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Since Suslin described the K-theory of the complex numbers C in [Su1], there has
been a renewed interest in the structure of the K-theory of ¢elds. In this paper
we shall describe the Abelian group structure of the K-groups of a complex variety
X and its function ¢eld F , assuming that X has dimension at most two, i.e., that
X is a curve or a surface. This restriction is forced by our ignorance concerning
the higher Chow groups CHiðF ; nÞ for 2W i < dimðX Þ. In a sequel we shall deal
with higher-dimensional varieties, using Voevodsky’s solution to the Milnor Con-
jecture to describe the torsion in the higher Chow groups CHiðF ; nÞ.
The ¢rst main result in this paper (Theorem 4.8) describes the structure of the

Abelian groups KnðF Þ, at least when d ¼ tr. deg. ðF Þ is at most two. We prove that
KnðF Þ is a divisible group for all n > d, and determine its torsion subgroup. Our
result builds upon Suslin’s result [Su3] that the Milnor K-groups KM

n ðF Þ are divisible
for n > d, because KM

n ðF Þ=m ffi Hn
etðF ;Z=mÞ vanishes for n > d.

In the range nW 2, the structure of KnðF Þ is well known, albeit rich and
complicated, when F is any function ¢eld over C. The structure of K1ðF Þ ¼ F�

is classical; it is the product ofC� and a free Abelian group (see Example 1.1 below).
The group K2ðF Þ need not be divisible either, but its torsion subgroup is always
divisible. This follows from the Merkurjev^Suslin theorem [MS] that K2ðF Þ=m is
isomorphic to the m-torsion in the Brauer group BrðF Þ, and from Suslin’s formula
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for the torsion subgroup of K2ðF Þ in [Su2, 3.7]: the m-torsion subgroup of K2ðF Þ is
isomorphic to F� � mm.
Our secondmain result for curves and surfaces (Theorems 3.2 and 6.6) is that when

n > dimðX Þ the group KnðX Þ is divisible-by-¢nite: its torsion consists of a speci¢ed
number of copies of Q=Z, together with the ¢nite summands, which are the torsion
subgroups of the Betti cohomology H�ðX ;ZÞ. This result holds for all n > 0 when
X is proper. In particular, if X is a curve then KnðX Þ is a divisible group for
nX 2 (and n ¼ 1 if X is proper).
A related phenomenon for surfaces is our result (see Proposition 6.3 below) that

the ¢nite group H3ðX ;ZÞtors is a summand of K1ðX Þ. When X is any smooth proper
variety, this summand was found by Colliot-The¤ le' ne and Raskind [CT-R, 2.2].
One way to interpret our results is to consider the comparison map r between the

algebraic K-theory of the variety X and the topological K-theory KU�ðX Þ of the
underlying topological space. Recall that each KU�nðX Þ is a ¢nitely generated
Abelian group. De¢ne the relative groups Krel

n ðX Þ to ¢t into an exact sequence

. . .Knþ1ðX Þ !
r

KU�n�1ðX Þ ! Krel
n ðX Þ ! KnðX Þ !

r
KU�nðX Þ . . . :

If dimðX ÞW 2, then Krel
n ðX Þ is a uniquely divisible group for all nX 0, and hence

KnðX Þ is the direct sum of a divisible group and a ¢nitely generated group
Zr
� A, which injects into KU�nðX Þ and has A ffi KU�nðX Þtors (Corollary 2.12).

Our third main result computes the torsion in KnðX Þ for nX dimðX Þ
(Theorem 6.6). The divisible part of this divisible-by-¢nite group is the mirror image
ðQ=ZÞs of the free part Zs of KU�n�1ðX Þ.
This paper is organized as follows. In Section 1 we make some elementary obser-

vations about the higher Chow groups CHiðF ; nÞ when C � F . In Section 2 we
describe the K-theory with coef¢cients Z=m for F and X ; many of the results in
this section were announced by Suslin in [SuM]. In Section 3 we describe the struc-
ture of KnðY Þ when Y is a smooth curve.
In the second half of the paper we focus on a smooth surface X and its function

¢eld F . In Section 4 we introduce Chern classes with values in Deligne^Beilinson
cohomology, and use them to determine the structure of KnðF Þ: it is divisible for
n > 2 with prescribed torsion. In Section 5 we use this structure to determine
the K-cohomology of X , and we describe the groups KnðX Þ in Section 6.
We will use the following notation. If A is an Abelian group and m is a positive

integer, Am will denote the subgroup fa 2 A:ma ¼ 0g, and we will write A=m for
A=mA. The torsion subgroup of A will be written as Ators.
If X is a complex variety, we write X ðCÞ for the complex analytic space underlying

X . If A is a sheaf on X ðCÞ, such as A ¼ Z, C� or Op
Xan

, we write H�anðX ;AÞ for the
sheaf cohomology of A on X ðCÞ. If A is a constant sheaf, we drop the subscripts
and just write H�ðX ;AÞ because, of course, this equals the classical singular
cohomology of X with coef¢cients in A. If A ¼ Z=m then it is well known that
H�ðX ;Z=mÞ also agrees with the e¤ tale cohomology groups H�etðX ;Z=mÞ.
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If F is the function ¢eld of X , we shall write H�anðF ;AÞ for the direct limit of the
groupsH�anðU;AÞ asU runs through all Zariski open subsets of X ; this is a birational
invariant, independent of the choice of X .
We will also use the standard notation KnðX ;Z=mÞ for the K-theory of X with

coef¢cients Z=m, and CHiðX ; n;Z=mÞ for the higher Chow groups of X with
coef¢cients Z=m. The calligraphic Kn, KnðZ=mÞ and HnðZ=mÞ refer to the Zariski
sheaves associated to the presheaves sending U to KnðUÞ, KnðU;Z=mÞ and
Hn

etðU;Z=mÞ, respectively.

1. Divisibility of Chow Groups of Fields

Let F be a ¢eld of ¢nite type over C. We cannot expect every higher Chow group
CHiðF ; nÞ to be divisible. For example, we have K0ðF Þ ¼ CH0ðF ; 0Þ ¼ Z for every
¢eld F .
In this section we show that the groupsCHiðF ; nÞ are divisible for suf¢ciently large

n, at least if F has small transcendence degree over C. Much of this material is
implicit in the work of Suslin [SuM] and Kahn [K]. We begin with some low degree
calculations.

EXAMPLE 1.1. (a) Assuming F 6¼ C, the group K1ðF Þ ¼ CH1ðF ; 1Þ ¼ F� is not
divisible either. To see this, choose a smooth projective variety X such that F is
the function ¢eld of X . It is well known that F� is the product of C� and the group
PDivðX Þ of principal divisors on X [Hart, II.6]. Since PDivðX Þ is a free Abelian
group, the group F� cannot be divisible.
(b) The group K2ðF Þ is known to be divisible when F is the function ¢eld of a curve,

but not always when F is the function ¢eld of a surface. Indeed, K2ðF Þ=m is the
subgroup BrðF Þm of the Brauer group BrðF Þ [MS], so these are just restatements
about the Brauer group of F ; see [Dix, III].

The isomorphisms K0ðF Þ ffi CH0ðF ; 0Þ and K1ðF Þ ffi CH1ðF ; 1Þ are degenerate
cases of the (third quadrant) Bloch^Lichtenbaum spectral sequence. It converges
to the K-theory of F [BL]:

Ep;q
2 ¼ CH�qðF ;�p� qÞ ¼)K�p�qðF Þ; p; qW 0: ð1:2Þ

Note that CH0ðF ; nÞ ¼ 0 for n 6¼ 0, and CH1ðF ; nÞ ¼ 0 for n 6¼ 1 (because
CH1ðF ; 0Þ ¼ PicðF Þ ¼ 0) by [Bl]. Thus K2ðF Þ ffi CH2ðF ; 2Þ is another degenerate
case. The following result, essentially due to Soule¤ , gives a criterion for further
degeneration of the spectral sequence.

PROPOSITION 1.3. Set i ¼ �q and n ¼ �p� q, so that Ep;q
2 ¼ CHiðF ; nÞ in the

Bloch^Lichtenbaum spectral sequence (1.2).

If CHiðF ; nÞ is uniquely divisible, then Ep;q
1 ¼ CHiðF ; nÞ.
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If CHiðF ; nÞ is divisible, then Ep;q
1 is a quotient of CHiðF ; nÞ.

If CHiðF ; nÞ is torsion-free, then Ep;q
1 is a subgroup of CHiðF ; nÞ.

Proof. Soule¤ has proven [Sou2] that the Adams operations ck commute with the
differentials dr in the spectral sequence, and that the ck are multiplication by ki

on CHiðF ; nÞ. Hence, we have ck
¼ ki on each Ep;�i

r . Since ck
¼ ki holds for every

i and k, it follows from [Sou1, 2.8] that for each q and r there is an integer N
so that Ndp;q

r ¼ 0 for every p. The result is now a straightforward induction on
r; if Ep;q

r is divisible, dp;q
r ¼ 0 and Ep;q

rþ1 is a quotient, while if E
p;q
r is torsion-free then

dp�r;qþr�1
r ¼ 0 and Ep;q

rþ1 is a subgroup. &

LEMMA 1.4. Let F be a ¢eld of ¢nite type over C, and set d ¼ tr. deg. ðF Þ. Then for
each iX d:

CHiðF ; nÞ is uniquely divisible for n 6¼ 2i; . . . ; 2i � d � 1;
CHiðF ; 2iÞ is torsion-free;
CHiðF ; 2i � d � 1Þ is divisible.

Proof. This follows from the combination of the universal coef¢cient sequence

0! CHiðF ; nÞ=m! CHiðF ; n;Z=mÞ !
@

CHiðF ; n� 1Þm ! 0;

the theorem of Suslin [Su3, 4.3] that CHiðF ; n;Z=mÞ ffi H2i�n
et ðF ;Z=mÞ for iX d, and

the fact that F has e¤ tale cohomological dimension d. &

Clearly the combination of Proposition 1.3 and Lemma 1.4 imply that almost all
the differentials vanish, and they all vanish if F has transcendence degree at
most 2. In these cases the spectral sequence determines K�ðF Þ up to the usual exten-
sion problem.
When n ¼ 2i and iX d, Lemma 1.4 states that CHiðF ; 2iÞ is torsion-free. We will

prove it is uniquely divisible. The critical case to consider is F ¼ C.

COROLLARY 1.5. ðF ¼ CÞ For each nX 0, the group KnðCÞ is the direct sum of the
groups CHiðC; nÞ, 0W iW n. Moreover, each summand CHiðC; nÞ is uniquely
divisible, except when n ¼ 2i � 1 or i ¼ 0.

If iX 1, the group CHiðC; 2i � 1Þ is divisible, and its torsion subgroup is:

CHiðC; 2i � 1Þtors ffi K2i�1ðCÞtors ffi Q=Z:

Proof. By Lemma 1.4, CHiðC; nÞ is divisible for n 6¼ 2i, and torsion-free for
n 6¼ 2i � 1. By Proposition 1.3, all differentials are zero, i.e., Ep;q

1 ¼

CH�qðC;�p� qÞ.
Hence the ¢ltration quotients for the abutment KnðCÞ are the groups CHjðC; nÞ.

