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Abstract

Recent experimental results such as those on slow light heighten interest in nonlinear Maxwell theories. We obtain
Galilei covariant equations for electromagnetism by allowing special nonlinearities in the constitutive equations only, keeping
Maxwell’s equations unchanged. Combining these with linear or nonlinear Schrödinger equations, e.g., as proposed by Doebner
and Goldin, yields a consistent, nonlinear, Galilean Schrödinger–Maxwell electrodynamics. 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

In this Letter we propose nonlinear constitutive
equations restricting the symmetry of Maxwell’s equa-
tions to Galilean symmetry. We also show that these
constitutive equations arise as the formal nonrelativis-
tic limit (taking the speed of lightc → ∞) of the
nonlinear relativistic theory: no additional hypotheses
about relative field strengths are needed. Admitting
such nonlinear constitutive equations leads to possi-
bilities that are entirely new. Maxwell’s equations in
our approach stay unchanged; it is the choice of the
constitutive equations alone that makes the difference
between relativistic and nonrelativistic theories. We

* Corresponding author.
E-mail addresses: gagoldin@dimacs.rutgers.edu

(G.A. Goldin), shtelen@math.rutgers.edu (V.M. Shtelen).

stress that the resulting Galilean electrodynamics is
essentially nonlinear, although gauge invariant; linear
constitutive equations are indeed incompatible with
Maxwell’s equations and Galilean covariance. Further,
we extend the Galilean symmetry to the minimally
coupled Schrödinger–Maxwell theory, and to the cou-
pled systems of Maxwell and nonlinear Schrödinger
equations as proposed by Doebner and Goldin. Thus
one has a consistent and fully Galilean covariant (but
nonlinear) Schrödinger–Maxwell electrodynamics.

There is a commonly held “folk belief” among
physicists that Maxwell’s equations, being Lorentz in-
variant, are not consistent with Galilean symmetry.
However, it is known (but not widely appreciated)
that Galilean covariance, like Lorentz covariance, is a
property of all four of Maxwell’s equations for media
in classical electrodynamics. More than 25 years ago,
Le Bellac and Lévy-Leblond emphasized this in [1],
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noting that the clash between Maxwell’s equations and
Galilean relativity occurs only in the constitutive equa-
tions. Keeping the standard constitutive equations for
the vacuum and introducing some additional condi-
tions for the electromagnetic fields, these authors de-
rived two distinct Galilean limits of Maxwell’s equa-
tions, with v/c � 1: one in which Faraday’s law is
lost (called the electric limit); and another in which the
displacement current is zero, that violates the continu-
ity equation for charge and current densities (called
the magnetic limit). Brown and Holland, in a recent
discussion of these results, observed as follows: “It is
noted that no fully Galilean-covariant theory of a cou-
pled Schrödinger–Maxwell system (where the density
and current of the Schrödinger field act as source of
the nonrelativistic Maxwell field) is possible.” [2]

Dyson, in discussing an unpublished 1948 “proof”
of Maxwell’s equations by Feynman, remarks: “The
proof begins with assumptions invariant under Gal-
ilean transformations and ends with equations in-
variant under Lorentz transformations. How could
this have happened?” [3]. Dyson’s paper immedi-
ately provoked a heated discussion in the literature;
see, for example, [4–6]. In particular, Vaidya and Fa-
rina [6] ask in the title of their paper: “Can Gal-
ilean mechanics and full Maxwell equations coexist
peacefully?” and answer forcefully: “No, they can-
not.”

