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Abstract
We first write down a very general description of nonlinear classical
electrodynamics, making use of generalized constitutive equations and
constitutive tensors. Our approach includes non-Lagrangian as well as
Lagrangian theories, which allows for electromagnetic fields in the widest
possible variety of media (anisotropic, piroelectric, chiral and ferromagnetic)
and accommodates the incorporation of nonlocal effects. We formulate
electric–magnetic duality in terms of the constitutive tensors. We then propose
a supersymmetric version of the general constitutive equations, in a superfield
approach.

PACS numbers: 11.10.Lm, 11.30.Pb, 12.60.Jv

1. Introduction

Maxwell’s equations for the vector fields D (electric displacement), E (electric field), B
(magnetic induction) and H (magnetic field) in the vacuum or in media are well known to be
incomplete. The system is completed with constitutive equations, which establish functional
relations among these vector fields [1, 2]. Then D and H may be regarded as constructs
used to describe (via the constitutive equations) how the directly observable fields E and B
are produced by charge and current densities. The explicit form of the constitutive equations
depends on the physical properties one assumes for the vacuum or for the medium in which
the fields occur; in particular, they are constrained by the symmetry of the medium.

It has also long been known [3], though not always widely appreciated, that Maxwell’s
equations alone (without constitutive equations) are consistent with both Lorentz symmetry

1751-8113/08/304007+11$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/30/304007
mailto:steven.a.duplij@univer.kharkov.ua
mailto:geraldgoldin@dimacs.rutgers.edu
mailto:shtelen@math.rutgers.edu
http://stacks.iop.org/JPhysA/41/304007


J. Phys. A: Math. Theor. 41 (2008) 304007 S Duplij et al

(for any value of the light speed c) and Galilei symmetry. Thus, one can specify a particular
Lorentz- or Galilei-covariant theory through the choice of constitutive equations. Linear
constitutive equations, taken together with Maxwell’s equations, are inconsistent with Galilei-
covariant electrodynamics, while a certain class of nonlinear equations are compatible with
it [4]. These observations were subsequently generalized to a class of equations for non-
Abelian gauge fields, written using nonlinear constitutive equations [5]. Interest in nonlinearity
and Maxwell’s equations is heightened by experimental results in nonlinear optics, such as
optical squeezing and slow light speed [6], and by theoretical ideas such as Born–Infeld
theories of superstrings [7–10]. It has recently been suggested that a modified Born–Infeld
Lagrangian, proposed originally for the purpose of introducing a Galilean limit in nonlinear
electromagnetism, provides a way to introduce a null string (i.e., zero tension) limit in
a relativistic theory of four-dimensional superstrings [11]. We also remark on the recent
use of modifications of Maxwell’s equations as ‘test theories’ in astrophysical observations,
where upper bounds to various sorts of possible deviations from known physical laws can be
established through measurement [12, 13]. Our approach provides a very general framework
for the construction of such test theories, particularly in the direction of allowing for dissipative
effects. Our approach also accommodates various interesting limits of physical constants.

This paper continues the systematic exploration of nonlinear constitutive equations.
We first write a very general form for such equations and the ‘constitutive tensors’ that
appear in them. As in earlier work, this includes non-Lagrangian (i.e., dissipative) as well
as Lagrangian theories, but also allows for the description of electromagnetic fields in the
widest possible variety of media, including anisotropic, piroelectric, chiral and ferromagnetic
media. Such a description also accommodates the incorporation of nonlocal effects. We then
formulate electric–magnetic duality in terms of the constitutive tensors. Finally, we propose
a supersymmetric version of the general constitutive equations, so as to obtain a general,
nonlinear supersymmetric electrodynamics within a superfield approach. Some of our results
were sketched briefly in [14]; here we provide greater detail and additional development.