To solve the extension problem, recall that for each n the groups CHjðC; nÞ are
uniquely divisible with one possible exception. If n is odd, the exception is
divisible, and it follows easily that if n ¼ 2i � 1 then KnðCÞ ¼ �CHjðC; nÞ, with
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KnðCÞtors ffi Q=Z equal to CHiðC; nÞtors. Since CHiðC; nÞm ffi Z=m is a quotient
of CHiðC; 2i;Z=mÞ ffi Z=m, the universal coef¢cient sequence forces each
CHiðC; 2iÞ to be divisible. From this we get a splitting of KnðCÞ for even n > 0. &

PROPOSITION 1.6. Let F be a ¢eld properly containing C. Then for i ¼ 1 or
iX tr. deg. ðF Þ:

(1) CHiðF ; 2iÞ is uniquely divisible, and
(2) the torsion subgroup of CHiðF ; 2i � 1Þ is isomorphic to Q=Z, the torsion subgroup

of CHiðC; 2i � 1Þ.

The group Q=Z is also a canonical summand of K2iðF ;Q=ZÞ and K2i�1ðF Þtors.
Proof. Let �FF denote the algebraic closure of F . Suslin proved in [Su1] that for each

m and i there is an isomorphism K2iðC;Z=mÞ ffi K2ið �FF ;Z=mÞ, and that it factors
through K2iðF ;Z=mÞ. The same proof, applied to T ðF Þ ¼ CHiðF ; 2i � 1Þm, shows
that there is an isomorphism T ðCÞ ffi T ð �FF Þ factoring through T ðF Þ. Hence T ðCÞ,
which is isomorphic to Z=m by Corollary 1.5, is a summand of T ðF Þ. If i ¼ 1,
T ðF Þ ¼ T ðCÞ ¼ mm. When iX tr. deg. ðF Þ, T ðF Þ is a quotient of the ¢nite group

CHiðF ; 2i;Z=mÞ ffi H0
etðF ;Z=mðiÞÞ ffi Z=m:

Hence we must have T ðF Þ ffi T ðCÞ ffi Z=m. Now let m go to in¢nity. &

DEFINITION 1.7. The canonical summands Q=Z of K2iðF ;Q=ZÞ, K2i�1ðF Þtors and
CHiðF ; 2i � 1Þtors will be called the Bott summands of these groups. For each m,
we will also refer to the canonical summands Z=m of K2iðF ;Z=mÞ, K2i�1ðF Þm
and CHiðF ; 2i � 1Þm as the Bott summands.
They are not canonically summands of K2i�1ðF Þ or CHiðF ; 2i � 1Þ. For example,

when i ¼ 1 we can identify Q=Z with the group of roots of unity in K1ðF Þ ¼
CH1ðF ; 1Þ ¼ F�.

PROPOSITION 1.8. Let F be a ¢eld containing C, and suppose iX 2. Then

(a) The quotient of CHiðF ; 2i � 1Þ by the Bott summand Q=Z is uniquely divisible.
(b) The torsion subgroup of CHiðF ; 2i � 2Þ is a divisible group, isomorphic to

F� �Q=Z, and its m-torsion subgroup is given by:

CHiðF ; 2i � 2Þm ffi H1ðF ;Z=mðiÞÞ ffi F�=F�m for all m.

Proof. Since CHiðF ; 2i � 1;Z=mÞ ffi H1ðF ;Z=mðiÞÞ, the universal coef¢cient
sequence shows that it suf¢ces to prove that CHiðF ; 2i � 1Þ is divisible by each prime
‘. For this we modify the argument of [Su2, 3.4].
Consider the ¢ltered poset of all sub¢elds F 0 of F which are ¢nitely generated over

Q. The natural map from CHiðF ; 2i � 1Þ toH1ðF ;Z=‘nðiÞÞ factors through the direct
limit of the corresponding maps for F 0, and by naturality in m ¼ ‘n each of these
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factor through the inverse limit H1ðF 0;Z‘ðiÞÞ ¼ lim
 �

H1ðF 0;Z=‘nðiÞÞ. Hence it suf¢ces
to show that lim

�!
H1ðF 0;Z‘ðiÞÞ vanishes for iX 2.

The proof of [Su2, 2.4] goes through withZ‘ð1Þ replaced byZ‘ði � 1Þ for any iX 2.
Given this, the proof of [Su2, 2.7] goes through to show that if F 0 is a ¢nitely gen-
erated sub¢eld of F with ground ¢eld F 00 then H1ðF 00;Z‘ðiÞÞ ¼ H1ðF 0;Z‘ðiÞÞ. Taking
the limit over all such F 0 yields the desired vanishing:

lim
�!

H1ðF 0;Z‘ðiÞÞ ¼ lim
�!

H1ðF 00;Z‘ðiÞÞ ¼ H1ð �QQ;Z‘ðiÞÞ ¼ 0: &

Since CH2ðC; 2Þ ¼ K2ðCÞ is divisible and CH1ðC; 1Þ ¼ C
�, the universal co-

ef¢cient sequence yields an isomorphism between CH1ðC; 2;Z=mÞ and the group
mm of mth roots of unity. Fixing a primitive root of unity z, we shall refer to
the corresponding element b of CH1ðC; 2;Z=mÞ as the Bott element.

LEMMA 1.9. Let F have transcendence degree d over C. Multiplication by the Bott
element b induces isomorphisms CHiðF ; n;Z=mÞ ffi CHiþ1ðF ; nþ 2;Z=mÞ for all
iX d.

Proof. By [Su3, 4.3] the norm residue map CHiðF ; n;Z=mÞ ! H2i�n
et ðF ; m

�i
m Þ is an

isomorphism for iX d (both vanish unless 0W nW 2i). By [W3, 5.2] this map is com-
patible with multiplication. Since b maps to the class ½z� in H0

etðF ; m
�1
m Þ ¼ mm, this

means the following diagram commutes (proving the lemma). &

CHiðF ; n;Z=mÞ ���!
ffi

a
H2i�n

et ðF ; m
�i
m Þ??y[b ffi

??y[½z�
CHiþ1ðF ; nþ 2;Z=mÞ ���!

ffi

a
H2i�n

et ðF ; m
�iþ1
m Þ:

2. K-Theory with Coe⁄cients

We turn our attention to K-theory with coef¢cients Z=m, and calculate the groups
KnðX;Z=mÞ. The following result was observed by Suslin in [SuM, p. 350].

PROPOSITION 2.1 (Suslin). Let F be the function ¢eld of a curve or surface over C.
Then there are natural isomorphisms for all nX 1:

KnðF ;Z=mÞ ffi
Z=m�H2ðF ;Z=mÞ if nX 2 is even;

H1ðF ;Z=mÞ if nX 1 is odd.

(

In effect, the Bloch^Lichtenbaum spectral sequence (1.2) has an analogue with
coef¢cients (constructed in [RW]), and it degenerates when tr. deg. ðF ÞW 2. The
extension problem is solved by Corollary 1.6, because the Bott summand is the
quotient H0ðF ;Z=mðiÞÞ ffi Z=m of K2iðF ;Z=mÞ.
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Let Ket
n ðX ;Z=mÞ denote the e¤ tale K-theory of X with coef¢cients Z=m. There are

natural maps rnðX Þ:KnðX;Z=mÞ ! Ket
n ðX ;Z=mÞ, constructed in [Fr2, 1.3].

THEOREM 2.2 (Suslin). Let X be a smooth complex variety with function ¢eld F. If
dimðX ÞW 2, there are isomorphisms for all nX 1 (and injections for n ¼ 0):

rnðX Þ:KnðX ;Z=mÞ �!
ffi

Ket
n ðX;Z=mÞ;

rnðF Þ:KnðF ;Z=mÞ �!
ffi

Ket
n ðF ;Z=mÞ:

This theorem was announced in [SuM, 4.7], but the proof in loc. cit. has a gap
because the multiplicative properties of the Bott element b 2 K2ðC;Z=mÞ on the
Bloch^Lichtenbaum spectral sequence for a general ¢eld F are presently unknown.
One of the main purposes of this section is to provide a proof of Theorem 2.2. We

will ¢rst dispose of the case of curves, stating a slightly sharper result.

PROPOSITION 2.3.Let Y be a smooth curve overC. Then multiplication by the Bott
element b2K2ðC;Z=mÞ induces isomorphisms KnðY ;Z=mÞ ffiKnþ2ðY ;Z=mÞ for all
nX 0, and there are isomorphisms:

KnðY ;Z=mÞ ffi
Z=m�H2ðY ;Z=mÞ if nX 0 is even,

H1ðY ;Z=mÞ if n > 0 is odd.

�
ð2:3:1Þ

Moreover, KnðY ;Z=mÞ �!
ffi

Ket
n ðY ;Z=mÞ and KnðF ;Z=mÞ �!

ffi
Ket

n ðF ;Z=mÞ for all
nX 0, where F ¼ CðY Þ.

Proof. Write F for the function ¢eld of Y , and i:Y ! SpecðCÞ for the structure
map. Using the abbreviations K 00� ðY Þ for K�ðY ;Z=mÞ and H�ðY Þ for
H�ðY ;Z=mÞ, we have a diagram for all nX 0 even:

K 00n ðCÞ ¼ K 00n ðCÞ

i�
??y i�

??yffi
0 �! K 00nþ1ðY Þ �! K 00nþ1ðF Þ �!

@
�y2Y ðCÞK 00n ðCÞ �! K 00n ðY Þ �! K 00n ðF Þ �! 0

ffi

??y ??yffi
0 �! H1ðY Þ �! H1ðF Þ �!

@
�y2Y ðCÞH0ðCÞ �! H2ðY Þ �! 0:

The rows are the exact localization sequences inK-theory and e¤ tale cohomology. The
vertical isomorphisms are from Proposition 2.1.
By Lemma 2.3.2 below, the middle square commutes up to a natural isomorphism

of H0ðCÞ ffi Z=m. Given this, we can ¢nish the proof of Proposition 2.3. A diagram
chase yields the isomorphisms (2.3.1). Since Y has the e¤ tale homotopy type of
the complex surface Y ðCÞ, we see from [Fr1, 1.2(iv)] that there are similar
isomorphisms for Ket

n ðY ;Z=mÞ. Hence, the source and target of each rnðY Þ are ¢nite
groups of the same order. By [Fr2, 2.9], the maps rnðY Þ are onto, and are
isomorphisms for n ¼ 0; 1. Thus each rnðY Þ must be an isomorphism. Passing to
the limit over all open subsets of Y yields the result for F ¼ CðY Þ. &
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LEMMA 2.3.2.Let y be a closed point of Y and nX 0 even. Then the square formed by
the connecting homomorphisms @y and the isomorphisms of Proposition 2.1 commutes
up to a natural isomorphism of H0ðCÞ ffi Z=m.

K 00nþ1ðF Þ ���!
@y

K 00n ðCÞ

ffi

??y ??yffi
H1ðF Þ ���!

