macro-states have very different volumes.
- Most micro-states at a given energy lie in the macrostate Γ_{eq} of thermal equilibrium, characterized by an empirical distribution of particles that is uniform in position and Gaussian in velocity.
- Most $X \in \Gamma_{eq}$ stay in Γ_{eq} for a VERY long time (of order $10^{10^{10}}$ years).
- The choice of macro-variables and ranges is somewhat subjective: Different physicists may draw the cells Γ_ν somewhat differently. But this is no practical difficulty when N is large.
An even simpler example: gas without interaction in a box $\Lambda \subset \mathbb{R}^3$, phase space $= \Lambda^N \times \mathbb{R}^{3N} \subseteq \mathbb{R}^{6N}$

Hamiltonian function $H(q, p) = \sum_{k=1}^{N} \frac{1}{2m} |p_k|^2$

Energy surface $H^{-1}(E) = \Lambda^N \times S_R(\mathbb{R}^{3N})$ for $R = \sqrt{2mE}$, where $S_R(\mathbb{R}^{3N}) = $ sphere of radius R

Typicality theorem

For most phase points on $S_R(\mathbb{R}^{3N})$ with large N, the empirical distribution of velocities is close to the Maxwellian (Gaussian) distribution.
energy shell:
Let \([E, E + \delta E] \) be an energy interval that is small on the microscopic scale but contains many eigenvalues \(E_\alpha \) of \(\hat{H} \). Usually, the eigenvalues are VERY dense; typical separation of order \(10^{-10^10} \) J. So, \([E, E + \delta E] \) usually contains of order \(10^{10^10} \) eigenvalues.

An energy shell is \(\mathcal{H}_{[E, E+\delta E]} = \text{span}\{ \phi_\alpha : E \leq E_\alpha \leq E + \delta E \} \), the spectral subspace of \(\hat{H} \) for the interval \([E, \delta E] \).

microcanonical density operator:

\[
\hat{\rho}_{mc} = \frac{1}{Z} 1_{[E, E+\delta E]}(\hat{H}) = \frac{1}{Z} \hat{P}_{[E, E+\delta E]}
\]

with \(Z = \text{normalization constant} = \text{tr} \ \hat{P}_{[E, E+\delta E]} = \text{dim} \ \mathcal{H}_{[E, E+\delta E]} \)

microcanonical ensemble of wave functions:
uniform distribution \(u \) on \(\mathcal{S}(\mathcal{H}_{[E, E+\delta E]}) \)
Thermal equilibrium in quantum mechanics

- State: wave fct $\psi = \psi(q_1, \ldots, q_N)$, $||\psi|| = 1$.
- Hamiltonian $\hat{H} = \sum_\alpha E_\alpha |\phi_\alpha\rangle\langle\phi_\alpha|$.

- Energy shell $\mathcal{H} = \text{span}\left\{ \phi_\alpha : E \leq E_\alpha \leq E + \delta E \right\}$. $\dim \mathcal{H} \approx 10^{10}$
- Macro-states correspond to subspaces \mathcal{H}_ν, mutually orthogonal,

$$\mathcal{H} = \bigoplus_\nu \mathcal{H}_\nu$$

- Thermal equilibrium subspace $\mathcal{H}_{eq} \subset \mathcal{H}$ with

$$\frac{\dim \mathcal{H}_{eq}}{\dim \mathcal{H}} \approx 1$$

- **Def:** A system is in thermal equilibrium \iff ψ is close to $\mathcal{H}_{eq} \iff$

$$\langle \psi | \hat{P}_{eq} | \psi \rangle \approx 1$$

(Where \hat{P}_{eq} = projection to \mathcal{H}_{eq})

- Equilibrium is typical: $\langle \psi | \hat{P}_{eq} | \psi \rangle \approx 1$ for most ψ.
 Proof: $\mathbb{E}_\psi \langle \psi | \hat{P}_{eq} | \psi \rangle = \dim \mathcal{H}_{eq}/ \dim \mathcal{H} \approx 1$. □
How are the macro-states defined?

There is no precise, simple, universally valid prescription. Maybe in the limit $N \to \infty$ in special cases (e.g., dilute gas with short-range interaction) there is a precise prescription.