2. Maxwell’s equations and nonlinear constitutive equations

To set the context and specify notation, we review established results in this section. Let us
write Maxwell’s equations in SI units,

curl E = −∂B
∂t

, div B = 0,

curl H = ∂D
∂t

+ j, div D = ρ,

(1)

where j and ρ are the current and charge densities, respectively. We consider only flat
spacetime, so that the metric is given by the Minkowski tensor ηµν = (1,−1,−1,−1), xµ =
(ct, xi), µ, ν, . . . = 0, 1, 2, 3, i, j, . . . = 1, 2, 3, with ∂µ = ∂�∂xµ = [c−1∂�∂t,∇]. The
antisymmetric Levi-Civita tensor is written εµνρσ , with ε0123 = 1. We denote six Lorentz
invariants constructed from E, B, D, H (in terms of which other invariants may be written) by

C1 = B2 − 1

c2
E2, C2 = B · E, C3 = D2 − 1

c2
H2, C4 = D · H,

C5 = B · H − E · D, C6 = B · D +
1

c2
E · H.

(2)

The constitutive equations relating E, B, D and H can reduce the symmetry of equations (1)
to the Lorentz or Galilean groups; some other possibilities are considered in [15].
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In covariant notation, we have the standard electromagnetic tensor fields

Fµν =

⎛⎜⎜⎜⎜⎝
0 1

c
Ex

1
c
Ey

1
c
Ez

− 1
c
Ex 0 −Bz By

− 1
c
Ey Bz 0 −Bx

− 1
c
Ez −By Bx 0

⎞⎟⎟⎟⎟⎠, Gµν =

⎛⎜⎜⎝
0 cDx cDy cDz

−cDx 0 −Hz Hy

−cDy Hz 0 −Hx

−cDz −Hy Hx 0

⎞⎟⎟⎠; (3)

the Hodge dual tensors are F̃ µν = 1
2εµνρσFρσ and G̃µν = 1

2εµνρσGρσ ; and Maxwell’s
equations become

∂µF̃ µν = 0, ∂µGµν = jν, (4)

where jµ = (cρ, j) is the 4-current. The first equations in (4) imply Fµν = ∂µAν − ∂νAµ,
where Aµ is an Abelian gauge field; but in general there is no similar representation for Gµν .
The field strength tensors Fµν and F̃ µν are physically observable, in that their components
can be inferred from measurement of the force F = q(E + v × B) on a test charge q moving
with velocity v. The tensors Gµν and G̃µν originate with the currents, and their relation to the
observable fields is determined by the properties of the medium (or the vacuum) within which
they are being described.

If we write constitutive equations for nonlinear electromagnetism in the form D =
D(E, B), H = H(E, B), then for a Lorentz-covariant theory, they must take the form [15]

D = M(C1, C2)B +
1

c2
N(C1, C2)E, H = N(C1, C2)B − M(C1, C2)E, (5)

where M(C1, C2) and N(C1, C2) are some smooth scalar functions of the first two invariants
in equations (2). For the (linear) vacuum case, D = ε0E and B = µ0H, where ε0 and µ0

are, respectively, the permittivity and permeability of empty space; and where, consistent
with equations (5), ε0µ0 = c−2 (so that M = 0, N = 1/µ0 = ε0c

2). But in general, the
dependence of C1 and C2 on B and E means that equations (5) are nonlinear. When the
constitutive equations take the form given in equations (5), the other Lorentz invariants in
equations (2) are determined from the first two invariants C1 and C2 by the formulae

C3 =
[
M(C1, C2)

2 − 1

c2
N(C1, C2)

2

]
C1 +

4

c2
M(C1, C2)N(C1, C2)C2,

C4 = M(C1, C2)N(C1, C2)C1 −
[
M(C1, C2)

2 − 1

c2
N(C1, C2)

2

]
C2,

C5 = N(C1, C2)C1 − 2M(C1, C2)C2, C6 = M(C1, C2)C1 +
2

c2
N(C1, C2).

(6)

If the theory is conformally invariant, then the ‘constitutive functions’ M and N that appear
in equations (5) depend only on the quotient C1/C2, so that M(C1, C2) = Mconf(C1/C2) and
N(C1, C2) = Nconf(C1/C2) [16]. The well-known Born–Infeld electrodynamics is specified
by choosing M and N in equations (5) according to the formulae

M(C1, C2) = C2

µ0b2
√

1 + c2

b2 C1 − c2

b4 C
2
2

, (7)

N(C1, C2) = 1

µ0

√
1 + c2

b2 C1 − c2

b4 C
2
2

, (8)

where the real parameter b is the maximum permitted value of the electric field strength when
the magnetic field is zero—any stronger electric field causes the argument of the square root
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in equations (7) and (8) to become negative. It follows from the form of (7) and (8) that
Born–Infeld nonlinear electrodynamics has no conformal symmetry.