@y
H0ðCÞ

Proof. We shall prove this by mimicking the argument of [RW, (6.4)]. Form the
henselization Ry of OY ;y and write Fy for its ¢eld of fractions. Because Fy is a direct
limit of function ¢elds of curves, Proposition 2.1 applies to Fy too. Hence we
can form the following diagram, using the isomorphisms of 2.1 for the vertical maps.

K 00nþ1ðF Þ ���! K 00nþ1ðFyÞ ���!
@y

ffi
K 00n ðCÞ

ffi

??y ffi

??y ffi

??y
H1ðF Þ ���! H1ðFyÞ ���!

@y

ffi
H0ðCÞ:

The left square commutes by naturality of the isomorphism in Proposition 2.1, and
the outer square is the square in question. So it suf¢ces to show that the horizontal
maps labelled @y are isomorphisms. (We do not care here if the right square com-
mutes.)
By rigidity, we know that HiðRyÞ ¼ HiðCÞ ¼ 0 for i > 0 so the connecting map

@y:H1ðFyÞ ! H0ðCÞ in the localization sequence is an isomorphism; see [Sou, III.2].
Similarly, K 00nþ1ðRyÞ ¼ K 00nþ1ðCÞ ¼ 0 by Gabber rigidity, so the connecting map
@y:K 00nþ1ðFyÞ ! K 00n ðCÞ in the K-theory localization sequence is an injection; since
both source and target have order m, it is an isomorphism. (Alternatively, one could
argue as in [Sou] or [RW, 3.3].) &

As observed by Suslin in loc. cit., this shows that even if Y is a singular curve then
multiplication by the Bott element induces isomorphisms K 0nðY ;Z=mÞ ffi
K 0nþ2ðY ;Z=mÞ for all nX 0. We also have KnðY ;Z=mÞ ffi Knþ2ðY ;Z=mÞ for all
nX 0 by the following result.

COROLLARY 2.4. If Y is a singular curve over C, there are isomorphisms:

rnðY Þ:KnðY ;Z=mÞ �!
ffi

Ket
n ðY ;Z=mÞ for all n X 0.

Proof.Wemay assume that Y is reduced, since replacing Y by Yred doesn’t change
either K-group (see [W1, 1.4]). Let ~YY be the normalization of Y , S the singular set,
and set ~SS ¼ S �Y ~YY . By [W1, 1.3], there is a Mayer^Vietoris exact sequence

. . .Knþ1ð ~SS;Z=mÞ ! KnðY ;Z=mÞ ! Knð ~YY ;Z=mÞ � KnðS;Z=mÞ ! Knð ~SS;Z=mÞ:
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Since rðCÞ is an isomorphism, so are rðSÞ and rð ~SSÞ. Since rð ~YY Þ is an isomorphism by
the theorem, the 5-lemma implies that rðY Þ is also an isomorphism. &

LEMMA 2.5. Let F be the function ¢eld Cðs; tÞ of the plane. Multiplication by the
Bott element b is an isomorphism KnðF ;Z=mÞ ffi Knþ2ðF ;Z=mÞ for all nX 1.

Proof. We regard F ¼ Cðs; tÞ as the ¢eld of fractions of the polynomial ring
R ¼ CðsÞ½t�. For every residue ¢eld E of R, there is a tame symbol
@E :KnðF ;Z=mÞ ! Kn�1ðE;Z=mÞ, and the direct sum over all such E is one of
the maps in the K-theory localization sequence. It is well known (see [Sou, p. 271])
that the K-theory localization sequence breaks up into short exact sequences,
and that it is a sequence of modules for the graded ring K�ðC;Z=mÞ. This gives
us a commutative diagram with exact rows:

0 �! KnðCðsÞ;Z=mÞ �! KnðF ;Z=mÞ �!
@
�EKn�1ðE;Z=mÞ �! 0

[b

??yffi [b

??y [b

??yffi
0 �! Knþ2ðCðsÞ;Z=mÞ �! Knþ2ðF ;Z=mÞ �!

@
�EKnþ1ðE;Z=mÞ �! 0:

For nX 1, the outside vertical maps are isomorphisms by Proposition 2.3. The
5-lemma shows that [b is an isomorphism on KnðF ;Z=mÞ. &

Proof of Theorem 2.2. First we show that [b:KnðF ;Z=mÞ ffi Knþ2ðF ;Z=mÞ for all
nX 1. For n odd, this follows from Proposition 2.3 and the fact that every element
of KnðF ;Z=mÞ ffi F�=m comes from KnðE;Z=mÞ for some sub¢eld E of trans-
cendence degree 1 over C. For n ¼ 2i even, we have isomorphisms

K2ðF ;Z=mÞ�!
r

ffi
Ket
2 ðF ;Z=mÞ�!

[bi

ffi
Ket
2iþ2ðF ;Z=mÞ

by [DF, 8.2]. Hence the intermediate map K2ðF ;Z=mÞ ��!
[bi

K2iþ2ðF ;Z=mÞ is an
injection. Since the Bott summands are generated by the powers of b, it remains
to show that the summand H2ðF ;Z=mÞ ffi K2ðF Þ=m of K2iþ2ðF ;Z=mÞ is in the image
of [bi. This summand is generated by the symbols fs; tg, s; t 2 F�. By naturality,
the symbol s ¼ fs; tg comes from the summand H2ðCðs; tÞ;Z=mÞ of Knþ2ðCðs; tÞ;
Z=mÞ. By Lemma 2.5, s ¼ x [ bi for some x 2 K2ðF Þ=m coming from
K2ðCðs; tÞÞ=m. Hence the map [bi is onto, as desired.
With this, the rest of Suslin’s proof of Theorem 2.2 in loc. cit. goes through for

surfaces, using Thomason’s theorem and the long exact sequences

. . .K 0�þ1ðF ;Z=mÞ ! lim
��!

K 0�ðY ;Z=mÞ ! K 0�ðX;Z=mÞ ! K 0�ðF ;Z=mÞ . . . : &

Now suppose that X is a smooth af¢ne surface. Since H3ðX Þ ¼ H4ðX Þ ¼ 0, the
spectral sequence for e¤ tale K-theory [DF, 5.2] degenerates. Using Theorem 2.2, this
yields KnðX;Z=mÞ for nX 1: it is H1ðX ;Z=mÞ if n is odd, and it is the direct
sum of the Bott summand Z=m and H2ðX ;Z=mÞ when n is even.
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Taking the direct limit over all af¢ne open subsets of X , the af¢ne case immedi-
ately yields the following description of the Zariski sheaves KnðZ=mÞ.

LEMMA 2.6. When X is a smooth surface, we have:

KnðZ=mÞ ffi
Z=m�H2ðZ=mÞ if nX 2 is even;

H1ðZ=mÞ if nX 1 is odd.

(

Remark 2.6.1. The isomorphism K2ðZ=mÞ ffi Z=m�H2ðZ=mÞ is induced by the
Chern class c2:K2ðZ=mÞ ! H2ðZ=mÞ; see [CT-R, p.168]. Applying H1, we see that
c2 induces an isomorphism between H1ðX ;K2ðZ=mÞÞ and H1ðX ;H2ðZ=mÞÞ, which
equals H3ðX ;Z=mÞ when X is a surface by [BO]. This observation is implicit in
[Su2, p. 19].

COROLLARY 2.7. When X is a smooth surface, we have:

If nX 2 is even; HpðX ;KnðZ=mÞÞ ffi
Z=m� BrðX Þm if p ¼ 0;
H3ðX ;Z=mÞ if p ¼ 1;
H4ðX ;Z=mÞ if p ¼ 2.

8<:

If nX 1 is odd; HpðX ;KnðZ=mÞÞ ffi
H1ðX ;Z=mÞ if p ¼ 0;
PicðX Þ=m if p ¼ 1;
0 if p ¼ 2.

8<:
Proof. Just combine the Bloch^Ogus resolutions of the sheaves HnðZ=mÞ appear-

ing in Lemma 2.6, together with the Leray spectral sequence:

Ep;q
2 ¼ HpðX ;HqðZ=mÞÞ ¼)HpþqðX ;Z=mÞ; qX pX 0: ð2:7:1Þ

For example, H0ðX ;H2ðZ=mÞÞ ffi BrðX Þm and H1ðX ;H1ðZ=mÞÞ ffi PicðX Þ=m follow
from the Bloch^Ogus resolutions; see [BO, 7.7]. &

THEOREM 2.8. Let X be a smooth irreducible surface over C. Then:

KnðX ;Z=mÞ ffi
Z=m�H2ðX ;Z=mÞ �H4ðX ;Z=mÞ if nX 2 is even;

H1ðX ;Z=mÞ �H3ðX ;Z=mÞ if nX 1 is odd

(

Topological proof. LetKU�ðX Þ denote the topologicalK-theory of complex vector
bundles on the underlying space X ðCÞ, and let KU�ðX;Z=mÞ denote the correspond-
ing theory with coef¢cients Z=m. We know by [Fr, 1.6] that Ket

n ðX;Z=mÞ ffi
KU�nðX ;Z=mÞ. As an exercise, the reader might want to derive Theorem 2.8 from
Theorem 2.2, using the Atiyah^Hirzebruch calculation:

KUnðX Þ ffi Z�H2
anðX ;ZÞ �H4

anðX ;ZÞ if n is even;
H1

anðX ;ZÞ �H3
anðX ;ZÞ if n is odd.

�
ð2:8:1Þ
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Algebraic Proof. Consider the Brown^Gersten spectral sequence:

Ep;�q
2 ¼ HpðX ;KqðZ=mÞÞ ¼)K�p�qðX;Z=mÞ: ð2:9Þ

We ¢rst show that the spectral sequence degenerates at E2. Since the only possible
nonzero differential is from H1ðX ;Z=mÞ to H4ðX ;Z=mÞ, it suf¢ces to show that
the edge map Zn:H

4ðX ;Z=mÞ ! KnðX;Z=mÞ is injective for all nX 0. This is trivial
when H4ðX ;Z=mÞ ¼ 0, i.e., when X is not projective.
Suppose now that X is projective, so that H4ðX ;Z=mÞ ¼ Z=m. Choose a point

i: SpecðCÞ ! X and let p denote the structure map X ! SpecðCÞ. Then the
composite

KnðC;Z=mÞ �!
i� KnðX;Z=mÞ �!

p�
KnðC;Z=mÞ

is the identity. By Quillen’s construction of the spectral sequence (2.9), i� is one
component of E2;nþ2

1 ¼
‘

x KnðkðxÞ;Z=mÞ. Hence the injection i� factors through
both the edge map E2;nþ2

1 ! KnðX ;Z=mÞ and its quotient Zn. By counting, the
map i�:KnðC;Z=mÞ ! H4ðX ;Z=mÞ ¼ Z=m is an isomorphism. It follows that
the edge map Zn is an injection, as claimed.
It remains to resolve the extension problems. There is no problem for even n, since

KnðX;Z=mÞ contains both the Bott summandZ=m and the summand i�ðZ=mÞ. When
nX 1 is odd, KnðX ;Z=mÞ is isomorphic to K1ðX;Z=mÞ by Theorem 2.2 (by repeated
multiplication by b). Thus it suf¢ces to show that the extension splits for
K1ðX;Z=mÞ. Now PicðX Þ is a summand of K0ðX Þ, and H0ðX ;K1Þ is a summand
of K1ðX Þ, so there is a natural splitting map from H1ðX ;Z=mÞ into K1ðX ;Z=mÞ,
as claimed. &

COROLLARY 2.10. KnðX ;Q=ZÞ ! H0ðX ;KnðQ=ZÞÞ is a split surjection.
Proof. Passing to the limit in (2.9) as m!1 yields the Brown^Gersten spectral

sequence with coef¢cientsQ=Z. The proof of Theorem 2.8 shows that it degenerates
at E2, and that the extensions split. &

Let Krel
n ðX Þ denote the relative term in the natural sequence

. . .Knþ1ðX Þ !
r

KU�n�1ðX Þ ! Krel
n ðX Þ ! KnðX Þ !

r
KU�nðX Þ . . . : ð2:11:0Þ

PROPOSITION 2.11. Let X be a smooth surface over C. Then for all nX 0, the
groups Krel

n ðX Þ are uniquely divisible, while Krel
�1ðX Þ is torsion-free.

