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Abstract
A general approach is presented to describe nonlinear classical Maxwell electrodynamics with
conformal symmetry in flat spacetime. We introduce generalized nonlinear constitutive
equations, expressed in terms of constitutive tensors dependent on conformal-invariant functions
of the field strengths. This allows a characterization of Lagrangian and non-Lagrangian theories.
We obtain a general formula for possible Lagrangian densities in nonlinear conformal-invariant
electrodynamics. This generalizes the standard Lagrangian of classical linear electrodynamics so
as to preserve the conformal symmetry.
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1. Introduction

The conformal invariance of Maxwell’s equations in Min-
kowski spacetime M(4) is well known. Kastrup [1] provides a
historical review of conformal symmetry in geometry and
physics. Our purpose in the present article is to develop
nonlinear electrodynamics with conformal symmetry, both
Lagrangian and non-Lagrangian.

In earlier work [2, 3], two of us considered general
nonlinear Maxwell and Yang–Mills equations in M(4), satis-
fying Lorentz symmetry. The relation between the field
strength tensor F and the displacement tensor G was provided
by nonlinear constitutive equations, which depend only on
Lorentz-invariant functions of the field strengths. Broadly
speaking, such nonlinear (classical) Maxwell equations may
describe electromagnetic fields in matter (e.g. where the
electric permittivity ò and/or the magnetic permeability μ

may depend on the field strengths), or may provide a phe-
nomenological description of possible fundamental properties

of spacetime (e.g. as described by Born–Infeld or Euler-
Kockel Lagrangians). We obtained an explicit condition dis-
tinguishing Lagrangian from non-Lagrangian theories.

This approach was subsequently generalized to include
supersymmetric classical electrodynamics [4] and found an
application to the null-string limit of Born–Infeld theory [5].

Here we focus on the behavior of the Maxwell fields and
spacetime coordinates under conformal inversion in flat
spacetime. First we review briefly nonlinear Maxwell theories
in M(4) with Lorentz symmetry. We write down the symmetry
of Maxwell’s equations under conformal inversion, and dis-
cuss conformal invariant (or pseudoinvariant) functions of the
field strengths in M(4).

Then we again introduce generalized nonlinear con-
stitutive equations, expressed in terms of constitutive tensors
dependent on conformal-invariant functions. This allows
characterization of Lagrangian and non-Lagrangian theories,
and leads to a general formula for possible Lagrangian den-
sities in nonlinear conformal-invariant electrodynamics. Our
results generalize the standard Lagrangian of classical linear
electrodynamics subject to the preservation of conformal
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symmetry. The approach introduced here differs from other
work on conformal invariant nonlinear electrodynamics, e.g.
[6, 7] and references therein.

2. Conformal symmetry of Maxwell’s equations

Recall that the conformal group for the Minkowski
( )+3 1 -dimensional spacetime M(4) (described by coordinates
xμ, μ=0, 1, 2, 3) includes spacetime translations, spatial rota-
tions, Lorentz boosts, and dilations, together with the special
conformal transformations [8, 9]. The latter can be obtained as a
sequence of transformations: conformal inversion, translation
by a 4-vector bμ, and conformal inversion again. The conformal
inversion is given by (summing over repeated indices)

( )=m
m

n
n

¢x
x

x x
. 1

A more detailed discussion of conformal inversion is pro-
vided in [10]. The special conformal transformations are then

( )
( )

( )=
-

- +
m

m m
n

n

n
n

n
n

m
m

¢x
x b x x

b x b b x x1 2
. 2

Next we write the well-known conformal symmetry of
electromagnetism [9], with respect to the transformation (1).

In covariant notation we have the standard electro-
magnetic tensor fields
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the Hodge dual tensors are ˜ e=mn mnrs
rsF F1

2
and ˜ =mnG

emnrs rsG1

2
, where εμνρσ is the totally antisymmetric Levi-

Civita tensor with ε0123=1. Then Maxwell’s equations are

˜ ( )¶ = ¶ =m
mn

m
mn nF G j0, , 4

where ( )r=mj c j, is the 4-current. The first equations in (4)
imply that one can set = ¶ - ¶mn m n n mF A A , where Aμ is an
abelian gauge field; but in general there is no such repre-
sentation for Gμν. The field strength tensors Fμν and ˜mnF are
physically observable, in that their components can be
inferred from measurement of the force ( )= + ´qF E v B
on a test charge q moving with velocity v. The relation of the
tensors Gμν and ˜ mnG to observable fields is determined by the
properties of the medium.

Under the inversion (1) we obtain the coordinate trans-
formations [11]

≔ ( · ) ( )¶¢
¶

¶ ¢
= ¶ - ¶m m m m

x
x x x2 , 52

≔ ( ) ( · ) ( )¢ ¶¢ ¶¢ = - ¶m
m x x x4 , 62 2 2

where = m
mx x x2 and ( · )¶ = ¶a ax x . The transformations of

the fields that respect the symmetry are then

( ) ( ) ( ( )) ( )¢ ¢ = -m m m
a

aA x x A x x x A x2 , 72

( ) ( ) ( ) ( ( ) ( )) ( )¢ ¢ = - +mn mn
a

m an n maF x x F x x x x F x x F x2 . 82 2 2

Combining this symmetry with that of the Poincaré trans-
formations and dilations, we have the well-known symmetry
with respect to the conformal group.