Use judgement. Different physicists will choose the Γ_ν, \mathcal{H}_ν differently. But we expect that this makes no significant difference for the inferences we draw.
A proposal for the macro-spaces \mathcal{H}_ν

- $\mathcal{H} = \bigoplus \nu \mathcal{H}_\nu$
- \mathcal{H}_ν correspond to different macro-states
- proposed construction: [von Neumann, book (1932)]

- choose macro-observables \hat{M}_i
- choose ranges of values and obtain coarse-grained macro-observables \hat{M}_i'
- they don’t commute but commutator is small
- find nearby operators \hat{M}_i'' that do commute mathematically non-trivial, see
 - [Choi: Proc. AMS 102 (1988)],
 - [Ogata: arXiv 1111.5933 (2011)]
- the joint spectral subspaces are the \mathcal{H}_ν

- examples of macro-observables: particle number and/or total energy/ momentum/magnetization of a region C_i of space that is not too small
Consider, for a gas consisting of \(N > 10^{20} \) atoms enclosed in a box \(\Lambda \subset \mathbb{R}^3 \), the following 51 macro-spaces \(\mathcal{H}_0, \mathcal{H}_2, \mathcal{H}_4, \ldots, \mathcal{H}_{100} \): \(\mathcal{H}_\nu \) contains the quantum states for which the number of atoms in the left half of \(\Lambda \) lies between \(\nu - 1 \) percent of \(N \) and \(\nu + 1 \) percent of \(n \). Note that, in this example, \(\mathcal{H}_{50} \) has the overwhelming majority of dimensions.

(Actually, these subspaces form an orthogonal decomposition of \(\mathcal{H}_{\text{total}} \) rather than of the energy shell \(\mathcal{H} \), since the operator of particle number in the left half of \(\Lambda \) fails to map \(\mathcal{H} \) to itself. Thus, certain approximations are necessary in order to obtain an orthogonal decomposition of \(\mathcal{H} \).)
Example of \mathcal{H}_ν (2)

- $N = 10^{23}$ particles, weakly interacting,
- $\mathcal{H}_1 = 1$-particle Hilbert space,
- $\mathcal{H} = \text{Sym} \mathcal{H}_1 \otimes N$ or Anti $\mathcal{H}_1 \otimes N$,
- $\hat{H}_1 = 1$-particle Hamiltonian $= \sum_\alpha E_{1,\alpha} |\phi_{1,\alpha}\rangle \langle \phi_{1,\alpha}|$,
- $\hat{H} = \sum_{i=1}^N \hat{I} \otimes \cdots \otimes \hat{H}_1 \otimes \cdots \otimes \hat{I} + \hat{V}$

Partition of the 1-particle energy axis $I_k = [E_k, E_{k+1})$,

- $\mathcal{H}_{1,k} = \text{range } 1_{I_k}(\hat{H}_1) = \text{span}\{\phi_{1,\alpha} : E_k \leq E_{1,\alpha} < E_{k+1}\}$
- $\hat{N}_k = \text{occupation number operator of } \mathcal{H}_{1,k}$ (an operator on \mathcal{H}!)
- the \hat{N}_k commute
- coarse-graining fct $f(n) = 10^9[n/10^9]$, $[\cdot] = \text{nearest integer}$
- macro observables $\hat{M}_k = f(\hat{N}_k)$; the \hat{M}_k commute
- $\nu = (\ldots, m_k, \ldots)$, $\mathcal{H}_\nu = \text{joint eigenspace of the } \hat{M}_k$
Approach to thermal equilibrium
Most $X \in \Gamma_\nu$, $\nu \neq \text{eq}$, move (in both time directions) to bigger macro-states.
The Poincaré recurrence theorem

Poincaré recurrence theorem, in a version for QM

Suppose that \hat{H} has pure point spectrum. For every $\varepsilon > 0$ and $T > 0$ there exist (infinitely many) times $t > T$ such that

$$\| e^{-i\hat{H}t} - \hat{I} \| < \varepsilon.$$

As a consequence, for all $\psi_0 \in \mathcal{H}$ with $\|\psi_0\| = 1$,

$$\|\psi_t - \psi_0\| < \varepsilon.$$

If dim $\mathcal{H} < \infty$, then automatically \hat{H} has pure point spectrum. Also, if an isolated system is confined to a finite volume $\Lambda \subset \mathbb{R}^3$ then its \hat{H} has pure point spectrum.
It is impossible that \(\langle \psi_t | \hat{P}_{eq} | \psi_t \rangle \approx 1 \) for all \(t \to \infty \), by Poincaré recurrence. Instead, *approach to equilibrium* means that \(\langle \psi_t | \hat{P}_{eq} | \psi_t \rangle \approx 1 \) for most \(t \).