Proof. The usual homological yoga yields a sequence with coef¢cients Z=m:

. . .!
r

KU�n�1ðX;Z=mÞ !Krel
n ðX ;Z=mÞ !KnðX;Z=mÞ !

r
KU�nðX;Z=mÞ:

By Theorem 2.2, the group Krel
n ðX ;Z=mÞ vanishes for nX 0. This implies the result,

since Krel
n ðX Þ=m is a subgroup, and the m-torsion in Krel

n�1ðX Þ is a quotient. &
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COROLLARY 2.12. Let X be a smooth surface overC. Then each group KnðX Þ is the
sum of a divisible group and a ¢nitely generated group. The ¢nitely generated
subgroup injects into KU�nðX Þ and has the same torsion subgroup.

Proof. Everything follows from Proposition 2.11 because KU�nðX Þ is a ¢nitely
generated Abelian group. &

3. K-Theory of Curves

At this point, we pause to collect the information about the K-theory of a curve Y of
¢nite type over C. The ¢rst step is to describe the K-theory of its function ¢eld E.
Recall from Example 1.1(a) that the group K1ðEÞ ¼ E� is never divisible, being
the product of C� and an uncountable free Abelian group.

PROPOSITION 3.1.Let E ¼ CðY Þ be the function ¢eld of a curve overC. Then KnðEÞ
is a divisible group for every nX 2, and is the direct sum of the groups CHiðE; nÞ,
2W iW n. Moreover, the torsion subgroup of KnðEÞ is:

KnðEÞtors ffi
Q=Z if nX 1 is odd;

H1ðE;Q=Zði þ 1ÞÞ if nX 2 is even.

(

Remark. The groupsH1ðE;Q=Zði þ 1ÞÞ are all isomorphic to E� �Q=Z, which as
we have seen is an uncountable direct sum of copies of Q=Z. The isomorphism
K2ðEÞtors ffi E� �Q=Z is due to Suslin [Su2, 3.7], while divisibility of K3ðEÞ follows
from this and [MS1, 8.4].

Proof. By Lemma 1.4 and Propositions 1.6 and 1.8, CHiðE; nÞ is divisible for
n ¼ 2i � 1 and n ¼ 2i � 2 and is uniquely divisible otherwise.
Arguing as in Proposition 1.3, each differential in the Bloch^Lichtenbaum spectral

sequence (1.2) vanishes, because it has either a divisible source or a torsion-free
image. Hence, each KnðEÞ is the direct sum of the divisible groups CHiðE; nÞ.
This yields KnðEÞtors ffi Knþ1ðE;Q=ZÞ, a group described in Proposition 2.1. &

THEOREM 3.2. Let Y be a smooth irreducible curve over C. Then KnðY Þ is divisible
for nX 2, and its torsion subgroup is given by:

KnðY Þtors ¼
H1ðY ;Q=ZÞ; if n is even,
Q=Z; if n is odd and Y is affine,
Q=Z�Q=Z if n is odd and Y is projective.

8<:
Remarks 3.2.1 (1) When Y is a projective curve of genus g and n ¼ 2iX 2, this

yields K2iðY Þtors ¼ PicðY Þtors ffi ðQ=ZÞ2g. However, if Y ¼ SpecðAÞ is af¢ne then
K2iðAÞtors is the direct sum of PicðY Þtors and A� �Q=Z.
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(2) Let SK1ðY Þ denote the kernel of K1ðY Þ ! K1ðEÞ ¼ E�. Then:

K1ðY Þ ffi SK1ðY Þ �H0ðX ;O�Y Þ:

The proof also shows that SK1ðY Þ is divisible, and that its torsion subgroup
SK1ðY Þtors is: zero for af¢ne curves, and Q=Z for a projective curve. These obser-
vations were ¢rst made by Gersten [Ger, p. 38].
(3) The fact that H1ðY ;Q=ZÞ is the torsion in K2ðY Þ is due to Suslin [Su2, 5.2],

given the calculation implicit in [MS1, 11,11,1] that H1ðY ;K3Þ is uniquely divisible.
Proof. The K-theory localization sequence for Y is

Knþ1ðEÞ !
a

KnðCÞ ! KnðY Þ ! KnðEÞ !
a

Kn�1ðCÞ

where E is the function ¢eld of Y and the coproduct is over all closed points of Y .
When nX 2, the outer four terms are divisible (by Proposition 3.1). If n is odd,
the lack of torsion in Kn�1ðCÞ forces the middle term KnðY Þ to be divisible.
Fix an even number nX 2 and a positive integer m. Since Knþ1ðY Þ is divisible, we

have KnðY Þm ffi Knþ1ðY ;Z=mÞ ffi H1ðY ;Z=mÞ by Proposition 2.3. Hence, the locali-
zation sequence for K-theory with coef¢cients Z=m becomes

0! KnðY Þm ! H1ðE;Z=mÞ !
a

Z=m! Kn�1ðY ;Z=mÞ ! Z=m

The ¢nal arrow in this sequence is a split surjection, arising from the Bott summand
Q=Z in Kn�1ðCÞ � Kn�1ðY Þ by Proposition 1.6.
Comparing with the localization sequence for e¤ tale cohomology, we see that

KnðY Þtors is isomorphic to H1ðY ;Z=mÞ, and that KnðY ;Z=mÞ is the sum of Z=m
and H2ðY ;Z=mÞ. If Y is af¢ne, the latter group is zero and KnðY ;Z=mÞ equals
the Bott summand Z=m of Kn�1ðY Þm. This implies that KnðY Þ=m ¼ 0, i.e., KnðY Þ
is m-divisible.
If Y is projective, choose a point i: SpecðCÞ ! Y and let p denote the structure

map Y ! SpecðCÞ. Then the composite

Kn�1ðCÞ �!
i� Kn�1ðY Þ �!

p�
Kn�1ðCÞ

is the identity, while p� vanishes on the Bott summand. This provides a subgroup of
Kn�1ðY Þ isomorphic to Q=Z�Q=Z. Therefore KnðY ;Z=mÞ ffi Z=m�Z=m is
isomorphic to Kn�1ðY Þm, and again this implies that KnðY Þ=m ¼ 0, i.e., KnðY Þ is
m-divisible. &

COROLLARY 3.3. Let Y be a smooth curve over C. If n > 0 is even, the sheaf Kn is
uniquely divisible. If n > 0 is odd, the sheaf Kn is divisible, the direct sum of the con-
stant sheaf Q=Z and a uniquely divisible sheaf.

THE HIGHER K-THEORY OFA COMPLEX SURFACE 251



4. Chern Classes

In this section we will use Chern classes to show that theK-theory ofCðX Þ is divisible
when X is a surface. First, we need to introduce some notation.
Let X be a smooth variety over C, and let F ¼ CðX Þ denote the ¢eld of rational

functions of X . For each analytic sheaf A on X , such as A ¼ Z or C
�, we write

Hj
anðF ;AÞ for the direct limit lim

�!
Hj

anðU;AÞ, taken over all U open in X . For
example, if A is Z=m or Q=Z then Hj

etðF ;AÞ ffi Hj
anðF ;AÞ for all j.

LEMMA 4.0. Identifying Q=Z with the torsion subgroup of C�,

HjðX ;Q=ZÞ ffi Hj
anðX ;C�Þtors and HjðF ;Q=ZÞ ffi Hj

anðF ;C
�
Þtors

for all j. Moreover, for each m there is a (noncanonically) split exact sequence

0! Aj=mAj ! HjðX ;Z=mÞ ! Hj
anðX ;C�Þm ! 0;

where Aj ¼ AjðX Þ is the ¢nite group Hj
anðX ;ZÞtors.

Proof. The ¢nitely generated group Hj
anðX ;ZÞ is isomorphic to Aj �Zbj , where bj

is the jth Betti number of X . Hence the exponential sequence Z! C! C
� of con-

stant sheaves on X yields a (split) exact sequence of groups

0! ðC=ZÞbj ! Hj
anðX ;C�Þ ! Ajþ1! 0:

Tensoring with Z=m yields Hj
anðX ;C�Þ=m ffi Ajþ1=m. From the Kummer sequence

0! Z=m! C
�
!
m

C
�
! 0 we get an extension

0! Hj�1
an ðX ;C�Þ=m! HjðX ;Z=mÞ ! Hj

anðX ;C�Þm ! 0: ð4:0:1Þ

The ¢rst map factors as the split inclusion of Aj=m in Hj
anðX ;ZÞ=m followed by

Hj
anðX ;ZÞ=m! HjðX ;Z=mÞ, which is a split inclusion by the Ku« nneth formula.

This yields the split exact sequence. The direct limit over m yields
HjðX ;Q=ZÞ ffi Hj

anðX ;C�Þtors because Aj �Q=Z ¼ 0. Also, replacing X by open
subsets U and taking the limit over U yields HjðF ;Q=ZÞ ffi Hj

anðF ;C
�
Þtors. &

We will need the Deligne^Beilinson cohomology groups H�D, referring the reader
to [EV] for details of their construction. We shall also need the Chern class maps

ci:KnðX Þ ! H2i�n
D ðX ;ZðiÞÞ; iX 1;

constructed in [Gi1, Gi2]. In the particular case when n ¼ 2i � 3, these maps go from
K2i�3ðX Þ to H3

DðX ;ZðiÞÞ.

