3 More about Hilbert space

3.1 Unitaries

The “isomorphisms” of Hilbert spaces are called unitaries:

Definition 3.1. A linear mapping $U : \mathcal{H}_1 \to \mathcal{H}_2$ is called **unitary** iff it is bijective and preserves inner products,

$$\langle U\psi | U\phi \rangle = \langle \psi | \phi \rangle \quad \forall \psi, \phi \in \mathcal{H}_1.$$ \hfill (3.1)

By the polarization identity, the last condition can be replaced with preserving norms (= being **isometric**),

$$\|U\psi\| = \|\psi\| \quad \forall \psi \in \mathcal{H}_1.$$ \hfill (3.2)

The condition “bijective” can be replaced with “surjective” because any U preserving norms is injective. In case $\mathcal{H}_2 = \mathcal{H}_1 = \mathcal{H}$, U is called a **unitary operator**.

Since the Schrödinger equation entails the conservation of $|\psi|^2$, we expect that for initial data ψ_0 with $\|\psi_0\| = 1$ also ψ_t has norm 1; by linearity, the evolution from time 0 to time t (if unique) preserves norms. At this point, however, it is not clear whether the evolution mapping $\psi_0 \mapsto \psi_t$ is surjective, and not even whether it is defined on all of $L^2(\mathbb{R}^{3N})$.

Unitaries can be used to define the notion of a **generalized orthonormal basis** in \mathcal{H} as a unitary $U : \mathcal{H} \to L^2(\Omega, \mathfrak{A}, \mu)$. This allows us to represent every ψ as a function $f(x) = U\psi(x)$ on the set Ω, with $f(x)$ playing the role of the expansion coefficients c_i or $c(k)$. For the momentum representation mentioned before, U corresponds to the Fourier transformation; we will see later that Fourier transformation indeed defines a unitary $U : L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$.

3.2 Projections

The **closed subspaces** of a Hilbert space \mathcal{H} are themselves Hilbert spaces (with the same inner product $\langle \cdot | \cdot \rangle$). In contrast, if a subspace $X \subset \mathcal{H}$ is not closed then it is a vector space with an inner product but not a Hilbert space. If \mathcal{H} is finite-dimensional, then all subspaces are closed. But not so if dim $\mathcal{H} = \infty$: For example, consider $\mathcal{H} = \ell^2$ and X the set of all sequences in which only finitely many terms are non-zero,

$$X = \bigcup_{n=1}^{\infty} \left\{ (x_1, \ldots, x_n, 0, 0, 0, \ldots) : x_1, \ldots, x_n \in \mathbb{C} \right\}. \quad (3.3)$$

Since X is closed under addition and scalar multiplication, it is a subspace. Its closure, however, is ℓ^2 and thus strictly bigger. Indeed, for any element $\psi = (x_1, x_2, \ldots)$ of ℓ^2 and any $\varepsilon > 0$, there is a $\phi \in X$ with $\|\phi - \psi\| < \varepsilon$; simply set $\phi = (x_1, \ldots, x_n, 0, 0, \ldots)$ with n so large that

$$\|\psi\|^2 = \sum_{i=1}^{\infty} |x_i|^2 < \sum_{i=1}^{n} |x_i|^2 + \varepsilon^2, \quad (3.4)$$

15
which exists because the series converges. Then \(\|\phi - \psi\|^2 = \sum_{i=n+1}^{\infty} |x_i|^2 \leq \varepsilon^2 \).

Proposition 3.2. For any set \(S \subseteq \mathcal{H} \), its orthogonal complement

\[
S^\perp = \{ \psi \in \mathcal{H} : \langle \psi | \phi \rangle = 0 \forall \phi \in S \}
\]

is a closed subspace of \(\mathcal{H} \).

Proof. With \(\psi_1 \) and \(\psi_2 \in S^\perp \), also \(c\psi_1 + \psi_2 \in S^\perp \) for any \(c \in \mathbb{C} \); so \(S^\perp \) is a subspace. Now suppose \(\psi_1, \psi_2, \ldots \in S^\perp \) and \(\psi_n \to \psi \); then, for any \(\phi \in S \), \(0 = \langle \psi_n | \phi \rangle \to \langle \psi | \phi \rangle \), so \(\psi \in S^\perp \).