Claim

For most \(\hat{H} \) it is the case that for every initial state \(\psi_0 \), the system will spend *most of the time* (as \(t \to \infty \)) in thermal equilibrium.
Let \(1 \ll \text{dim } \mathcal{H} < \infty \) (think of \(\mathcal{H} = \) an energy shell of a closed system), \(\mathcal{H}_{\text{eq}} \subset \mathcal{H} \) a subspace with \(\frac{\text{dim } \mathcal{H}_{\text{eq}}}{\text{dim } \mathcal{H}} > 1 - \varepsilon, \ \varepsilon \ll 1 \).

Theorem 1 [Goldstein, Lebowitz, Mastrodonato, Tumulka, Zanghì: *Phys.Rev.E* 81 (2010)]

If \(\hat{H} = \sum_{\alpha} E_\alpha |\phi_\alpha\rangle \langle \phi_\alpha| \) is non-degenerate (i.e., \(E_\alpha \neq E_\beta \)) and all eigenvectors \(\phi_\alpha \) are in thermal equilibrium

then any \(\psi_0 \in \mathcal{H} \) with \(\|\psi_0\| = 1 \) will, under the Schrödinger evolution, spend most of the time as \(t \to \infty \) in thermal equilibrium, i.e.,

\[
\liminf_{T \to \infty} \frac{1}{T} \left\{ 0 < t < T : \langle \psi_t | \hat{P}_{\text{eq}} | \psi_t \rangle > 1 - 2\varepsilon \right\} > 1 - \delta'.
\]

\(|M| = \) Lebesgue measure (length) of \(M \)

Recall: \(\psi \) in thermal equilibrium \(\iff \psi \in U_{\sqrt{2\varepsilon}}(\mathcal{H}_{\text{eq}}) \iff \langle \psi | \hat{P}_{\text{eq}} | \psi \rangle \approx 1. \)
Proof

time average \(\bar{f}(t) = \lim_{T \to \infty} \frac{1}{T} \int_0^T f(t) \, dt \)

\[
\langle \psi_t | \hat{P}_{eq} | \psi_t \rangle = ?
\]

\[
\psi_0 = \sum_{\alpha=1}^{\dim \mathcal{H}} c_\alpha | \phi_\alpha \rangle,
\psi_t = \sum_{\alpha=1}^{\dim \mathcal{H}} e^{-iE_\alpha t} c_\alpha | \phi_\alpha \rangle
\]

\[
\langle \psi_t | \hat{P}_{eq} | \psi_t \rangle = \sum_{\alpha, \beta} \underbrace{e^{i(E_\alpha - E_\beta) t}}_{\delta_{\alpha \beta}} c_\alpha^* c_\beta \langle \phi_\alpha | \hat{P}_{eq} | \phi_\beta \rangle
\]

\[
= \sum_{\alpha} |c_\alpha|^2 \underbrace{\langle \phi_\alpha | \hat{P}_{eq} | \phi_\alpha \rangle}_{>1-\eta \delta'} > 1 - \eta \delta'
\]

If error(\(t\)) > \(\eta\) for more than \(\delta'\) of the time then error(\(t\)) > \(\eta \delta'\).

Thus, \(\langle \psi_t | \hat{P}_{eq} | \psi_t \rangle > 1 - \eta\) for \((1 - \delta')\)-most of the time. \(\square\)
“Most” Hamiltonians satisfy non-degeneracy.

Theorem 2 [Goldstein, Lebowitz, Mastrodonato, Tumulka, Zanghì: *Phys.Rev.E* 81 (2010)]

“Most” non-degenerate Hamiltonians satisfy the “eigenstate thermalization hypothesis” (1).

- This is the general reason for approach to equilibrium.
- However, exceptional Hamiltonians exist (e.g., Anderson localization).