LEMMA 4.1. Let F ¼ CðX Þ be the ¢eld of rational functions of a smooth variety X
over C. Then for all m:

(1) Hj
anðF ;C

�
Þ is divisible for jW 2;

(2) HjðF ;Z=mÞ ffi Hj
anðF ;C

�
Þm for jW 3;
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(3) Hj
DðX ;ZðiÞÞm ffi Hj�1

an ðX ;C�Þm for all iX j;

(4) Hj
DðF ;ZðiÞÞm ffi Hj�1

an ðF ;C
�
Þm for all iX j;

(5) The Chern class ci induces maps between m-torsion subgroups:

K2i�3ðF Þm ! H3
DðF ;ZðiÞÞm ffi H2

anðF ;C
�
Þm ffi H2ðF ;Z=mÞ; iX 3:

Proof. Clearly H0
anðF ;C

�
ðiÞÞ ¼ C

� is divisible. Next we use the result of
Barbieri^Viale [BV1, 3.2 and 4.3] that H2

anðF ;ZÞ and H3
anðF ;ZÞ are torsion-free,

and thus inject into H2
anðF ;CÞ and H3

anðF ;CÞ. From the exponential sequence, it
follows that H1

anðF ;C
�
Þ is a quotient of H1

anðF ;CÞ, and H2
anðF ;C

�
Þ is a quotient

of H2
anðF ;CÞ. Hence they are divisible, proving part (1).

Part (2) follows from (1) using the Kummer sequence (4.0.1).
Next we suppose iX j, so that F iHj�1

an ðU;CÞ ¼ 0. For each openU � X there is an
exact sequence (see [EV, 2.10c]):

0! Hj�1
an ðU;C�ðiÞÞ ! Hj

DðU;ZðiÞÞ ! FiHj
anðU;CÞ:

Since F iHjðU;CÞ is torsion-free, this yields part (3). Part (4) follows from (3) by
taking the limit over U . Part (5) follows from (2) and (4). &

Remark. Suppose that X is a surface. Then Hj
anðF ;C

�
Þ ¼ 0 for all jX 3. In this

case, some parts of Lemma 4.1 are trivial.
We will only need the Chern classes which land in Hj

D, jW 4.

COROLLARY 4.2. Let X be a smooth surface over C. Then

H2ðX ;Q=ZÞ ffi H2
anðX ;C�Þtors ffi H3

DðX ;Zði þ 1ÞÞtors; iX 2;

H3ðX ;Q=ZÞ ffi H3
anðX ;C�Þtors ffi H4

DðX ;Zði þ 2ÞÞtors; iX 1:

If X is proper then the ¢rst line also holds for i ¼ 1.
Proof. By Lemma 4.0, HjðX ;Q=ZÞ ffi Hj

anðX ;C�Þtors for all j. We are done for
iX 2, as the other isomorphisms are Lemma 4.1(3). So suppose that i ¼ 1. For
X proper, both cases are proven in [BPW, 4.7(iii)]). For the remaining case, it suf¢ces
to prove that H3ðX ;C�Þ ffi H4

DðX ;Zð3ÞÞ. Because dimðX Þ < 3, this follows from the
exact sequence

F 3H3ðX ;CÞ ! H3ðX ;C�Þ ! H4
DðX ;Zð3ÞÞ ! F 3H4ðX ;CÞ;

because F 3HnðX ;CÞ ¼ 0 for all n by [D, 8.2.4]. &

DEFINITIONS 4.3. Let z be a primitive mth root of 1 in C and let b 2 K2ðC;Z=mÞ
be the Bott element corresponding to z. Let g ¼ gm 2 K2i�1ðCÞm be the generator
of K2i�1ðCÞ coming from the power bi of the Bott element in K2iðC;Z=mÞ.
By abuse of notation, we shall write zðiÞ for the image of the root of unity z under

the injection of mmðCÞ ffi H0ðC; m�im Þ into H1
DðC;ZðiÞÞ ffi C

�
ðiÞ.
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LEMMA 4.4. The Chern class ci:CHiðC; 2i � 1Þm ! H1
DðC;ZðiÞÞm ffi Z=m satis¢es:

ciðgÞ ¼ ð�1Þi�1ði � 1Þ! zðiÞ.
Proof. From [BPW, p.163], we know that the following diagram commutes

K2iðC;Z=mÞ ���! K2i�1ðCÞ

ci

??y ??yci

H0
etðC; m�im Þ ���! H1

DðC;ZðiÞÞ

and the e¤ tale Chern class satis¢es the product formula: ciðbi
Þ ¼ ð�1Þi�1ði � 1Þ! z�i.

(See [W2, 3.3].) Since the bottom map sends z�i to zðjÞ, we are done. &

So the map ci induces a nontrivial map on m-torsion subgroups when m� 0.

LEMMA 4.5. Let F be the function ¢eld of a variety over C. Then the Chern class

c2:CH2ðF ; 2Þ=m ffi K2ðF Þ=m! H2
DðF ;Zð2ÞÞ=m

is an isomorphism.
Proof. By [BV2, 2.2(iii)], there is an isomorphism between Zariski sheaves on X

H2
DðZð2ÞÞ �Z=m ffi H2ðZ=mÞ;

where H2
DðZð2ÞÞ and H

2
etðZ=mÞ are the sheaves associated to the Deligne^Beilinson

and e¤ tale comology groups, respectively. The isomorphism of stalks at the generic
point is

H2
DðF ;Zð2ÞÞ=m! H2

etðF ;Z=mð2ÞÞ:

Now the Merkurjev^Suslin isomorphism K2ðF Þ=m ffi H2
etðF ;Z=mð2ÞÞ is given by the

e¤ tale Chern class, which factors through the Deligne^Beilinson Chern class c2. Since
CH2ðF ; 2Þ=m ffi K2ðF Þ=m, the claim immediately follows. &

We can describe the Chern classes on KjðF ;Z=mÞ for j > 2 using the product
formula. Recall from Theorem 2.2 that multiplication by bi induces isomorphisms
KjðF ;Z=mÞ ! Kjþ2iðF ;Z=mÞ for all jX 1. Composing multiplication by bi with
the boundary @ in the universal exact sequence for K-Theory with coef¢cients
amounts to multiplication by g 2 K2i�1ðCÞ; this is a map from KjðF Þ=m to
Kjþ2i�1ðF Þm. Composing this with the Deligne^Beilinson Chern class ciþ2, we obtain
maps

K1ðF Þ=m ���!
[bi

K2iþ1ðF ;Z=mÞ ���!
@

K2iðF Þm ���!
ciþ1

H2
DðF ;Zði þ 1ÞÞm;

K2ðF Þ=m ���!
[bi

K2iþ2ðF ;Z=mÞ ���!
@

K2iþ1ðF Þm ���!
ciþ2

H3
DðF ;Zði þ 2ÞÞm:

Composing with the isomorphisms Hjþ1
D ðF ;ZðiÞÞm ffi Hj

etðF ;Z=mðjÞÞ ffi KjðF Þ=m of
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Lemma 4.1 yields maps which depend upon i, j, m, and upon the choice of z:

sijðmÞ:KjðF Þ=m! KjðF Þ=m; j ¼ 1; 2: ð4:5:1Þ

LEMMA 4.6. For all i, m and j ¼ 1; 2 the map sijðmÞ:KjðF Þ=m! KjðF Þ=m is multi-
plication by ð�1Þii! and ð�1Þiði þ 1Þ!, respectively.

Proof. For j ¼ 1; 2 we ¢x elements a 2 KjðF Þ. The Bockstein @ applied to a [ bi is
a [ g. The product formula for the Chern class cn yields:

ciþ1ða [ gÞ ¼
�i!
ði � 1Þ!

c1ðaÞ [ ciðgÞ ¼ ð�1Þii! c1ðaÞ [ zðiÞ ð4:6:1Þ

for a 2 K1ðF Þ=m, and

ciþ2ða [ gÞ ¼
�ði þ 1Þ!
ði � 1Þ!

c2ðaÞ [ ciðgÞ ¼ ð�1Þiði þ 1Þ!c2ðaÞ [ zðiÞ ð4:6:2Þ

for a 2 K2ðF Þ. Now the isomorphisms

K1ðF Þ=m ffi H1
etðF ;Z=mð1ÞÞ ffi H1

etðF ;Z=mði þ 1ÞÞ ffi H2
DðF ;Zði þ 1ÞÞm

send a to c1ðaÞ [ zðiÞ. Similarly, the isomorphisms

K2ðF Þ=m ffi H2
etðF ;Z=mð2ÞÞ ffi H2

etðF ;Z=mði þ 2ÞÞ ffi H3
DðF ;Zði þ 2ÞÞm

send a to c2ðaÞ [ zðiÞ. The result follows. &

Recall that if A is any Abelian group, its Tate module T ðAÞ is the inverse limit of
the system of groups Am.

T ðAÞ ¼ lim
 �
fAm  Amn � � �g

It is well known that the Tate module of any Abelian group is torsion-free (see
[CT-R, 1.3]).
If A is any Abelian group, we write ÂA for its pro¢nite completion lim

 �
A=mA. We

shall also write KnðF ;bZZÞ for the inverse limit of the groups KnðF ;Z=mÞ.

LEMMA 4.7. Let F be the function ¢eld of a surface X. Then the inverse limit
KnðF ;bZZÞ is a torsion-free group for all n.

Proof. Suslin’s Proposition 2.1 shows that K2iðF ;bZZÞ is the sum of bZZ ¼ lim
 �

Z=m
and lim
 �

H2ðF ;Z=mÞ. By Lemma 4.1, the latter group is the inverse limit of the groups
H2

anðF ;C
�
Þm, so it is the Tate module of H2

anðF ;C
�
Þ. As such it is torsion-free.

Similarly, we see from Proposition 2.1 and Lemma 4.1(2) that there is a natural
isomorphism between K2i�1ðF ;Z=mÞ and H1

anðF ;C
�
Þm. Hence K2i�1ðF ;bZZÞ is the

Tate module of H1
anðF ;C

�
Þ, and as such is torsion-free. &

THEOREM 4.8.Let F ¼ CðX Þ be the ¢eld of rational functions of a complex surface.
Then for every nX 2 there are isomorphisms:
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(a) KnðF Þtors ffi
H2ðF ;Q=ZÞ �Q=Z if n ¼ 2i � 1;
H1ðF ;Q=ZÞ if n ¼ 2i

�
(b) KnðF Þ is divisible for every nX 3.

The groupQ=Z in part a) is the Bott summand. The summand H2ðF ;Q=ZÞ equals the
Brauer group BrðF Þ of F, and H1ðF ;Q=ZÞ ffi F� �Q=Z.

Remark 4.8.1. Our proof makes the maps explicit. The cup product with
gi 2 K2i�1ðCÞ induces the isomorphism from K1ðF Þ=m ¼ F�=F�m to K2iðF Þm, and
the injection from K2ðF Þ=m into K2iþ1ðF Þm complementary to the Bott summand.
The isomorphism K2ðF Þm ffi H1ðF ;Z=mÞ has been proven in [Su, 3.7]. The ¢rst
new case is the isomorphism, K3ðF Þm ffi Z=m�H2ðF ;Z=mÞ, where multiplication
by the primitive mth root of unity z 2 F� induces the injection

H2ðF ;Z=mÞ ffi K2ðF Þ=m ,!K3ðF Þm:

This summand H2ðF ;Z=mÞ is the torsion in the subgroup KM
3 ðF Þ, while the comp-

lementary summand Z=m of K3ðF Þm corresponds to the torsion in K3ðF Þ
ind
¼

K3ðF Þ=KM
3 ðF Þ; see [MS1].