Theorem 3.3. (Projection theorem) Let \(X \subseteq \mathcal{H} \) be a closed subspace. Then every \(\psi \in \mathcal{H} \) can be decomposed in a unique way as \(\psi = \phi + \chi \) with \(\phi \in X \) and \(\chi \in X^\perp \).

Proof. Existence. Let \(\psi \in \mathcal{H} \). We first show that there is a \(\phi \in X \) that is closest to \(\psi \). Let \(d = \inf_{f \in X} \|\psi - f\| \). Choose a sequence \(f_n \in X \) so that \(\|\psi - f_n\| \to d \). We show that \((f_n) \) is a Cauchy sequence. For this we use the parallelogram law

\[
\|u + v\|^2 + \|u - v\|^2 = 2\|u\|^2 + 2\|v\|^2,
\]

which holds in any vector space with inner product (easy to check). So

\[
\|f_n - f_m\|^2 = \|(f_n - \psi) - (f_m - \psi)\|^2
\]

\[
= 2\|f_n - \psi\|^2 + 2\|f_m - \psi\|^2 - \|(f_n - \psi) + (f_m - \psi)\|^2
\]

\[
= 2\|f_n - \psi\|^2 + 2\|f_m - \psi\|^2 - 4\|\psi + 1/2(f_n + f_m)\|^2
\]

\[
\leq 2\|f_n - \psi\|^2 + 2\|f_m - \psi\|^2 - 4d^2
\]

\[
\overset{m,n \to \infty}{\longrightarrow} 2d^2 + 2d^2 - 4d^2 = 0.
\]

Thus, \((f_n) \) is a Cauchy sequence, so it converges to \(f \), and \(f \in X \). (This step would fail if \(X \) were not closed.) It follows that \(\|\psi - f\| = d \).

Now set \(\phi = f \) and \(\chi = \psi - f \). Then \(\psi = \phi + \chi \), \(\phi \in X \), and it remains to show that \(\chi \in X^\perp \). For any \(g \in X \) and any \(t \in \mathbb{R} \),

\[
d^2 \leq \|\psi - (f + tg)\|^2 = \|\chi - tg\|^2
\]

\[
= \|\chi\|^2 + t^2\|g\|^2 - 2t\text{Re} \langle \chi | g \rangle,
\]

so \(0 \leq t^2\|g\|^2 - 2\text{Re} \langle \chi | g \rangle \) for all \(t \in \mathbb{R} \), which implies \(\text{Re} \langle \chi | g \rangle = 0 \). A similar argument using \(ti \) instead of \(t \) shows that \(\text{Im} \langle \chi | g \rangle = 0 \). This completes the proof of existence.

Uniqueness. If \(\phi + \chi = \psi = \phi' + \chi' \) with \(\phi, \phi' \in X \) and \(\chi, \chi' \in X^\perp \) then set \(\Delta \phi = \phi - \phi' \in X \), \(\Delta \chi = \chi - \chi' \in X^\perp \), note \(0 = \Delta \phi + \Delta \chi \) and thus

\[
0 = \langle \Delta \chi | 0 \rangle = \langle \Delta \chi | \Delta \phi + \Delta \chi \rangle = \langle \Delta \chi | \Delta \phi \rangle + \|\Delta \chi\|^2
\]

so \(\Delta \chi = 0 \); as a consequence, \(\Delta \phi = 0 \). \(\square \)
For two Hilbert spaces \(\mathcal{H}_1, \mathcal{H}_2 \), their direct sum or orthogonal sum \(\mathcal{H}_1 \oplus \mathcal{H}_2 \) is the Cartesian product \(\mathcal{H}_1 \times \mathcal{H}_2 \), equipped with the componentwise addition and scalar multiplication (i.e., the direct sum of vector spaces) and the inner product

\[
\langle (\psi_1, \psi_2), (\phi_1, \phi_2) \rangle_{\mathcal{H}_1 \oplus \mathcal{H}_2} = \langle \psi_1 | \phi_1 \rangle_{\mathcal{H}_1} + \langle \psi_2 | \phi_2 \rangle_{\mathcal{H}_2},
\]

which implies \(\| (\psi_1, \psi_2) \| = \sqrt{\| \psi_1 \|^2 + \| \psi_2 \|^2} \). One easily checks that \(\mathcal{H}_1 \oplus \mathcal{H}_2 \) is again a Hilbert space.