Meaning of “most” in Theorem 2

Fix the (non-degenerate) eigenvalues E_α. Consider the uniform measure over all ONBs for ϕ_α.
Probability, typicality, universality
Talking about “probability” is just a way of saying what’s true of most Hamiltonians; doesn’t mean that \hat{H} is so distributed in nature.
What does “typical” mean? (1)

The statement $p(\omega)$ holds for typical ω

\iff

$\mu\{\omega : p(\omega)\} > 1 - \varepsilon$

“overwhelming majority”

Ex: weak law of large numbers

For at least $1 - 10^4/n$ of all real numbers between 0 and 1, the relative frequency of the digit 7 among the first n decimal digits lies between 9 and 11%. ($\mu = \text{Lebesgue measure}$)

slight abuse of language: “typical number”
What does “typical” mean? (2)

\[f(\omega) \approx y \] is typical for \(\omega \in \Omega \)
\[\iff y \text{ is the typical value of } f \text{ on } \Omega \]
\[\iff f(\omega) \approx y \text{ for most } \omega \in \Omega \]
\[\iff \mu\{\omega \in \Omega : |f(\omega) - y| > \delta\} < \varepsilon \]
\[\iff f \text{ is nearly constant on } \Omega \text{ (in fact, } y \approx \mathbb{E}f\text{)} \]
\[\iff f \text{ has small variance } \mathbb{E}(f - \mathbb{E}f)^2 \]
\[\iff \text{more precisely, consider} \]
\[\text{sequence } (\Omega_n, \mu_n)_{n \in \mathbb{N}} \text{ of probability spaces, } f_n : \Omega_n \to Y \]
\[\forall \delta > 0 : \mu_n\{\omega \in \Omega_n : |f_n(\omega) - y| < \delta\} \to 1 \]

Slightly different: convergence in probability
(here, \(\Omega_n = \Omega, \mu_n = \mu \), only \(f_n \) varies,
convergence to \(f_\infty \) rather than constant \(y \); otherwise the same)

Ex: In classical statistical mechanics, thermodynamic functions are often nearly constant on the energy surface.

\(\omega \) doesn’t have to be random.

It suffices that \(\omega \) is not special.
Canonical typicality
A chapter of math: tensor products

- There is an operation \otimes with Hilbert spaces such that, for configuration spaces X, Y,

$$L^2(X \times Y) = L^2(X) \otimes L^2(Y).$$

- $\psi(x, y)$

- If system 1 has \mathcal{H}_1 and system 2 has \mathcal{H}_2 then $\mathcal{H}_{1\cup 2} = \mathcal{H}_1 \otimes \mathcal{H}_2$.

- There is also an operation \otimes on functions:

$$\psi = f \otimes g \text{ means } \psi(x, y) = f(x) g(y).$$

Note that most $\psi \in L^2(X \times Y)$ are not product functions. But each is a sum of product functions, $\psi = \sum_i f_i \otimes g_i$.

- There is also an operation \otimes on operators:

$$(\hat{U} \otimes \hat{V}) \left(\sum_i f_i \otimes g_i \right) = \sum_i (\hat{U} f_i) \otimes (\hat{V} g_i).$$

- For non-interacting systems, $\hat{U}_{1\cup 2}(t) = \hat{U}_1(t) \otimes \hat{U}_2(t)$ and

$$\hat{H}_{1\cup 2} = \hat{H}_1 \otimes \hat{I}_2 + \hat{I}_1 \otimes \hat{H}_2.$$
Let \hat{A} be an operator on $\mathcal{H}_1 \otimes \mathcal{H}_2$. Then $\text{tr}_2(\hat{A})$ is an operator on \mathcal{H}_1.

Let $\{\phi_n^1\}$ be an ONB of \mathcal{H}_1 and $\{\phi_m^2\}$ an ONB of \mathcal{H}_2. Then

$$\langle \phi_n^1 | \text{tr}_2 \hat{A} | \phi_k^1 \rangle = \sum_{m=1}^{\dim \mathcal{H}_2} \langle \phi_n^1 \otimes \phi_m^2 | \hat{A} | \phi_k^1 \otimes \phi_m^2 \rangle,$$

$\text{tr}(\text{tr}_2(\hat{A})) = \text{tr}(\hat{A})$; tr_2 is linear; $\text{tr}_2(\hat{A}^*) = (\text{tr} \hat{A})^*$

If \hat{A} is a positive operator then $\text{tr}_2(\hat{A})$ is a positive operator.