Proof. Consider the short exact sequence of towers of groups

0! fKnðF Þ=mg ! fKnðF ;Z=mÞg ! fKn�1ðF Þmg ! 0:

Since the maps in the left-hand tower are all surjections, its lim
 �

1 vanishes, and we
have a short exact sequence after taking the inverse limit:

0! KnðF Þb! KnðF ;bZZÞ ! T ðKn�1ðF ÞÞ ! 0:

Now the Deligne^Beilinson Chern class ci:K2i�jðF Þ ! Hj
DðF ;ZðiÞÞ induce a map

on completion. By Lemma 4.6, the composition

lim
 �

sij:KjðF Þb! K2iþjðF ;bZZÞ ! T ðK2iþj�1ðF ÞÞ ! KjðF Þb
is multiplication by a constant, so it is an injection. When j ¼ 1, Theorem 2.2 implies
that K1ðF Þbffi K2iþ1ðF ;bZZÞ. Hence, the subgroup K2iþ1ðF Þb must be zero, because it
vanishes in the intermediate group T ðK2iðF ÞÞ. When j ¼ 2, we need an addi-
tional argument. Since K2ðF Þ=m is the kernel of K2ðF ;Z=mÞ ! K2ð �FF ;Z=mÞ,
Theorem 2.2 implies that for each m the image of K2ðF Þ=m in K2iðF ;Z=mÞ is the
kernel ofK2iðF ;Z=mÞ ! K2ið �FF ;Z=mÞ, where �FF is the algebraic closure of F . As such,
it contains the subgroup K2iðF Þ=m. Passing to the limit, we see that the image of
K2ðF Þb in K2iðF ;bZZÞ contains the subgroup K2iðF Þb. This latter group vanishes
in T ðK2i�1ðF ÞÞ, so it is in the kernel of lim

 �
sij. As before, this forces K2iðF Þb¼ 0.

Since each group KnðF Þ=m is a quotient of KnðF Þb, and the latter is zero, each
KnðF Þ=m vanishes. But then each KnðF Þ is divisible, as required. &
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5. The K -Cohomology of X

In this section we make some preliminary comments about the divisibility of the
K-cohomology groups HpðX ;KqÞ of the sheaves Kq. In the next section, we will
use this information to describe the structure of the K-theory of X using the
Brown^Gersten spectral sequence:

Ep;�q
2 ¼ HpðX ;KqÞ ¼)K�p�qðX Þ ð5:1Þ

PROPOSITION 5.2. Let X be a smooth surface over C. Then

ðKnÞtors ffi
Q=Z�H2ðQ=ZÞ if nX 3 is odd;

H1ðQ=ZÞ if nX 2 is even.

(

For all nX 3 the sheaf Kn is divisible, and there are short exact sequence of sheaves:

0! Knþ1ðZ=mÞ ! Kn !
m
Kn! 0 for all nX 3. ð5:2:1Þ

Remark 5.2.2. This fails of course for n ¼ 0; 1 because we have K0 ¼ Z, the
sheaves K1 and K2 are not divisible by Example 1.1, and ðK1Þtors ffi Q=Z.

Proof. Let F denote the function ¢eld CðX Þ of X , and let x: SpecðF Þ ! X denote
the inclusion of the generic point. From the universal exactness of the Gersten^
Quillen resolution for the sheaf Kn we get a resolution of the sheaf Kn=m which
begins:

0! Kn=m! x�KnðF Þ=m! � � � :

For nX 3 we have KnðF Þ=m ¼ 0 by Theorem 4.8; it follows that Kn=m ¼ 0 and thus
the sheaf Kn is divisible. The sequence (5.2.1) is immediate, and (using
Remark 5.2.2) so is the sequence

0! K3ðZ=mÞ ! K2 �!
m
K2�!H

2ðZ=mÞ ! 0: ð5:2:3Þ

Hence ðKnÞm is isomorphic to Knþ1ðZ=mÞ for all nX 2. The description of ðKnÞtors is
just a recasting of Lemma 2.6. &

COROLLARY 5.3. Let X be a smooth irreducible surface over C. For all nX 2 we
have isomorphisms

H0ðX ;KnÞtors ffi
Q=Z� BrðX Þ if n is odd;
H1ðX ;Q=ZÞ if n is even.

�
Proof. Apply H0 to (5.2.1^3) to get H0ðX ;KnÞtors ffi H0ðX ;Knþ1ðQ=ZÞÞ. Now use

Corollary 2.7, recalling that BrðX Þ is a torsion group. &

COROLLARY 5.4. Let X be a smooth surface over C. Then for all nX 3:
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(1) The groups H2ðX ;KnÞ are divisible, and
(2) We have short exact sequences, natural in X:

0! H0ðX ;KnÞ=m! H1ðX ;Knþ1ðZ=mÞÞ ! H1ðX ;KnÞm ! 0

0! H1ðX ;KnÞ=m! H2ðX ;Knþ1ðZ=mÞÞ ! H2ðX ;KnÞm ! 0:

Proof. This is just a rewriting of the cohomology sequence of (5.2.1). &

Remark 5.4.1 (n ¼ 2). These sequences should be contrasted with the sequences of
[Su2, 4.4] for K2 on a surface X :

0! H0ðX ;K2Þ=m! H2ðX ;Z=mÞ ! H1ðX ;K2Þm! 0

0! H1ðX ;K2Þ=m! H3ðX ;Z=mÞ ! H2ðX ;K2Þm! 0:

In effect, passage fromK2 toK4 replacesH2ðX ;Z=mÞ by the subgroup PicðX Þ=m, and
H3ðX ;Z=mÞ by 0, as we see using Corollary 2.7 to describe HpðX ;K3ðZ=mÞÞ. The
reader is invited to explain this passage using the sequences (5.2.1) and (5.2.3).
IfX is projective, the groupH2ðX ;K2Þ is not divisible either; it is isomorphic to the

Chow groupCH2ðX Þ (Bloch’s formula), which is the direct sum ofZ and the divisible
group A0ðX Þ.

THEOREM 5.5. Let X be a smooth irreducible surface over C. Then for all nX 3:

(1) The groups H1ðX ;KnÞ and H2ðX ;KnÞ are divisible.
(2) If X is not projective then the group H2ðX ;KnÞ is uniquely divisible.
(3) If X is projective and nX 4 is even, H2ðX ;KnÞ is uniquely divisible.
(4) If X is projective and nX 3 is odd, the edge map in the Brown^Gersten spectral

sequence (5.1) induces an injection H2ðX ;KnÞtors ,!Kn�2ðX Þ, and:

H2ðX ;KnÞtors ffi Kn�2ðCÞtors ffi
Q=Z if nX 3 is odd;
0 if nX 4 is even.

(

Remark 5.5.1 (n ¼ 2). The group H1ðX ;K2Þ is not divisible in general. If X is
projective, then we know by [CT-R, 2.2] that H1ðX ;K2Þ is the direct sum of a
divisible group and the ¢nite group H3ðX ;ZÞtors.

Proof. If X is not projective, or n is even, then H2ðX ;Knþ1ðZ=mÞÞ ¼ 0 by
Corollary 2.7. In these cases everything follows from Corollary 5.4.
Now suppose that nX 3 is odd and X is projective. Let p:X ! SpecðCÞ be the

structure map, and choose a closed point i: SpecðCÞ ! X . As in the proof of
Theorem 2.8, the map i�:Kn�2ðCÞ ! Kn�2ðX Þ is an injection split by p�, and it factors
through H2ðX ;KnÞ because dimðX Þ ¼ 2 (via the Gersten resolution).
Since the map K�ðX;Z=mÞ ! K��1ðX Þ induces a map between the respective

Brown^Gersten^Quillen spectral sequences (2.9) and (5.1), their edge maps ¢t into
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a commutative diagram:

Kn�1ðC;Z=mÞ ��!
ffi

i�
H2ðX ;Knþ1ðZ=mÞÞ ��!

edge
Kn�1ðX;Z=mÞ ��!

p�
Kn�1ðC;Z=mÞ

into

??y a
??y ??y into

??y
Kn�2ðCÞ ��!

i� H2ðX ;KnÞ ��!
edge

Kn�2ðX Þ ��!
p�

Kn�2ðCÞ:

The outside vertical maps are injections by Corollary 1.5, and the horizontal com-
posites are the identity. We saw in the proof of Theorem 2.8 that the upper left
map i� is an isomorphism. Hence the second vertical map a, which comes from
(5.2.1), is an injection. By Corollary 5.4, H1ðX ;KnÞ=m is the kernel of a, so it is
zero for all m, i.e., H1ðX ;KnÞ is divisible. Since the m-torsion in H2ðX ;KnÞ is
the image of a, again by 5.4, H2ðX ;KnÞm ffi Z=m. The result now follows. &

LEMMA 5.6. Let X be a smooth surface. For even nX 4, H0ðX ;KnÞ �Q=Z ¼ 0, and
the map (induced by the K-theory product K1 � Kn�1ðCÞ ! Kn)

PicðX Þ � Kn�1ðCÞtors ,!H1ðX ;K1Þ � Kn�1ðCÞ !
[

H1ðX ;KnÞ

induces an isomorphism of PicðX Þ �Q=Z with H1ðX ;KnÞtors.

Remark 5.6.1 (n ¼ 2). If X is proper over C then H0ðX ;K2Þ �Q=Z ¼ 0 as
well, and the product induces an injection of PicðX Þ �Q=Z ffi ðQ=ZÞr into
H1ðX ;K2Þtors. This was proven in [CT-R, 2.7]. We will see in Example 6.5.1 below
that H1ðX ;K2Þtors ffi B � ðQ=ZÞb2 .

Proof. Set n ¼ 2i, iX 2. We will use the Deligne^Beilinson Chern class

ciþ1:KnðX Þ ! H2
DðX ;Zði þ 1ÞÞ:

For eachm, choose anmth root of unity zm, so [z
�i
m :H1ðmmÞ ffi H

1ðm�iþ1m Þ. Composing
with cet1 :PicðX Þ=m ffi H1ðX ;H1ðmmÞÞ yields the isomorphism c01 in the following diag-
ram, which commutes by [BPW, p. 163] and Corollary 2.7.

PicðX Þ=m ���!
ffi

H1ðX ;Knþ1ðZ=mÞÞ ���!
@

H1ðX ;KnÞm

cetiþ1

??y ciþ1

??y
PicðX Þ=m ���!

ffi

c01
H1ðX ;H1ðm�iþ1m ÞÞ ���!

g
H1ðX ;H2

DðZði þ 1ÞÞÞm

into

??y into

??y
0! A2=m ���! H2ðX ;Z=mði þ 1ÞÞ ���!

onto
H3
DðX ;Zði þ 1ÞÞm! 0:

The bottom row is the exact sequence of Lemma 4.0, using Corollary 4.2. The map g
is induced by the inclusionH1ðm�iþ1m Þ � H2

DðZði þ 1ÞÞ of 4.1. The top composite is the
map of the lemma, and the isomorphism PicðX Þ=m ffi H1ðX ;Knþ1ðZ=mÞÞ comes
from Theorem 2.2 and Corollary 2.7. The inclusions of H1ðX ;H1ðm�iþ1m ÞÞ in
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H2ðX ;Z=mði þ 1ÞÞ and H1ðX ;H2
DÞ in H3

DðX Þ follow from the Bloch^Ogus spectral
sequences.
Let gmðiÞ be the element in K2i�1ðCÞtors corresponding to zm, as in De¢nition 4.3.