The projection theorem provides a canonical unitary isomorphism \(\mathcal{H} \rightarrow X \oplus X^\perp \), \(\psi \mapsto (\phi, \chi) \). It is common to neglect the difference between \(\mathcal{H} \) and \(X \oplus X^\perp \) in the notation and write \(\mathcal{H} = X \oplus X^\perp \).

Definition 3.4. For any closed subspace \(X \subseteq \mathcal{H} \), the mapping \(\psi \mapsto \phi \) is the orthogonal projection (or simply projection) to \(X \) and defines a linear operator \(P_X : \mathcal{H} \rightarrow X \) (or, if we wish, \(P_X : \mathcal{H} \rightarrow \mathcal{H} \)). It has the properties

\[
P_X^2 = P_X
\]

and

\[
\langle P_X u | v \rangle = \langle u | P_X v \rangle.
\]

(This is easily visible from \(\mathcal{H} = X \oplus X^\perp \).)

Corollary 3.5. It also follows from the projection theorem that if \(X \) is a closed subspace then \((X^\perp)^\perp = X \). More generally, for any set \(X \subseteq \mathcal{H} \), \((X^\perp)^\perp \) is the smallest closed subspace containing \(X \) (i.e., the closure of the linear hull of \(X \), \(\text{span} \ X \)).

Proof. of the second statement: \(\text{span} X \perp = X \perp \), so \(X^\perp = (\text{span} X)^\perp \). \(\square \)

Proposition 3.6. Every ONS \(B \subset \mathcal{H} \) is an ONB of \(\text{span} B \).

Proof. Clearly, \(B = \{ \phi_i : i \in \mathcal{I} \} \) is an ONS also in the Hilbert space \(X = \text{span} B \). If \(B \) were not maximal, then there would exist a unit vector \(\psi \in X \) with \(\langle \phi_j | \psi \rangle = 0 \) for every \(j \in \mathcal{I} \). Since

\[
\psi = \sum_{i \in \mathcal{I}'} c_i \phi_i
\]

with some countable set \(\mathcal{I}' \subseteq \mathcal{I} \),

\[
\langle \phi_j | \psi \rangle = \sum_{i \in \mathcal{I}'} c_i \langle \phi_j | \phi_i \rangle = c_j
\]

for every \(j \in \mathcal{I}' \); thus, all \(c_j = 0 \) and \(\psi = 0 \), in contradiction to \(\| \psi \| = 1 \). \(\square \)
3.3 Classification of Hilbert spaces

The following theorem provides the classification of all Hilbert spaces (modulo unitary equivalence). There is exactly one Hilbert space for every cardinality.

Theorem 3.7. Let B_1 be an ONB of \mathcal{H}_1 and B_2 an ONB of \mathcal{H}_2. There is a unitary isomorphism $\mathcal{H}_1 \rightarrow \mathcal{H}_2$ if and only if B_1 and B_2 have equal cardinality. Moreover, for any set S, an example of a Hilbert space with an ONB of the same cardinality as S is provided by $L^2(S, \text{all subsets}, \#)$ (with $\#$ the counting measure).

Lemma 3.8. All ONBs of a Hilbert space have the same cardinality.

