
Isometries in Rn

Definitions. The space Rn := {(x1, x2, . . . , xn) : xi ∈ R} is equipped with the usual inner
product, metric, and (Euclidean) distance: if x = (x1, . . . , xn) and y = (y1, . . . , yn) are
two points in Rn, then the inner product (or dot product) is defined as x · y :=

∑
i xiyi, the

length as ‖x‖ :=
√∑

i x
2
i , and the distance as d(x,y) := ‖x− y‖ =

√∑
i(xi − yi)2.

A hyperplane in Rn is an (n− 1)-dimensional plane with equation v ·x = c. A hyperplane
is usually specified by one of its points p = (p1, . . . , pn) and a nonzero vector v = (v1, . . . , vn)
- called a normal vector of the hyperplane - as the set of points x = (x1, . . . , xn) satisfying
(x− p)v = 0, that is, the set {(x1, . . . , xn) :

∑
i(xi − pi)vi = 0}.

If P and Q are two distinct points in Rn, then the set {x ∈ Rn : d(x,P) = d(x,Q)} is a
hyperplane, called the perpendicular bisector of the segment PQ.

Given a hyperplane H and a point P not on H, there’s a unique point P′ such that H is the
perpendicular bisector of PP′; the map that assigns to each point P this corresponding P′

if P 6∈ H and assigns P to itself if P ∈ H is called the reflection about H (or on H).

We say that n + 1 points in Rn are in general position if there is no hyperplane which
contains all of them. Thus, two points in R1 are in general position if they are different,
three points in R2 are in general position if they are not collinear, and four points in R3 are
in general position if they are not coplanar.

An isometry in Rn is a map f : Rn → R
n which preserves distances, that is, for which

d(f(x), f(y)) = d(x,y) for all points x,y ∈ Rn.

Clearly, the composition of isometries is an isometry; in fact, the isometries of Rn form a
(non-Abelian) group with respect to composition.

Lemma. An isometry of Rn is a bijection from R
n to Rn.

(It is obvious that an isometry is one-to-one, but it is harder to see that it is also onto. The
latter follows from the theorem at the bottom of the page since reflections are bijections.)

Lemma. Let the points B1, . . . ,Bn+1 be in general position in Rn, and let f be an isometry
on Rn. Then the images f(B1), . . . , f(Bn+1) are also in general position.

Given a function f : Rn → R
n, we say that a point x is a fixed point for f (or “f fixes the

point x”) if f(x) = x.

Theorem (Global Positioning). Let the points B1, . . . ,Bn+1 be in general position in Rn.
Then, the distances from these Bi-s uniquely determine any point, that is, if P and Q are
two points of Rn such that d(P,Bi) = d(Q,Bi) for i = 1, 2, . . . , n+ 1, then P = Q.

Corollary. In particular, if f is an isometry that fixes some n+1 points which are in general
position, then f fixes all points of Rn, that is, f is the identity map.

Corollary. Let f and g be two isometries of Rn, and let the points B1, . . . ,Bn+1 be in general
position. If f and g agree on all of B1, . . . ,Bn+1, then f = g everywhere.

The following important theorem can be proved by (backward) induction on the number of
fixed points an isometry has.

Theorem. Every isometry of Rn can be obtained as the composition of at most n + 1
reflections.