The product of gmðiÞ with l 2 PicðX Þ is an element fl; gmðiÞg in H1ðX ;KnÞm. As
in (4.6.1), the product formula yields:

ciþ1 fl; gmðiÞg
� �

¼ ð�1Þi � i! � c1ðlÞ [ zmðiÞ ¼ ð�1Þ
i
� i! � g

�
c01ðlÞ

�
in H3

DðX ;ZðiÞÞ, where c1ðlÞ 2 H1ðX ;H1
Dð1ÞÞ and zmðiÞ2H0ðX ;H1

DðiÞÞ.
A diagram chase shows that the kernel of the top map PicðX Þ=m! H1ðX ;KnÞ has

exponent N ¼ ð�1ÞijA2j � i!, independent of m. But this kernel is H0ðX ;KnÞ=m by
Corollary 5.4. Passing to the limit over m, we see that H0ðX ;KnÞ �Q=Z has
exponent N, and is divisible, so it is zero. By Corollary 5.4 again, this implies that
PicðX Þ �Q=Z ffi H1ðX ;KnÞtors, via the indicated map. &

LEMMA 5.7. Let X be a smooth surface. For odd nX 3, H0ðX ;KnÞ �Q=Z ¼ 0
Proof. Set n ¼ 2i þ 1 and N ¼ ð�1Þi � ði þ 1Þ!. Applying H1 to the Chern classes

ciþ2 from K-Theory to singular and Deligne^Beilinson cohomology yields maps

H1ðX ;Knþ1ðZ=mÞÞ ! H1ðX ;H2ðZ=mÞÞ ffi H3ðX ;Z=mÞ;

H1ðX ;KnÞ ! H1ðX ;H3
DðZði þ 2ÞÞ ffi H4

DðX ;Zði þ 2ÞÞ:

We claim that these ¢t into a commutative diagram for iX 2:

H1ðX ;K2ðZ=mÞÞ ���!
ffi

[bi
H1ðX ;Knþ1ðZ=mÞÞ ���!

@
H1ðX ;KnÞm

ffi

??yc2 ciþ2

??y ciþ2

??y
H3ðX ;Z=mÞ ���!

N
H3ðX ;Z=mÞ ���!

onto
H4
DðX ;Zði þ 2ÞÞm:

ð5:7:1Þ

The right square commutes by [BPW, p. 168], and the lower right horizontal arrow is
a surjection with kernel A3=m by Lemmas 4.0 and 4.2. The two isomorphisms in the
upper left are isomorphisms by Theorem 2.2 and Remark 2.6.1. We must show that
the left square in (5.7.1) commutes.
Let z be the primitive mth root of 1 in C corresponding to the Bott element

b 2 K2ðC;Z=mÞ. As in (4.6.2), the product formula for ciþ2 yields the following
equalities for all x 2 H1ðX ;K2ðZ=mÞÞ:

ciþ2ðx [ b
i
Þ ¼
�ði þ 1Þ!
ði � 1Þ!

� c2ðxÞ � ciðb
i
Þ ¼ N � c2ðxÞ [ zðiÞ:

Since [zðiÞ is the natural identi¢cation of H3ðX ;Z=mð2ÞÞ with H3ðX ;Z=mði þ 2ÞÞ,
this establishes the commutativity of (5.7.1), as claimed.
From (5.7.1) we see that the kernel of @:H1ðX ;Knþ1ðZ=mÞÞ ! H1ðX ;KnÞm

has exponent N 00 ¼ jA3j �N for all m. By Corollary 5.4, we have kerð@Þ ¼
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H0ðX ;KnÞ=m. Letting m go to in¢nity, we see that the group H0ðX ;KnÞ �Q=Z has
exponent N 00. Since this group is divisible, it must be zero. &

6. The K -Groups of a Surface

In this section we shall describe the Abelian group structure of KnðX Þ. For this it will
be convenient to introduce some notation.

NOTATION 6.1. Suppose that X is a complex variety. It is known that each
cohomology groupHn

anðX ;ZÞ is a ¢nitely generated Abelian group of rank bn, where
bn ¼ dimHn

anðX ;QÞ is the nth Betti number of X . We set

A ¼ H2
anðX ;ZÞtors; B ¼ H3

anðX ;ZÞtors:

When X is a surface, the groups Hn
anðX ;ZÞ are torsion free for n 6¼ 2; 3. Therefore

the cohomology of a surface X with coef¢cients Z=m is:

H1ðX ;Z=mÞ ffi ðZ=mÞb1 � Am;

H2ðX ;Z=mÞ ffi ðZ=mÞb2 � ðA=mÞ � Bm;

H3ðX ;Z=mÞ ffi ðZ=mÞb3 � ðB=mÞ:

ð6:1:1Þ

We will want to compare these groups with e¤ tale cohomology, so we consider the
change-of-topology morphism p:Xan ! Xet. Applying Rp� to the natural map
O
�
Xan
½�1� ! Z in the (analytic) exponential sequence yields a morphism

Z:Gm½�1� ! Rp�Z in the derived category of e¤ tale sheaves on X . We de¢ne the
groups Vn to be the e¤ tale hypercohomology of the cone of Z, so that there is a long
exact sequence, part of which is:

Hn�1
et ðX ;GmÞ !

Z
Hn

anðX ;ZÞ ! Vn! Hn
etðX ;GmÞ !

Z
Hnþ1

an ðX ;ZÞ ! � � �

ð6:1:2Þ

LEMMA 6.1.3. Each Vn is a uniquely divisible group, i.e., a Q-vector space.
Proof. For each m, consider the Kummer sequence mm ! Gm!

m
Gm. Combining

with the sequence of analytic sheaves Z!
m

Z! Z=m, a result of Verdier [WH,
Ex. 10.2.6] implies that there is a commutative diagram in the derived category

Gm½�1� ���!
Z

Rp�Z ���! coneðZÞ??ym

??ym

??ym

Gm½�1� ���!
Z

Rp�Z ���! coneðZÞ??y ??y ??y
mm ���!

ffi
Z=m ���! 0

in which every row and column ¢t into a triangle. Since the right column ¢ts into a
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triangle, multiplication by m is an isomorphism on the cone and, hence, on its
hypercohomology groups, the Vn. &

Remark 6.1.4. In low degrees we can compare (6.1.2) to the exponential sequence
to see that V 0 ffi C for connected X , and that V1 ffi Rb1 for smooth projective
X . In contrast, if X is smooth then the image of Hn

anðX ;ZÞ ! Vn is a lattice for
all nX 2, with Vn ffi Q

bn for all nX 3. This claim follows from the fact that
HnðX ;GmÞ is a torsion group for nX 2 [Dix, p. 71]. It may be seen by tensoring
(6.1.2) with Q. We are grateful to the referee for pointing this out.

PROPOSITION 6.2. If X is a variety over C, then there are integers rn W bn and
uniquely divisible groups Wn such that

Hn
etðX ;GmÞ ffi Zrnþ1 �Hnþ1

an ðX ;ZÞtors � ðQ=ZÞbn�rn �Wn:

If X is smooth then rn ¼ 0 for all nX 3, so in particular

Hn
etðX ;GmÞ ffi Hnþ1

an ðX ;ZÞtors � ðQ=ZÞbn ; nX 3:

Proof. The image ofHn
anðX ;ZÞ ! Vn is isomorphic to Zrn for some rn W bn; we set

rn ¼ bn � rn. Hence, (6.1.2) breaks up into exact sequences 0! Vn=Zrn !

Hn
etðX ;GmÞ !

Z
Zrnþ1 �Hnþ1

an ðX ;ZÞtors! 0: The result follows, since Vn=Zrn may
be written as ðQ=ZÞbn�rn �Wn. If X is smooth then rn ¼ 0 for all nX 3 by
Remark 6.1.4. &

Let us write UðX Þ ¼ H0
etðX ;GmÞ ¼ O

�
X ðX Þ for the group of global units of X . It is

classical that UðX Þ is the product of C� and a free Abelian group Zs, sX 0.

COROLLARY 6.2.1. Let X be a smooth variety over C. Then there is a divisible
group Pic0ðX Þ and integers sW b1, rW b2 so that UðX Þ ffi C

�
�Zs, Pic0ðX Þtors ffi

ðQ=ZÞb1�s,

PicðX Þ ffi A�Zr
� Pic0ðX Þ;

BrðX Þ ffi B � ðQ=ZÞb2�r:

Proof. Indeed, because PicðX Þ ¼ H1
etðX ;GmÞ and BrðX Þ ¼ H2

etðX ;GmÞtors, these
are just the cases nW 2, with s ¼ r1, r ¼ r2 and Pic0ðX Þ ¼ V1=Zr1 . &

EXAMPLE 6.2.2. Suppose that X is a smooth projective surface. Then b1 ¼ b3, and
the ¢nite groups A and B are abstractly isomorphic, being Poincare¤ dual to each
other. Using the exponential sequence, UðX Þ ¼ C

� and the identi¢cation
PicðX Þ ffi H1

anðX ;O�X Þ, it is easy to see that V 0 ¼ C and V 1 ffi H1
anðX ;OX Þ, and

we recover the usual observations that PicðX Þ ¼ Pic0ðX Þ �NSðX Þ, where
Pic0ðX Þ ffi H1

anðX ;OX Þ=H1
anðX ;ZÞ and the Ne¤ ron^Severi group NSðX Þ is the image
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of the map Z:PicðX Þ ! H2
anðX ;ZÞ. In this case, it is easy to see directly from the

Kummer sequence thatNSðX Þ ffi A�Zr for some rW b2. Using this, we can deduce
directly from the Kummer sequence that BrðX Þ ffi B � ðQ=ZÞb2�r.

Remark 6.2.3. The invariant subgroups A and B arise in the study of topological
vector bundles on X ðCÞ. The group of topological line bundles is isomorphic to
H2

anðX ;ZÞ ¼ A�Zb2 and, by [Dix, p. 50], the torsion subgroup B of H3
anðX ;ZÞ

equals the ‘topological’ Brauer group, formed from topological bundles of matrix
algebras on X ðCÞ.
Next, we show that K0ðX Þ and K1ðX Þ are divisible-by-¢nitely generated.

PROPOSITION 6.3. Let X be a smooth irreducible surface over C. Then:

(1) K0ðX Þ is the sum of the divisible group Pic0ðX Þ � A0ðX Þ and the ¢nitely generated
group Z� ðA�Zr

Þ �Zb4;
(2) A0ðX Þtors ffi H2ðX ;K2Þtors ffi ðQ=ZÞb3�r1 for some r1W b3;
(3) K1ðX Þ ¼ UðX Þ � SK1ðX Þ, and SK1ðX Þ ffi H1ðX ;K2Þ �H2ðX ;K3Þ;
(4) H2ðX ;K3Þ is divisible, with torsion subgroup ðQ=ZÞb4;
(5) Both SK1ðX Þ and H1ðX ;K2Þ are the direct sum of a divisible group and a ¢nitely

generated group of the form B �Zr1 .