In covariant notation

C1 = 1

2
FµνF

µν ≡ 2X, C2 = − c

4
FµνF̃

µν ≡ −cY, (9)

where X and Y are introduced here (for later use) for compatibility with the standard invariant
notation. Then we also have

Gµν = N(C1, C2)Fµν + cM(C1, C2)F̃ µν. (10)

Taking the Hodge conjugate of equation (10), we represent these equations in the form(
Gµν

G̃µν

)
=

(
N(C1, C2) cM(C1, C2)

−cM(C1, C2) N(C1, C2)

) (
Fµν

F̃ µν

)
. (11)

In the space of ‘spinors’

�F =
(

Fµν

F̃ µν

)
, �G =

(
Gµν

G̃µν

)
, (12)

we then have a kind of quaternionic structure as discussed in [17, 18],

�G = Q · �F , (13)

where Q is defined by

Q = N(C1, C2)σ0 + icM(C1, C2)σ2, (14)

and where σ0 = I = (
1 0
0 1

)
, σ2 = (

0 −i
i 0

)
are the Pauli matrices.

3. Generalized nonlinear constitutive equations

Although the constitutive equations (5) are fairly general, they do not take account of a
variety of possibilities, such as anisotropic media [19], chiral materials where derivative terms
enter [20], piroelectric and ferromagnetic materials and so forth. Therefore, we propose
to generalize equations (5) and (10) by introducing the constitutive tensors Sµν, R

ρσ
µν and

Qρσλ1...λn
µν , n = 1, 2, 3, . . . . We then write a general nonlinear constitutive equation as follows:

Gµν = Sµν + Rρσ
µν Fρσ + Qρσλ1

µν

∂Fρσ

∂xλ1
+ Qρσλ1λ2

µν

∂Fρσ

∂xλ1∂xλ2
+ · · ·

+ Qρσλ1...λn

µν

∂Fρσ

∂xλ1∂xλ2 · · · ∂xλn
. (15)

This equation and its superfield analogue introduced in section 6 are the central focus of the
approach we are advocating here. Evidently, formula (15), taken together with Maxwell’s
equations, includes all the possibilities discussed up to now, as well as new ones, defining the
general nonlinear electromagnetic theory.

Let us discuss the arguments of the constitutive tensors which are the coefficients in
equation (15). Evidently, we must distinguish Sµν by the absence of any dependence on Fρσ ;
for if Sµν were to depend on any of the entries in Fρσ , we could then just incorporate it into
the second term of equation (15) by rewriting it in the form Rρσ

µν Fρσ (where Rρσ
µν = Sµν/Fρσ

for each particular value of µ, ν, ρ, σ ). Hence the arguments of Sµν should be (for maximum
generality) just the spacetime coordinates xλ. Likewise Rρσ

µν can depend on xλ and on Fκλ, but
not on any derivatives of Fκλ. In general, Qρσλ1...λn

µν depends on xλ together with derivatives
of Fκλ of nth order or less.
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Now one can require Rρσ
µν and Qρσλ1...λn

µν to depend directly on x, Fκλ and derivatives of
appropriate orders, as local functions that take into account only their values at x. But one
may also consider constitutive tensors that depend on the field strengths and their derivatives
via functionals that take account of their values at different spacetime points, or that involve
integrals of functions of field strengths and their derivatives over regions of spacetime—for
example, over regions that could be defined by the worldsheets of strings, branes, defects or
other extended configurations in the spacetime manifold. Thus, we also have the capability of
describing a variety of nonlocal effects with this approach.