The fact that Maxwell’s equations for media are
both Lorentz and Galilei invariant sheds light on the
mystery behind Feynman’s insight. The conclusions
of Brown and Holland, and Vaidya and Farina, de-
pend on the implicit assumption of linear constitutive
equations. In this Letter we take a completely differ-
ent point of view. We show how the choice between a
Lorentz or Galilei covariant theory can be made by in-
troducing a special class of nonlinearities in the consti-
tutive equations,without modifying any of Maxwell’s
equations (or the continuity equation). The situation
is no longer that of Le Bellac and Lévy-Leblond, who
are compelled by the linear constitutive equations to
choose (in their words) between “the idea of a priv-
ileged frame of reference (the ether) [or] Einsteinian
relativity” [1, p. 217]. “The only way out (apart from
relativity, of course!) is to assume that the constitutive
equations hold only in some particular frame of ref-
erence, and this brings us at once to the ether theory”
[1, p. 230]. We suggest here that nonlinear constitutive

equations, where they might apply, offer another “way
out”, with Galilean relativity becoming an option.

Our interest in nonlinearity and Maxwell’s equa-
tions is heightened by recent experimental results
in quantum optics, including optical squeezing and
quantum nondemolition measurements, that suggest
the fundamental importance of nonlinear constitu-
tive equations in media. In particular, we are mo-
tivated by recent experimental results demonstrating
extremely slow light speed (as slow as 17 m/s) in
laser-dressed ultra-cold atomic media [7] to look again
at the question of Galilean-covariant electrodynam-
ics in the context of nonlinear, coupled Schrödinger–
Maxwell theories. The result is the framework for a
Galilean Schrödinger–Maxwell electrodynamics de-
scribed here, where the electric charge and current
densities obtained from the Schrödinger equation enter
as sources in Maxwell’s equations. In such a nonlinear
Galilean theory, depending on the constitutive equa-
tions, the possibility of waves propagating through
matter with finite velocity is not excluded. This is dif-
ferent from the case of a linear Galilean theory where,
as is known, electromagnetic waves “travel” with in-
finite velocity (see the discussion about this in [1,
p. 226]). We thus wish at least to raise the question
whether constitutive equations in our Galilean class
could serve as a useful mathematical model for some
actual media, in some range of velocities and field
strengths.

2. Symmetry of Maxwell’s equations for media

A systematic investigation of symmetry of Max-
well’s equations for media was reported in Refs. [8,9],
where it was shown that these equations are co-
variant under the inhomogeneous group of general
linear transformationsGL(4,R), that includes both
Lorentz and Galilei transformations. General consti-
tutive equations restricting this symmetry to Poincaré
symmetry were found.

It is important for further analysis to use a system of
units such as the SI system, that avoids incorporating
c into the definition of the fundamental fields. Without
such a choice it is not possible to see how a Galilean
theory arises from a relativistic theory in the limit
c → ∞. Maxwell’s equations for media written in SI
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units have the form [10–12]

∇ × E = −∂B
∂t

, ∇ · B = 0,

(2.1)∇ × H = ∂D
∂t

+ j, ∇ · D = ρ,

whereE is the electric field,D is the electric displace-
ment,B is the magnetic induction, andH is the mag-
netic field; ρ and j are charge and current densities.
The physically detectable fields areE andB, via the
Lorentz force on a charged particleF = q(E + v × B).
The fieldsH andD may be regarded as constructs used
to describe (via the constitutive equations) how the di-
rectly observable fields are produced by charges and
currents.

As is well known, Maxwell’s equations are Lorentz
covariant; in particular, they are invariant under the
space-time transformations [10–12]

x ′‖ = γ (x − vt)‖, x ′⊥ = x⊥,

(2.2)t ′ = γ

(
t − v · x

c2

)
, γ = 1√

1− v2/c2
,

with the corresponding field transformations

B ′‖ = B‖, B ′⊥ = γ

(
B − 1

c2
v × E

)
⊥

,

E′‖ = E‖, E′⊥ = γ (E + v × B)⊥,

H ′‖ = H‖, H ′⊥ = γ (H − v × D)⊥,

(2.3)D′‖ = D‖, D′⊥ = γ

(
D + 1

c2 v × H
)

⊥
,

and the transformations for current and charge densi-
ties:

j ′‖ = γ (j − vρ)‖, j ′⊥ = j⊥,

(2.4)ρ′ = γ

(
ρ − v · j

c2

)
.