In M(4) we have two fundamental Poincaré-invariant
functions of the field strengths

( ) ( ) ( ) ˜ ( ) ( )= = -mn
mn

mn
mnI F x F x I

c
F x F x

1

2
,

4
. 91 2

It is known [8], that any other Poincaré-invariant function of
the field strengths can be expressed in terms of I1 and I2 (see
also [12]). Thus, basing our description of relativistic non-
linear electrodynamics on I1 and I2 should achieve the max-
imum level of generality, subject to writing constitutive
equations in the form described in the next section. Some-
times I2 is called a pseudoinvariant, because it changes sign
under spatial reflection (parity) [9].

Under conformal inversion, I1 and I2 are no longer
individually invariant. Rather, they transform by

( ) ( )( ) ( ) ( ) ( ) ( )¢ ¢ = ¢ ¢ ¢ ¢ =mn
mnI x F x F x x I x

1

2
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2 4
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So the ratio I2(x)/I1(x) is a pseudoinvariant under conformal
inversion
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Because the special conformal transformations involve
two inversions, the ratio I2(x)/I1(x) is a true invariant under
the special conformal group.

3. Maxwell’s equations and nonlinear constitutive
equations

Let us recall that in SI units Maxwell’s equations are

( )r

=-
¶
¶

=

=
¶
¶

+ =

t

t

E
B

B

H
D

j D

curl , div 0,

curl , div , 13

where j and ρ are current and charge densities [8, 9]. We
consider only flat spacetime, so that the metric is given by the
Minkowski metric tensor is ( )h = - - -mn diag 1, 1, 1, 1 ,

( )=mx ct x, i , μ, ν, ...=0, 1, 2, 3; i=1, 2, 3; with

2
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( ) ( ) ( )¶ = ¶ ¶ = ¶ ¶ m
m -x c t,1 . The Lorentz invariants (9)

in terms of E, B , D, H are

· ( )= - =I
c

IB E B E
1

, . 141
2

2
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The constitutive equations relating E, B, D and H, taken
together with Maxwell’s equations (13), determine the
symmetry.

General nonlinear constitutive equations with Poincaré
symmetry take the form [2, 13, 14]

( ) ( )

( ) ( ) ( )

= +

= -

M I I
c

N I I

N I I M I I

D B E

H B E

,
1

, ,

, , , 15

1 2 2 1 2

1 2 1 2

where ( )M I I,1 2 and ( )N I I,1 2 are smooth scalar functions of
the invariants (14). The constitutive equations in vacuum are
D=ε0 E and B=μ0H, where ε0 and μ0 are, respectively,
the permittivity and permeability of empty space, with
ε0μ0=c−2; (so that M=0, and m e= =N c1 0 0

2).
In covariant form, the constitutive equations (15) become

( ) ( ) ˜ ( )= +mn mn mnG N I I F cM I I F, , . 161 2 1 2

Now, because of (10)–(12), the constitutive functionsM and
N in a system with conformal symmetry can depend only on
the ratio I2(x)/I1(x). Then let us write ( ) ( )= M I I u,1 2 and

( ) ( )= N I I u,1 2 [13, 14]. For convenience, we denote

˜ ( )= º = - ºmn
mn

mn
mnI F F X I

c
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2
,

4
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Then we rewrite the constitutive equations (15) in the cov-
ariant form

( ) ( ) ˜ ( )( ) º = +mn mn mn mn G G u F c u F , 18conformal

where

( )=u
Y

cX
19

is a dimensionless conformal invariant.

4. Lagrangian and non-Lagrangian theories

When the constitutive equations are nonlinear, one may have
either a Lagrangian or a non-Lagrangian theory. In the first
case, the equations of motion are derived from a Lagrangian
density ( )L X Y, . Then the constitutive equations are
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¶
¶

= -
¶

¶
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The functions M and N in (16) may then be written
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Y
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,
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We singled out the constant 1/μ in (21) so that the choice
( ) ( )= =N X Y M X Y, , 0L L and μ=μ0 yields the standard

Lagrangian of linear electrodynamics in vacuum, ( ) =L X Y,0

( )m- X1 2 0 [9]. Then a necessary and sufficient condition for
the theory to be Lagrangian is that the cross-derivatives be
equal; i.e.

( ) ( ) ( )-
¶

¶
=

¶
¶

N X Y

Y

M X Y

X

1

2

, ,
, 23

where both sides must equal ( )¶ ¶ ¶L X Y X Y,2 . IfM and N in
(16) violate (23), then the theory cannot be Lagrangian [3].