As we impose Lorentz covariance on the constitutive equations, the constitutive tensors
will depend on the fields through the invariants X and Y defined in equations (9), as follows:
Sµν is a constant independent of X and Y, while

Rρσ
µν = Rρσ

µν (X, Y ), Qρσλ1...λn

µν = Qρσλ1...λn

µν (X, Y, . . .), (16)

where “ . . . ” denotes invariant derivatives of the invariants X, Y up to nth order. Obviously
Sµν is antisymmetric, Rρσ

µν is antisymmetric in its upper and lower indices separately and
Qρσλ1...λn

µν are antisymmetric in their upper and first two lower indices; with respect to the λi ,
they are symmetric Lorentz tensors.

Let us write some familiar examples in this form. For the simplest vacuum case, we have

Sµν = 0, Rρσ
µν = µ−1

0 δ
ρ

[µδσ
ν], Qρσλ1...λn

µν = 0, (17)

where the square brackets about the indices denote antisymmetrization with a factor of 1/2,
i.e., x[µν] ≡ (xµν − xνµ)/2. The only nonvanishing constitutive tensor Rρσ

µν is ‘diagonal’. For
Born–Infeld nonlinear electrodynamics, we have

Sµν = 0, Rρσ
µν = δ

ρ

[µδσ
ν] − c2

b2 Yε[µν]λδη
λρηδσ

µ0

√
1 + 2 c2

b2 X − c4

b4 Y 2
, Qρσλ1...λn

µν = 0, (18)

where b is again the maximum electric field strength, ε is the Levi-Civita tensor and η is the
Minkowski tensor. For an anisotropic medium with tensorial permeability εij and permittivity
µij , the constitutive equations are Di = εij Ej and B = µij Hj . This case is not described
by equation (10), but the corresponding constitutive tensor Rρσ

µν is easily calculated; while
again, Sµν and Qρσλ1...λn

µν vanish. The case Sµν �= 0 describes piroelectric and ferromagnetic
materials.

When the equations of motion for the nonlinear theory are derived from a Lagrangian
L(X, Y ), which is a scalar function of the invariants X and Y but does not depend on their
derivatives, then from the usual definitions together with equation (10), we have

Gµν = −∂L(X, Y )

∂X
Fµν − ∂L(X, Y )

∂Y
F̃ µν. (19)

Comparing (15) and (19) gives us the constitutive tensors,

Sµν = 0,

Rρσ
µν = −∂L(X, Y )

∂X
δ

ρ

[µδσ
ν] − ∂L(X, Y )

∂Y
ε[µν]λδη

λρηδσ ,

Qρσλ1...λn

µν = 0.

(20)

In this case, the functions M and N in equations (5) are

NL(X, Y ) = −∂L(X, Y )

∂X
, ML(X, Y ) = −1

c

∂L(X, Y )

∂Y
. (21)
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So for the ‘constitutive functions’ M and N to describe a Lagrangian theory of nonlinear
electrodynamics, we need

∂NL(X, Y )

∂Y
= c

∂ML(X, Y )

∂X
. (22)

We see that dissipative, non-Lagrangian theories are naturally included in the current
framework.

4. Duality transformations

Next consider the duality transformation δ transforming Fµν to G̃µν and Gµν to F̃ µν [21]:

δFµν = G̃µν, δGµν = F̃ µν. (23)

The self-duality (+) or antiself-duality (−) condition is defined by

Fµν = εG̃µν, ε = ±1, (24)

which establishes the main relation of a self-dual theory,

FµνF̃
µν = GµνG̃

µν (25)

(which is equivalent to D · H = B · E). Making reference to equation (15), we have the
corresponding (anti)self-duality conditions for the constitutive tensors Rρσ

µν (with Sµν =
0,Qρσλ1...λn

µν = 0),

Rρσ
µν ερσλδη

λ[µηδν] = 2ε. (26)

The further requirement that a solution of (24) also obey the (anti)self-duality condition
Fµν = εF̃ µν implies that X = Y , but we see these two conditions as fundamentally distinct.
We can obtain equations of motion in this framework by the method of [21].