It is appropriate to list here the Lorentz field invariants:

I1 = B2 − 1

c2 E2, I2 = B · E,

I3 = D2 − 1

c2
H2, I4 = H · D,

(2.5)I5 = B · H − E · D, I6 = B · D + 1

c2 E · H.

One can also verify that Maxwell’s equations (2.1)
are invariant under the Galilean transformations

t ′ = t, x′ = x − vt,

E′ = E + v × B, B′ = B,

H′ = H − v × D, D′ = D,

(2.6)j′ = j − ρv, ρ′ = ρ,

which arise as thec → ∞ limit of the Lorentz transfor-
mations (2.2)–(2.4). Both Galilean and Lorentz sym-
metries belong to the class of general linear transfor-
mationsGL(4,R) admitted by Maxwell’s equations
(2.1). This, in turn, is a consequence of the incom-
pleteness of system (2.1): there are 8 equations for 12
unknown functions. The system must be completed by
the constitutive equations, which are functional rela-
tions between vectorsD, E, B, andH.

A particular choice of the constitutive equations can
reduce the symmetry of system (2.1) to Lorentz or
to Galilei. General constitutive equations that restrict
the GL(4,R) symmetry of Maxwell’s equations to
Lorentz (Poincaré) are reported in Refs. [8,9]. In SI
units, they have the form

(2.7)D = MB + 1

c2
NE, H = NB − ME,

whereM andN are arbitrary scalar functions of the
Lorentz invariantsI1, I2 given in (2.5). Equivalently,
we may write

(2.8)B = RD + 1

c2
QH, E = QD − RH,

whereQ andR are arbitrary functions of the Lorentz
invariantsI3, I4 from (2.5). Some well-known non-
linear theories like Born–Infeld electrodynamics, or
Euler–Kockel electrodynamics that takes into account
quantum-mechanical nonlinear effects (see, for exam-
ple, [10] and references therein), correspond to partic-
ular choices ofM andN in (2.7).

The constitutive equations that reduce theGL(4,R)

symmetry group of (2.1) to the Galilei group are

(2.9)D = M̂B, H = N̂B − M̂E,

or, equivalently,

(2.10)B = R̂D, E = Q̂D − R̂H,

where M̂ and N̂ , Q̂ and R̂ are arbitrary functions
of Galilean invariants. To demonstrate this, we first
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use (2.6) to see that the general constitutive equa-
tions D = f(B,E), H = g(B,E) must take the form
D = M̂B, H = N̂B + N̂1E, whereM̂, N̂, N̂1 are some
scalar functions of Galilean invariants. Then substitu-
tion of the latter equation into (2.6) results in the con-
dition N̂1 = −M̂. Finally, one shows that the Galilean
field invariants are

Î1 = B2, Î2 = B · E,

Î3 = D2, Î4 = H · D,

(2.11)Î5 = B · H − E · D, Î6 = B · D.

One can, if one wishes, restrict oneself to constitutive
equations in explicit (i.e., nonimplicit) form, so thatM̂

andN̂ depend on̂I1, Î2, andQ̂ andR̂ depend on̂I3, Î4.
Note that the constitutive equations (2.9), (2.10) and

the Galilean field invariants (2.11) are, respectively,
the formal limits asc → ∞ of the Lorentz invariant
relations (2.7), (2.8), and (2.5). We remark, however,
that the (mathematical) conditionc → ∞ is not the
same thing as the (physical) low velocity condition
v/c � 1. For example,c → ∞ (keeping fixed the
field strengthsE andB) does not allow the “electric
limit” |E| >> c|B|, while v/c � 1 is compatible with
this limit. Ref. [1] includes a discussion of how the
Galileanv/c � 1 limits considered there are related
to c → ∞ limits.