5. Conformal-invariant Lagrangian nonlinear
electrodynamics

Now let us consider conformal-invariant nonlinear electro-
dynamics, with the constitutive equations (18). If the theory is
Lagrangian, we use the subscript L and write ( ) =M X Y,L

( ) uL and ( ) ( )= N X Y u,L L (so that in the Lagrangian
case [ ]m= + 1 L and )= L , to remind us of the
dependence of these functions on the specific choice of
Lagrangian L. Then (23) takes the form

( ) ( ) ( )- = =
 u

u
cu

u

u
u

Y
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d

d
2

d

d
0, . 24L L

Integrating (24), we can express ( ) uL as

( ) ( ) ( ) ( )

( )
ò ò= = -


 u c u
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d
d 2 2 d ,
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L
L

L L

with the constant of integration subsumed into the term m1 .
Thus we obtain one form of the general constitutive

equations respecting conformal symmetry,
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L L

L

The constitutive equations as represented by (26) depend on
one arbitrary function ( ) uL , a function of the ratio of
relativistic invariants u=Y/cX.

There may be a constant term inL. However, as was
earlier remarked in [2], adding a constant κ to M (i.e. toL)
does not change the observable physics. Indeed, referring
back to (13)–(15), a result of adding κ to M is to add a term κ

B to D. But since div B=0, the value of ρ=div D is
unchanged. Likewise, a term −κ E is added to H. But the
resulting term in the equation for j is offset by the term that
was added to D. Hence the system E, B, ρ, j is unaffected by
κ; but it is these fields which describe all the observable
forces produced by and acting on electric charges and
currents.

Equivalently to (24), one may write

( )ò=


c u u
u

1

2

1 d

d
d 27L

L
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and (26) becomes
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L

in which ( ) uL is taken to be the arbitrary function of u.
The general Lagrangian density ( )=L L X Y,nonlin

conform for
conformal-invariant nonlinear electrodynamics can now be
written in several equivalent forms; e.g.

⎜ ⎟⎛
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1
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1
d , 30L0 2

where L0=−(1/2μ) X describes standard linear electro-
dynamics with μ=μ0 and Gμν=(1/μ0)Fμν. As noted after
(26), if ( ) k= uL (a constant), then

m
k= - +L X Y

1

2
lin

describes electrodynamics physically equivalent to that
described by L0. Otherwise, the general conformal-invariant
electrodynamics described by (29) or (30) is nonlinear.

The following examples illustrate some of the many
possibilities.

Example 1. Let ( ) l= u uL 1 , where the coefficient λ1 (with
the dimensionality of ò0c) controls the magnitude of the
nonlinearity. Then ( ) l= u cuL 1

2, and
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Example 2. More generally, let ( ) l= u uL n
n, ¹ -n 1

(where again, λn has the dimensionality of ò0c). Then
( ) [ ( )]l= + + u cn n u2 1 ;L n

n 1 and
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Note that if n<0, the model is singular when Y=0; i.e.
when B·E=0.

Example 3. Let ( ) a= u uL (where α has the dimensionality
of 1/μ0 or  c0

2). Then ( ) ( ) ∣ ∣a= u c u2 lnL , and we obtain
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m
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This model also is singular when u=0; i.e. when B·E=0.

Example 4. Constitutive equations based on more general
functions of u (other than polynomial or logarithmic) are likewise
compatible with conformal symmetry. For instance, we may let

( ) l= u businL , where ¹b 0 is an additional dimension-
less parameter. Then ( ) ( )l= + - u c u bu b bu2 sin cos ;L

1
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One can obtain similar equations for the examples given
by ( ) l= u bucosL , ( ) l= u businhL , and ( ) = uL

l bucosh .

6. Conclusion

We have described an approach to nonlinear classical Maxwell
electrodynamics with conformal symmetry, based on general-
ized constitutive equations. The latter are expressed in terms of
constitutive tensors that depend on conformal-invariant functions
of the field strengths. Our general description includes both
Lagrangian and non-Lagrangian theories. The latter would of
course include nonconservative, or dissipative systems.

A straightforward criterion distinguishes the Lagrangian
case, which leads to a general formula for the Lagrangian density.
We present several examples, illustrating a variety of possibilities
for nonlinear conformal-invariant electrodynamics. These may
occur as nonlinear perturbations of the usual, linear Maxwell
theory.

By requiring conformal symmetry, we thus distinguish a
particular class of nonlinear Lagrangian theories. Some choices
may be candidates for the phenomenological description of
conservative electrodynamics in the presence of matter, or even
for describing possible fundamental properties of spacetime. We
remark here that the Born–Infeld and Euler-Kockel Lagrangians
are not of the form of (29) or (30), and thus break the conformal
symmetry.

Elsewhere we have suggested further generalization based
on the well-known identification of conformally compactified
Minkowski spacetime with the projective light cone in a (4+2)-
dimensional spacetime Y(6) [11]. The conformal symmetry is then
expressed through (ordinary and hyperbolic) rotations in Y(6).
Writing the 6-dimensional analog of Maxwell’s equations, there
are now two independent conformal-invariant functions of the
field strengths. Dimensional reduction then permits one to
recover additional possibilities in Minkowski spacetime M(4).
This is a topic of our ongoing research.
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