More generally, the finite duality transformations are given by

F ′
µν = aFµν + bG̃µν, G′

µν = eGµν + f F̃ µν, (27)

where the determinant af − be = 1. If we use the constitutive equations (10) and their Hodge
conjugates, we can write

F ′
µν = Uρσ

µν Fρσ , G′
µν = V ρσ

µν Gρσ , (28)

where the ‘dual tensors’ Uρσ
µν and V ρσ

µν take the form

Uρσ
µν = [a − bcM(C1, C2)]δ

ρ
µδσ

ν +
1

2
bN(C1, C2)εµνλδη

λρηδσ ,

V ρσ
µν =

[
e +

f cM(C1, C2)

N
(
C1, C

2
2

)
+ c2M

(
C1, C

2
2

)] δρ
µδσ

ν +
1

2

N(C1, C2)

N(C1, C2)2 + c2M(C1, C2)2
εµνλδη

λρηδσ .

(29)

5. Supersymmetric electrodynamics

Now we turn to a geometric superfield formulation of classical electrodynamics and the
constitutive equations in superspace. We start by fixing some further notation, following mostly
[22]. The N = 1 four-dimensional superspace is described by coordinates zM = {xµ, θα, θ̄ α̇},
where we introduce the unifying index M = {µ, α, α̇} and θα, θ̄ α̇ (α, α̇ = 1, 2) are additional
complex Grassmann coordinates (two-components Majorana spinors). The transformations
of (N = 1,D = 4) supersymmetry are given by

x̃µ = xµ + iλασ
µ

αα̇θ̄ α̇ − iθασ
µ

αα̇λα̇, θ̃α = θα + λα, ˜̄θ α̇ = θ̄ α̇ + λα̇, (30)
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where λα and λα̇ are constant Grassmann spinors. The transformations in equations (30) are
generated by supercharges

Qα = −i
∂

∂θα
+ σ

µ

αα̇θ̄ α̇ ∂

∂xµ
, Q̄α̇ = i

∂

∂θ̄ α̇
+ θασ

µ

αα̇

∂

∂xµ
, (31)

with

{Qα, Q̄α̇} = 2iσµ

αα̇

∂

∂xµ
, (32)

where σ
µ

αα̇ = (I, �σ)αα̇ are the Pauli matrices. Then, z̃M = exp[i(λαQα + Q̄α̇λα̇)]zM . Defining

Dµ = ∂

∂xµ
, Dα = ∂

∂θα
− iσµ

αα̇θ̄ α̇ ∂

∂xµ
, D̄α̇ = − ∂

∂θ̄ α̇
+ iθασ

µ

αα̇

∂

∂xµ
, (33)

we have

{Dα, D̄α̇} = 2iσµ

αα̇

∂

∂xµ
. (34)

The (anti)commutators other than those of equations (32) and (34) vanish.
Now a general superfield �(x, θ, θ̄ ) written as a function of nilpotent Grassmann variables

θα and θ̄ α̇ can be expanded as a finite series with respect to them. Its components are ordinary
and spinorial functions, members of the corresponding supermultiplet, that are mixed by the
(infinitesimal) supersymmetry transformations

δ�(x, θ, θ̄ ) = i(λαQα + Q̄α̇λα̇)�(x, θ, θ̄ ). (35)

For further details, see [22].
The Abelian gauge field Aµ(x) is a component of a gauge superfield vector multiplet

V(x, θ, θ̄ ) = V+(x, θ, θ̄ ), where + denotes super-Hermitian conjugation. The supergauge
transformations are given by

Ṽ(x, θ, θ̄ ) = V(x, θ, θ̄ ) +
i

2
(�(x, θ, θ̄ ) − �+(x, θ, θ̄ )), (36)

where �(x, θ, θ̄ ) is a chiral superfield parameter satisfying Dα�(x, θ, θ̄ ) = 0 and
D̄α̇�+(x, θ, θ̄ ) = 0. That is, defining x

µ

L,R = xµ ± iθασ
µ

αα̇θ̄ α̇ , � and �+ is each actually
a function of two variables, �(x, θ, θ̄ ) = ϒ(xL, θ), and �+(x, θ, θ̄ ) = ϒ+(xR, θ̄). In
the Wess–Zumino gauge, half of the component fields are gauged away using supergauge
transformations (36); so that V(x, θ, θ̄ ) takes the form

VWZ(x, θ, θ̄ ) = −θασ
µ

αα̇θ̄ α̇Aµ(x) − iθ̄α̇ θ̄ α̇θαψα(x) + iθαθαθ̄α̇ψ̄ α̇(x) + 1
2θαθαθ̄α̇ θ̄ α̇D(x),

(37)

where ψα(x) is a Majorana fermion field (photino) and D(x) is an auxiliary field which
vanishes on-shell.