Proof. of Theorem 3.7. Suppose $B_1 = \{\phi_i^{(1)} : i \in \mathcal{I}_1\}$ and $B_2 = \{\phi_i^{(2)} : i \in \mathcal{I}_2\}$ have equal cardinality, i.e., there is a bijection $\varphi : B_1 \rightarrow B_2$. Any $\psi \in \mathcal{H}_1$ can, by Theorem 2.9, be written as

$$\psi = \sum_{i \in \mathcal{I}_1} c_i \phi_i^{(1)}.$$ \hspace{1cm} (3.20)

Define $U : \mathcal{H}_1 \rightarrow \mathcal{H}_2$ by

$$U \psi = \sum_{i \in \mathcal{I}_1} c_i \phi_i^{(2)},$$ \hspace{1cm} (3.21)

which exists by Theorem 2.9. Define $V : \mathcal{H}_2 \rightarrow \mathcal{H}_1$ in the analogous way and observe $UV = I_{\mathcal{H}_2}$ and $VU = I_{\mathcal{H}_1}$, which shows that U is surjective. The preservation of inner products follows from (2.29). Thus, U is unitary.

Conversely, if $U : \mathcal{H}_1 \rightarrow \mathcal{H}_2$ is unitary then UB_1 is an ONB of \mathcal{H}_2 and by Lemma 3.8 has the same cardinality as B_2.

For $L^2(S, \#)$, $B = \{\phi_s : s \in S\}$ with $\phi_s(x) = 1$ if $x = s$ and $\phi_s(x) = 0$ if $x \neq s$ is an ONB.

Hilbert spaces whose ONBs are uncountable are rarely considered in quantum physics. A Hilbert space is called *separable* if its ONBs are either finite or countably infinite. So $L^2(\mathbb{R}^d)$ is separable. More generally, a metric space is said to be *separable* if there is a dense countable subset. To see that for Hilbert spaces these two definitions are equivalent, note first that if \mathcal{H} has a finite or countable ONB $\{\phi_n\}$ then the countable set

$$\left\{ \sum_{n=1}^{N} c_n \phi_n \middle| N \in \mathbb{N}, c_n \in \mathbb{Q} + i\mathbb{Q} \right\}$$ \hspace{1cm} (3.22)

is dense in \mathcal{H}. Conversely, if the sequence $(\tilde{\phi}_n)_{n \in \mathbb{N}}$ is dense in \mathcal{H} then dilute it to a linearly independent sequence $(\phi_n)_{n \in \mathbb{N}}$ with span$\{\phi_n : n \in \mathbb{N}\} = \text{span}\{\tilde{\phi}_n : n \in \mathbb{N}\}$. Then apply the Gram–Schmidt procedure of orthonormalization.
3.4 Bounded operators

Definition 3.9. A linear operator \(L : X \rightarrow Y \) between normed vector spaces \(X \) and \(Y \) is called *bounded* iff there is \(C < \infty \) with

\[
\|L\psi\|_Y \leq C\|\psi\|_X \quad \forall \psi \in X.
\]

(3.23)

The *operator norm* of \(L \) is defined by

\[
\|L\| = \sup_{\|\psi\|_X = 1} \|L\psi\|_Y.
\]

(3.24)

That is, \(\|L\| \) is the smallest possible constant \(C \) in (3.23)

Example 3.10. Suppose \(X = Y = \mathcal{H} \) with \(\dim \mathcal{H} = n < \infty \), so \(L \) can be regarded as an \(n \times n \) matrix. Suppose further that \(L \) is diagonalizable with eigenvalues \(\lambda_1, \ldots, \lambda_n \in \mathbb{C} \). Then \(\|L\| = \max\{|\lambda_1|, \ldots, |\lambda_n|\} \).

Example 3.11. Projections \(P \) are bounded operators with \(X = Y = \mathcal{H} \) and \(\|P\| = 1 \) (except for \(P = 0 \), which can be regarded as the projection to \(\{0\} \)).

Theorem 3.12. Let \(X, Y \) be normed vector spaces, \(L : X \rightarrow Y \) linear. The following statements are equivalent:

(i) \(L \) is continuous at 0.

(ii) \(L \) is continuous.

(iii) \(L \) is bounded.

Proof. (iii) \(\Rightarrow\) (i): If \(\|\psi_n\| \rightarrow 0 \) then \(\|L\psi_n\| \leq \|L\|\|\psi_n\| \rightarrow 0 \).