One obtains the standard Maxwell equations for the
vacuum (wherec−2 = ε0µ0) by choosingN = 1/µ0,
M = 0 in (2.7). But in the case of Galilean constitu-
tive equations, lettingM be a constant is not compat-
ible with a nonzero charge densityρ. Therefore, we
conclude that a consistent Galilean electrodynamics
that retains the standard continuity equation and the
Lorentz force isessentially nonlinear. Indeed, in [1,
p. 230], it is stressed (always assuming the usual, lin-
ear constitutive equations) that the three assumptions
of Galilean invariance, the continuity equation with
nonzero values, and magnetic forces between electric
currents, are mutually inconsistent.

It is worth remarking for the case of relativistic
constitutive equations (2.7), that lettingM = λ =
constant, so that

D = λB + 1

c2NE, H = NB − λE,

results in equations for the observable fieldsB and
E that are independent of the magnitude ofλ. In

other words, constant termsλ in the above constitutive
equations have no effect on observable fields, and
therefore, without loss of generality one can setλ = 0.
In general, adding a constant toM in (2.7) has no
effect on the observable fieldsE andB. This is also
true for M̂ in (2.9), which is why nontrivial Galilean
constitutive equations are essentially nonlinear.

The (linear) Galilean electrodynamics discussed in
the literature is associated with the pre-Maxwell elec-
trodynamics, with no displacement current [1,2,10,12].
It is also called the “magnetic limit” of Maxwell’s
equations, and is the only one of the two limits dis-
cussed in [1] that is compatible with Schrödinger
quantum mechanics. These equations in SI units have
the form

∇ × E = −∂B
∂t

, ∇ · B = 0,

(2.12)∇ × B = µ0j, ∇ · E = ε0
−1ρ.

The approach used in [1] to derive (2.12) from (2.1)
does not actually use the Galilean symmetry initially
present. Rather, the constitutive equations for the vac-
uum D = ε0E, B = µ0H are imposed, immediately
breaking the Galilean symmetry of (2.1). Then phys-
ical assumptions about the relative field strengths are
made,|E| � c|B| and |j| � cρ, aimed toward restor-
ing approximate Galilei symmetry for boosts of small
magnitude. Bothε0 andµ0 are kept nonzero. Addi-
tional assumptions are needed restricting the magni-
tudes of time and space derivatives ofρ andj, so that
the displacement currentε0µ0∂E/∂t can be neglected,
and the continuity equation replaced by∇ · j = 0. The
Galilean transformations forE andB in (2.12) are as
in (2.6), while the corresponding transformations for
ρ andj are

(2.13)j′ = j, ρ′ = ρ − ε0µ0v · j.

Note that ε0µ0 must be kept nonzero in (2.13),
otherwise the Galilean invariance of (2.12) is broken.
Because of (2.13),ρ andj cannot have been produced
by the Schrödinger field.

In our Galilean limit,E andB transform as under
the magnetic limit described in [1], whileρ and j
transform as under the electric limit. Thus we do
not have a consistent physical approximation to the
relativistic theory in the vacuum; i.e., if we assume
linear constitutive equations. This is another reason
to say our approach is “essentially” nonlinear, and
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to look to nonlinear media for possible domains of
application.

To explore the consistency of the Galilean electro-
dynamics (2.1), (2.9), we have investigated three situa-
tions: first, the casêM = 0, N̂ = E · B (which requires
ρ = 0); secondly,M̂ = E ·B, N̂ = 1/µ0; and third, the
caseQ̂ = 1/ε, R̂ = α + βH · D/|D|2, which is of spe-
cial interest whenβ = 2α2ε. We were able to obtain
some particular solutions, and this is a subject of our
ongoing research.