If �(x, θ, θ̄ ) is a matter superfield, then the supergauge transformations of � are given
by

�̃(x, θ, θ̄ ) = exp
[
− ie

h̄c
(�(x, θ, θ̄ ) + �+(x, θ, θ̄ ))

]
�(x, θ, θ̄ ). (38)

Together, equations (36) and (38) provide the full set of supergauge transformations of the
Abelian N = 1 gauge theory.

Next let us introduce the gauge superpotential superfield AM(x, θ, θ̄ ), a superconnection
on the supermanifold, corresponding to the superderivatives DM . Then the covariant
superderivatives (covariant with respect to the supergauge transformations (36)–(38)) are

∇M = DM +
ie

h̄c
AM(x, θ, θ̄ ). (39)

7
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The requirement that the covariant superderivatives acting on the matter superfield
transform as superfields themselves via equation (38) leads to

Ãµ(x, θ, θ̄ ) = Aµ(x, θ, θ̄ ) + 1
2 Dµ(�(x, θ, θ̄ ) + �+(x, θ, θ̄ )),

Ãα(x, θ, θ̄ ) = Aα(x, θ, θ̄ ) + 1
2 Dα�+(x, θ, θ̄ ),˜̄Aα̇(x, θ, θ̄ ) = Āα̇(x, θ, θ̄ ) + 1
2 D̄α̇�(x, θ, θ̄ ).

(40)

These relations can be satisfied identically by choosing

Aµ(x, θ, θ̄ ) = (
iDµ − 1

2 Dασαα̇
µ D̄α̇

)
V(x, θ, θ̄ ) (41)

and

Aα(x, θ, θ̄ ) = iDαV(x, θ, θ̄ ), Āα̇(x, θ, θ̄ ) = iD̄α̇V(x, θ, θ̄ ), (42)

where V(x, θ, θ̄ ) is a prepotential of the N = 1 Abelian gauge theory. From equations (41)
and (42), the relation between the vector and spinor covariant superderivatives follows

∇µ = i

4
σαα̇

µ {∇α, ∇̄α̇}, (43)

using the relation between covariant superderivatives and superderivatives,

∇α = e
e
h̄c

V(x,θ,θ̄ )Dαe− e
h̄c

V(x,θ,θ̄ ), ∇̄α̇ = e− e
h̄c

V(x,θ,θ̄ )D̄α̇e
e
h̄c

V(x,θ,θ̄ ). (44)

Now one constructs the corresponding (anti)commutators of the covariant
superderivatives, introducing the gauge-invariant torsion TK

MN and the superfield strength
FMN(x, θ, θ̄ ), as follows. Let { ] denote the ‘mixed commutator’—the anticommutator when
both entries are odd, the commutator for other combinations. Then, we have

{∇M,∇N ] = iTK
MN∇K + iFMN(x, θ, θ̄ ). (45)

From equation (43), it follows that the only nonvanishing components of the torsion are

Tµ

αα̇ = 2σ
µ

αα̇. (46)

Thus, in the N = 1 Abelian theory, the torsion constraints are the same as in flat N = 1
superspace.