(i) \(\Rightarrow\) (ii): Suppose \(\|\psi_n - \psi\| \rightarrow 0 \) and \(L \) is continuous at 0. Then \(\|L\psi_n - L\psi\| = \|L(\psi_n - \psi)\| \rightarrow 0 \).

(ii) \(\Rightarrow\) (iii): Suppose \(L \) was not bounded. Then there is a sequence \(\psi_n \in X \) with \(\|\psi_n\| = 1 \) and \(\|L\psi_n\| \geq n \). Then \(\phi_n := \psi_n/\|L\psi_n\| \) converges to 0 but \(\|L\phi_n\| = 1 \), so \(L\phi_n \not\rightarrow 0 \), in contradiction to continuity at 0. \(\square\)

Theorem 3.13. Let \(X \) be a normed space, \(Y \) a Banach space, \(Z \subset X \) a dense subspace and \(L : Z \rightarrow Y \) bounded linear. Then \(L \) possesses a unique bounded linear continuation \(\tilde{L} : X \rightarrow Y \) with \(\tilde{L}|_Z = L \) and \(\|	ilde{L}\| = \|L\| \).

Proof. Let \(x \in X \). By hypothesis there is a sequence \(z_n \in Z \) with \(\|z_n - x\|_X \rightarrow 0 \). Since \(z_n \) converges, it is in particular a Cauchy sequence; because of \(\|Lz_n - Lz_m\|_Y = \|L(z_n - z_m)\|_Y \leq \|L\|\|z_n - z_m\|_X \) we also have that \((Lz_n) \) is a Cauchy sequence in \(Y \) and thus converges, \(Lz_n \rightarrow y \in Y \). Here, \(y \) does not depend on the choice of \(z_n \) (only of \(x \)): If \(z'_n \) is another sequence in \(Z \) with \(\|z'_n - x\|_X \rightarrow 0 \) then also the sequence \(z_1, z'_1, z_2, z'_2, \ldots \) converges to \(x \) and, by the above argument, \(Lz_1, Lz'_1, Lz_2, Lz'_2, \ldots \) converges to \(\tilde{y} \in Y \). Since any subsequence must have the same limit, \(y = \tilde{y} \). So we can set \(\tilde{L}x := y \).
By construction, \(\tilde{L} \) is linear. It is bounded since
\[
\| \tilde{L} x \|_Y = \lim_{n \to \infty} \| L z_n \|_Y \leq \lim_{n \to \infty} \| L \| \| z_n \|_X = \| L \| \| x \|_X.
\] (3.25)

As a consequence, \(\tilde{L} \) is continuous, and a continuous mapping is uniquely determined by its restriction to a dense subset.

Many relevant operators in quantum mechanics are not bounded. The Coulomb potential \(V = -1/r \) is not bounded, the Laplacian \(-\nabla^2 \) is not bounded. If \(\psi \in L^2(\mathbb{R}^d) \) then \(V \psi \) is not necessarily square-integrable; likewise, if \(\psi \in C^2(\mathbb{R}^d) \cap L^2(\mathbb{R}^d) \) then \(-\nabla^2 \psi \) is not necessarily square-integrable. We thus describe unbounded operators as a pair \((A, \mathcal{D}) \), where \(\mathcal{D} \subseteq \mathcal{H} \) is a subspace (usually a dense subspace), and \(A : \mathcal{D} \to \mathcal{H} \) is a linear mapping; \(\mathcal{D} \) is called the domain of \(A \). Unlike bounded operators, \(A \) cannot be continued in a natural way to \(\tilde{A} : \mathcal{H} \to \mathcal{H} \). (However, if a linear mapping \(R : \mathcal{H} \to \mathcal{H} \) is given, it may well be an unbounded operator; after all, \(\mathcal{H} \) has a Hamel basis, say \(\{ u_i : i \in \mathcal{I} \} \) (not orthonormal!) and \(R \) can be defined by choosing arbitrary \(v_i \in \mathcal{H} \) for \(i \in \mathcal{I} \) and setting \(Ru_i = v_i \).)