Let us note here that using the Galilei invariance
of the system, one can construct (new) traveling
wave solutions from (old) solutions by means of the
following formulas:

Enew(x) = Eold(x
′) − v × Bold(x

′),
Bnew(x) = Bold(x

′),
Hnew(x) = Hold(x

′) + v × Dold(x
′),

Dnew(x) = Dold(x
′),

jnew(x) = jold(x
′) + vρold(x

′),
(2.14)ρnew(x) = ρold(x

′),
wherex ′ = (x′, t ′) = (x − vt, t).

3. A framework for Galilean
Schrödinger–Maxwell electrodynamics

As is well known, any solution for vectorsE and
B of Maxwell’s equations (2.1), can be represented in
terms of potentials (Φ,A):

(3.1)B = ∇ × A, E = −∂A
∂t

− ∇Φ,

for someΦ and A. The choice ofΦ and A is not
unique: new potentialsA′ = A + ∇Λ, Φ ′ = Φ −
∂Λ/∂t, containing an arbitrary functionΛ, result in
the sameE and B (gauge invariance). The standard
procedure of introducing electromagnetic interaction
in quantum mechanics is minimal coupling, which
is consistent with Galilean covariance of the free
field equations. One obtains the coupled Schrödinger–
Maxwell equation

(3.2)ih̄
∂ψ

∂t
= 1

2m
(−ih̄∇ − eA)2ψ + eΦψ,

where the electromagnetic fieldsE,B are obtained
from Φ,A via (3.1), and are governed by (2.1). Gauge

invariant charge and current densities entering (2.1)
are given bye times the quantities:

ρ = ψ̄ψ,

(3.3)Jgi = h̄

2im

[
ψ̄∇ψ − (∇ψ̄)ψ

] − e

m
ρA.

Eq. (3.2) is Galilean invariant, with corresponding
transformations given in (2.6), and the transformations
for vector potential(Φ,A) given by

(3.4)A′ = A, Φ ′ = Φ − v · A.

The resulting fully Galilean covariant, coupled Schrö-
dinger–Maxwell electrodynamics is embodied in
Eqs. (2.1), (2.9) (with some concrete choices ofM̂

andN̂), (3.1), (3.2), (3.3).
It is natural to ask about the coupling of nonlinear

Maxwell theory with nonlinear Galilean invariant
Schrödinger mechanics. A possible framework for
such a quantum mechanics is given by the family
of nonlinear equations proposed by Doebner and
Goldin [13]. Nonlinear terms of the form

ih̄D

2

%ρ

ρ
ψ + h̄D′

[
c1

∇ · ĵ
ρ

+ c2
%ρ

ρ
+ c3

ĵ2

ρ2

(3.5)

+ c4
ĵ · ∇ρ

ρ2 + c5
(∇ρ)2

ρ2

]
ψ

are added to the right side of Eq. (3.2), whereĵ =
(1/2i)[ψ̄∇ψ − (∇ψ̄)ψ], andD,D′ are diffusion co-
efficients. The Galilean-invariant subfamily of quan-
tum theories is defined byc1 + c4 = c3 = 0. We
are proposing consideration of the coupled system
of Doebner–Goldin equations and nonlinear Galilean-
covariant Maxwell equations, as a consistent Galilean
electrodynamics. In this system, the quantitiesρ,E, B,
and

(3.6)Jgi = h̄

2im

[
ψ̄∇ψ − (∇ψ̄)ψ

] − D∇ρ − e

m
ρA

are gauge invariant. Eq. (3.6) gives the current to be
entered in Maxwell’s equations. Doebner and Goldin
further generalize the notion of gauge transformation
to allow nonlinear gauge transformations, writing
more general formulas for the gauge invariantsρ,
Jgi, E, and B [14,15]. Recently, Galilean-invariant
Doebner–Goldin theories were applied to describe the
dynamics of matrixD-branes [16].
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In conclusion, let us remark that one can extend
our approach further to include in the theory Galilean
spinor equations (see, for example, [8]). Another pos-
sible generalization of the electrodynamics described
here is to Yang–Mills fields and coupled Schrödinger–
Yang–Mills theories.
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