For the superfield strength, it follows from equation (43) that all the components for which
both indices are fermionic vanish, i.e.,

Fαβ(x, θ, θ̄ ) = Fαβ̇(x, θ, θ̄ ) = Fα̇β̇ (x, θ, θ̄ ) = 0. (47)

These constraints are called ‘representation preserving’, because they allow one to introduce
the chiral and anti-chiral superfields which survive in the presence of nonzero gauge coupling.
Then the lowest dimensional surviving superfield strengths are mixed spin-vector (odd-valued)
superfields

Fαµ(x, θ, θ̄ ) = −i[∇α,∇µ] = DαAµ(x, θ, θ̄ ) − DµAα(x, θ, θ̄ ),

F̄α̇µ(x, θ, θ̄ ) = −i[∇̄α̇,∇µ] = D̄α̇Aµ(x, θ, θ̄ ) − DµĀα̇(x, θ, θ̄ ).
(48)

These are the actual super analogues of the field strength Fµν in ordinary electromagnetism.
From equations (41) and (42), the manifest form of the superfield strengths in terms of

the prepotential is

Fαµ(x, θ, θ̄ ) = − 1
2 DαDβσ ββ̇

µ D̄β̇V(x, θ, θ̄ ),

F̄α̇µ(x, θ, θ̄ ) = − 1
2 D̄α̇D̄β̇σ β̇β

µ DβV(x, θ, θ̄ ).
(49)

The superfield strengths can be expressed in terms of a chiral spinor superfield that depends
on only one spinorial coordinate, as follows:

Fαµ(x, θ̄ ) = −iεαβσββ̇
µ W̄β̇ (x, θ̄ ), F̄α̇µ(x, θ) = −iεα̇β̇ σ̄ β̇β

µ Wβ(x, θ), (50)

8
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where

Wβ(x, θ) = 1
2 D̄α̇D̄β̇DβV(x, θ, θ̄ ), D̄α̇Wβ(x, θ) = 0,

W̄β̇ (x, θ̄ ) = 1
2 DαDβD̄β̇V(x, θ, θ̄ ), DαW̄β̇ (x, θ̄ ) = 0.

(51)

These chiral superfields satisfy an additional constraint, DαWα(x, θ) = D̄α̇W̄α̇(x, θ̄ ).
Using the component expansion of V(x, θ, θ̄ ) in the Wess–Zumino gauge (37), we obtain

Wα(x, θ) = −iψα(x) +
(
εαγ D(x) − i

2
σ

µ

αα̇εα̇β̇ σ̄ ν

β̇γ
Fµν(x)

)
θγ − θβθβσ

µ

αα̇∂µψ̄ α̇(x),

W̄α̇(x, θ̄ ) = iψ̄α̇(x) +
(
εα̇γ̇ D(x) +

i

2
σ̄

µ

α̇αεαβσ ν
βγ̇ Fµν(x)

)
θ̄ γ̇ + θ̄β̇ θ̄ β̇ σ̄

µ

α̇α∂µψα(x).
(52)

From equations (50), it follows that the role the gauge invariants X and Y in equations (9)
played for nonlinear electromagnetism is now played by the superfield invariants,

X(x, θ) = 1
4 F̄α̇µ(x, θ)F̄α̇µ(x, θ) = Wα(x, θ)Wα(x, θ),

Y(x, θ̄ ) = 1
4 Fαµ(x, θ̄)Fαµ(x, θ̄) = W̄α̇(x, θ̄ )W̄α̇(x, θ̄ ).

(53)

Applying the component expansions (52), we observe that

X(x, θ) = · · · + θαθα(X − iY ), Y(x, θ̄) = · · · + θ̄α̇ θ̄ α̇(X + iY ), (54)

which, after integration over the Grassmann coordinates, will give the correct contributions of
X and Y to the Lagrangian.

6. Supersymmetric constitutive equations

Finally, we are ready to consider the N = 1 supersymmetric theory in ‘supermedia’, with the
goal of obtaining the ‘super’ version of the constitutive equations (15).