$\text{tr}_2(\hat{U} \otimes \hat{V}) = (\text{tr} \hat{V}) \hat{U}$.

For a yes-no experiment on system 1,

$$\mathbb{P}(\text{yes}) = \langle \psi | \hat{E} \otimes \hat{I}_2 | \psi \rangle = \text{tr} (\hat{\rho}_1 \hat{E})$$

with $\hat{\rho}_1 = \text{tr}_2(\langle \psi \rangle \langle \psi |)$; $\hat{\rho}_1$ is called the reduced density operator of system 1.

All positive operators with trace 1 (and only those) can occur as reduced density operators.
Canonical density operator

classical canonical distribution:
density \(\rho(q, p) = \frac{1}{Z} \exp\left(-\beta H(q, p)\right) \)
A system in thermal equilibrium with a heat bath at (absolute) temperature \(T \) has \(\rho \)-typical phase point \((q, p)\).

inverse temperature \(\beta = \frac{1}{kT} \)
\(k = \) Boltzmann's constant \(\approx 10^{-23} \) J/K

canonical density operator:
\[
\hat{\rho}_\beta = \frac{1}{Z} \exp\left(-\beta \hat{H}\right)
\]
Justification of the canonical density operator

Canonical typicality

Let system 1 and system 2 consist of $N_1 \ll N_2$ particles. Let the interaction between systems 1 and 2 be weak, $\hat{H} \approx \hat{H}_1 \otimes \hat{I}_2 + \hat{I}_1 \otimes \hat{H}_2$. Let $\mathcal{H}_{mc} \subset \mathcal{H}_1 \otimes \mathcal{H}_2$ be an energy shell.

For most $\psi \in \mathcal{H}_{mc}$ with $\|\psi\| = 1$, the reduced density operator of system 1 is (approximately) canonical,

$$\text{tr}_2 |\psi\rangle\langle\psi| \approx \frac{1}{Z} e^{-\beta \hat{H}_1}$$

for suitable $\beta = \beta(E)$.

[Schrödinger: book (1952)]
System s, heat bath b, coupling negligible:

$$\hat{H} = \hat{H}_s \otimes \hat{I}_b + \hat{I}_s \otimes \hat{H}_b.$$

“average” statement:

$$\text{tr}_b \hat{\rho}_{[E,E+\delta E]} \approx \hat{\rho}_\beta$$

in the thermodynamic limit $N_b \to \infty$, $E/N_b \to e < \infty$.

“almost always” statement: canonical typicality

$$u_{[E,E+\delta E]} \left\{ \psi : \text{tr}_b |\psi\rangle \langle \psi| \approx \hat{\rho}_\beta \right\} \to 1$$

↑ uniform measure on $\mathcal{S}(\mathcal{H}_{[E,E+\delta E]})$

in the thermodynamic limit

For most ψ of $s + b$ from the microcanonical ensemble, the reduced density matrix of s is canonical.
Theorem on canonical typicality [Popescu, Short, Winter 2005]

Let $\mathcal{H}_R \subseteq \mathcal{H}_s \otimes \mathcal{H}_b$ arbitrary subspace (e.g., $\mathcal{H}_R = \mathcal{H}_{E, \delta E}$ microcanonical), u_R the uniform distribution on $S(\mathcal{H}_R)$,

$$\hat{\rho}_R = \frac{1}{\dim \mathcal{H}_R} \hat{P}_{\mathcal{H}_R}$$ and $\varepsilon > 0$.

Then

$$u_R\left\{ \psi : \|\text{tr}_b |\psi\rangle\langle\psi| - \text{tr}_b \hat{\rho}_R \|_1 \geq \eta \right\} \leq \eta'$$

where η, η' are small when $\dim \mathcal{H}_s \ll 1 / \text{tr}(\text{tr}_s \hat{\rho}_R)^2$ (system \ll bath) and $\varepsilon \ll 1 \ll \varepsilon^2 \dim \mathcal{H}_R$ (many states allowed).

$$\|\hat{M}\|_1 = \text{tr} |\hat{M}| = \text{tr} \sqrt{\hat{M}^* \hat{M}}$$
Thank you for your attention