By analogy with the case of nonlinear electromagnetism, we introduce the superfield
strengths in media Gαµ(x, θ̄) and Ḡα̇µ(x, θ), without expressing G or Ḡ via any prepotential.
Rather we assume them to have a representation similar to that of equations (50),

Gαµ(x, θ̄) = −iεαβσββ̇
µ W̄G

β̇
(x, θ̄ ), Ḡα̇µ(x, θ) = −iεα̇β̇ σ̄ β̇β

µ WG
β (x, θ). (55)

Here the chiral superfields in media WG
β (x, θ) and W̄G

β̇
(x, θ̄ ) likewise are not expressed through

a prepotential superfield, but nevertheless have a component expansion similar to that of
equations (52),

WG
α (x, θ) = −iψG

α (x) +
(
εαγ DG(x) − i

2
σ

µ

αα̇εα̇β̇ σ̄ ν

β̇γ
Gµν(x)

)
θγ − θβθβσ

µ

αα̇∂µψ̄Gα̇(x),

W̄G
α̇ (x, θ̄) = iψ̄G

α̇ (x) +
(
εα̇γ̇ DG(x) +

i

2
σ̄

µ

α̇αεαβσ ν
βγ̇ Gµν(x)

)
θ̄ γ̇ + θ̄β̇ θ̄ β̇ σ̄

µ

α̇α∂µψGα(x),
(56)

where Gµν(x) satisfies equation (4).
In writing the analogue of the constitutive equations (15), it is obviously much more

convenient to deal with variables having only one spinor index (i.e., the chiral superfields)
than with those having spin-vector indices (i.e., the superfield strengths). Furthermore, these
are related to each other by constant matrices, through equations (50) and (55). Therefore, we
formulate the superconstitutive equations in terms of the chiral superfields, as follows:

WG
α = Sα + Rβ

αWβ + Qβ1γ
α Dβ1 Wγ + Qβ1β2γ

α Dβ1 Dβ2 Wγ + · · · + Qβ1···βnγ
α Dβ1 · · · Dβn Wγ ,

W̄G
α̇ = S̄α̇ + R̄β̇

α̇W̄β̇ + Q̄β̇1γ̇

α̇ D̄β̇1
W̄γ̇ + Q̄β̇1β̇2γ̇

α̇ D̄β̇1
D̄β̇2

Wγ̇ + · · · + Q̄β̇1···β̇nγ̇

α̇ Dβ̇1
· · · Dβ̇n

Wγ̇ .
(57)

Imposing supergauge invariance requires that the constitutive supertensors Sα, Rβ
α, Qβ1γ

α , etc,
depend only on (x, θ), the gauge superinvariant X(x, θ) that was given by the first of equations

9
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(53) and the superderivatives of X(x, θ) with respect to (x, θ). In turn, the constitutive

supertensors S̄α̇, R̄β̇

α̇ , Q̄β̇1γ̇

α̇ , etc, depend only on (x, θ̄ ), the gauge superinvariant Y(x, θ̄ ) given
by the second of equations (53) and the superderivatives of Y(x, θ̄ ) with respect to (x, θ̄). In
analogy with the case of nonlinear electromagnetism, we have S depending only on (x, θ) and
S̄ depending only on (x, θ̄), while R can depend on X(x, θ) as well as (x, θ) and R̄ can depend

on Y(x, θ̄ ) as well as (x, θ̄). Finally, the arguments of Qβ1···βnγ
α and Q̄β̇1···β̇nγ̇

α̇ can include up to
nth-order superderivatives of the respective supergauge invariants.

As before, one can also incorporate nonlocal effects into the formalism. Instead of
demanding that R, R̄, Q and Q̄ depend on the superfield strengths of equations (48) only as
local functions of their values at (x, θ, θ̄ ), one can admit constitutive tensors that depend on
the superfield strengths and their superderivatives at distinct points in the supermanifold, or
evaluated over extended regions of the supermanifold. This is important in the context of
potential applications to superstrings and to branes.

Using expansions (52) and (56), it is straightforward to write down the superfield
constitutive equations (57) in components.

7. Conclusion

We have proposed a way to take an extremely general approach to nonlinear classical
electrodynamics and supersymmetric electrodynamics, for the purpose either of describing
fields and superfields in general kinds of media, or of exploring their behavior in vacua
with general properties. The framework formally takes into account media of various types,
includes non-Lagrangian as well as Lagrangian theories, and accommodates the description
of nonlocal effects. This is accomplished through generalized constitutive equations (and
constitutive tensors), and their further generalization to include superfields. We expect future
research directions to include the detailed development of new examples within this framework.
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