Proof. Part (1) is classical for surfaces, since the Chern classes split K0ðX Þ into the
sum of Z, PicðX Þ and CH2ðX Þ. Note that A lies in PicðX Þ by Corollary 6.2.1.
It follows from Corollary 2.12 that K1ðX Þ is the direct sum of B, a divisible group,

and a ¢nitely generated free Abelian group. The same is true for the subgroup
SK1ðX Þ, since B vanishes in UðX Þ. Now the Brown^Gersten spectral sequence yields
an exact sequence

0! T2! H2ðX ;K3Þ ! SK1ðX Þ ! H1ðX ;K2Þ ! 0;

where T2 is the image of the differential H0ðX ;K2Þ ! H2ðX ;K3Þ. Both part (4) and
the fact that T2 is torsion-free follow from Theorem 5.5(2,4) and this sequence.
But it is also known that the group T2 has exponent 2; see [PW, 1.2(1b)]. Hence,
T2 ¼ 0. This gives the decomposition of SK1ðX Þ and shows that H1ðX ;K2Þ is also
the sum of a divisible group, B and a free Abelian group Zr1 . The inequality
r1W b3 and part (2) comes from Suslin’s sequence in Remark 5.4.1 above. &

EXAMPLE 6.3.1 (r1 < b3). Let X be a smooth projective surface. Colliot-The¤ le' ne
and Raskind showed in [CT-R, 2.2] that H1ðX ;K2Þ is the direct sum of B and a
divisible group. In this case, r1 ¼ 0 and K1ðX Þ is divisible-by-¢nite. We will show
that H1ðX ;K2Þtors ffi B � ðQ=ZÞb2 in Example 6.5.1 below. This yields a complete
description of K1ðX Þ, which we state in Example 6.7 below.

EXAMPLE 6.3.2 (r1 ¼ b3 ¼ 1). Let X ¼ Y � SpecðC½t; t�1�Þ, where Y is a smooth
projective curve. The group K1ðY Þ ¼ C

�
� SK1ðY Þ is divisible, and described in
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Remark 3.2.1, but the fundamental theorem of K-theory implies that neither UðX Þ
nor SK1ðX Þ is divisible: UðX Þ ¼ C

�
�Z and

SK1ðX Þ ffi H1ðX ;K2Þ ¼ Z� Pic0ðY Þ � SK1ðY Þ:

EXAMPLE 6.3.3 (b3 ¼ 0). Let X ¼ SpecðRÞ be a smooth af¢ne surface. Although
the group SK1ðX Þ is divisible, because H3

anðX ;ZÞ ¼ 0, the group K1ðX Þ need not
be divisible because UðX Þ ¼ R� ¼ C

�
�Zs.

In order to show that the groups KnðX Þ are divisible-by-¢nite when nX 3, but only
divisible-by-¢nitely generated for n ¼ 2, we ¢rst show that this is true for the groups
H0ðX ;KnÞ. We must proceed indirectly, since we do not even know if these groups
are quotients of KnðX Þ.

PROPOSITION 6.4. Let X be a smooth surface over C.

(1) For all even nX 2, A is a summand of both KnðX Þ and H0ðX ;KnÞ.
(2) For all odd nX 3, B is a summand of both KnðX Þ and H0ðX ;KnÞ.

Remark 6.4.1 For n < dimðX Þ, Proposition 6.3 shows that there is a migration of
the ¢nite groups into lower parts of the Brown^Gersten ¢ltration. Indeed, it is clear
that the ¢nite group A is not a summand of H0ðX ;K0Þ ¼ Z, and the ¢nite group
B cannot be a summand of the group of units H0ðX ;K1Þ ¼ UðX Þ.

Proof. By Corollary 2.12, the group A (resp. B) is a summand of KnðX Þ for every
even (resp. odd) nX 0. Moreover, by Theorem 2.8 and (6.1.1), Knþ1ðX;Q=ZÞ is
the direct sum of a divisible group and the ¢nite group A (resp. B). By
Corollaries 2.10 and 5.3, the composition Knþ1ðX;Q=ZÞ ! KnðX Þ ! H0ðX ;KnÞ

embeds this ¢nite group (A or B) as a summand of H0ðX ;KnÞtors.
To show that this ¢nite subgroup is a summand of H0ðX ;KnÞ, we tensor

0! Z=m! Z=ðm2Þ ! Z=m! 0 with H0ðX ;KnÞ. If nX 4 is even and m � A ¼ 0,
Corollaries 2.7 and 5.4 (and 6.2.1) yield a commutative diagram with exact rows
and columns:

H0ðX ;KnÞm !
@

H0ðX ;KnÞ=m ! H0ðX ;KnÞ=ðm2Þ ! H0ðX ;KnÞ=m! 0

induced

??y ??yinto

??yinto

??yinto

0! A ! PicðX Þ=m ! PicðX Þ=ðm2Þ ! PicðX Þ=m! 0??y ??yonto

??yonto

??yonto

0 ! H1ðX ;KnÞm ! H1ðX ;KnÞm2 ! H1ðX ;KnÞm � � � :

By Corollary 5.3, there is a (noncanonically split) surjection p:H0ðX ;KnÞm ! A;
from the de¢nition of the top left map @ it follows that @ is p followed by an injection.
By Corollary 6.2.1, the map A! PicðX Þ=m is naturally split. It follows that A is a
canonical summand of H0ðX ;KnÞ=m and, by a diagram chase, a (noncanonical)
summand of H0ðX ;KnÞ.
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If n ¼ 2 then we replace the middle row of this diagram by the sequence

0! A! H2ðX ;Z=mÞ ! H2ðX ;Z=m2Þ ! H2ðX ;Z=mÞ;

which comes from naturality of (6.1.1) in m. By Remark 5.4.1, the columns are still
exact, and the same argument works.
The proof for odd nX 3 is identical, except that (using Corollaries 2.7 and 5.4) the

middle row gets replaced by

0! B! H3ðX ;Z=mÞ ! H3ðX ;Z=m2Þ ! H3ðX ;Z=mÞ ! 0: &

EXERCISE 6.4.2. A different proof is possible for n ¼ 2. First use Theorem 5.5 and
the proof of Proposition 6.3 to show that H0ðX ;K2Þ is a summand of K2ðX Þ. Then
invoke Corollaries 2.12 and 5.3.

THEOREM 6.5. Let X be a smooth irreducible surface over C.

(1) H0ðX ;K2Þ is the direct sum of a uniquely divisible group and a group of the form
ðQ=ZÞb1 � A�Zr2 for some r2W b2, while

H1ðX ;K2Þtors ffi B � ðQ=ZÞb2�r2 :

(2) For all even nX 4, H0ðX ;KnÞ is the direct sum of A and a divisible group, while

H1ðX ;KnÞtors ffi PicðX Þ �Q=Z ffi ðQ=ZÞr:

(3) For all odd nX 3, H0ðX ;KnÞ is the direct sum of B and a divisible group, while

H1ðX ;KnÞtors ffi H3ðX ;Q=ZÞ ffi ðQ=ZÞb3 :

Proof. In the proof of Proposition 6.3 we saw that the Brown^Gersten differential
H0ðX ;K2Þ ! H2ðX ;K3Þ vanished, soH0ðX ;K2Þ is a quotient ofK2ðX Þ. By Corollary
2.12 and (2.8.1), H0ðX ;K2Þ is the sum of a divisible group and a ¢nitely generated
group of rank r2. By Corollary 5.3 and (6.1.1), the torsion subgroup of
H0ðX ;K2Þ is ðQ=ZÞb1 � A. Hence H0ðX ;K2Þ is the sum of a uniquely divisible group
and a group of the form ðQ=ZÞb1 � A�Zr2 . The inequality r2W b2 and the descrip-
tion of H1ðX ;K2Þtors comes from (6.1.1) and Suslin’s sequence in Remark 5.4.1
above.
For nX 3, Corollaries 2.7 and 5.4 give short exact sequences for each m:

0! H0ðX ;KnÞ=m! PicðX Þ=m! H1ðX ;KnÞm ! 0; nX 4 even;

0! H0ðX ;KnÞ=m! H3ðX ;Z=mÞ ! H1ðX ;KnÞm! 0; nX 3 odd.

If n is even then H0ðX ;KnÞ ¼ A�D for some group D by Proposition 6.4, so in the
¢rst sequence the left group is A=m�D=m. The right group contains ðZ=mÞr as
a subgroup by Lemma 5.6, and the middle group is A=m� ðZ=mÞr by
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Corollary 6.2.1. It follows that H1ðX ;KnÞm ¼ ðZ=mÞr, and that D=m ¼ 0 for all m,
i.e., D is divisible.
If n is odd then H0ðX ;KnÞ ¼ B �D for some group D, so the left group is

B=m�D=m. The right group contains ðZ=mÞb3 as a subgroup by Lemma 5.7,
and the middle group is B=m� ðZ=mÞr by (6.1.1). It follows that H1ðX ;KnÞm ¼

ðZ=mÞb3 , and that D=m ¼ 0 for all m, i.e., D is divisible. &

EXAMPLE 6.5.1. As in Remark 6.4.1, the case n ¼ 2 is anomalous because it is B
and not A that appears in H1ðX ;K2Þ. Also both H0ðX ;K2Þ and H1ðX ;K2Þ can con-
tain a free summand. Example 6.8.1 below shows that the free summand Zr2 of
K2ðX Þ and H0ðX ;K2Þ can be nonzero when X is af¢ne, and Example 6.9 shows that
the free summand Zr1 of H1ðX ;K2Þ can be nonzero.
However, if X is a smooth projective surface then r2 ¼ 0, because Colliot-The¤ le' ne

and Raskind showed in [CT-R, 1.8] that H0ðX ;K2Þ is the direct sum of A and a
divisible group. It follows from Theorem 6.5 that there is a uniquely divisible group
V12 so that H1ðX ;K2Þ ffi B � ðQ=ZÞb2 � V12: This result recovers Theorem 2.2 of
[CT-R], where it is proven that H1ðX ;K2Þ is the direct sum of B and a divisible
group.

THEOREM 6.6. Let X be a smooth irreducible surface over C. Then there are
uniquely divisible groups Vn such that:

(1) For some r2W b2,

K2ðX Þ ffi ðA�Zr2 Þ � ðQ=ZÞb1 � ðQ=ZÞb3 � V2:

(2) For every even nX 4,

KnðX Þ ffi A� ðQ=ZÞb1 � ðQ=ZÞb3 � Vn:

(3) For every odd nX 3,

KnðX Þ ffi B � ðQ=ZÞ � ðQ=ZÞb2 �H4ðX ;Q=ZÞ � Vn:

The following notation will be useful in the proof of Theorem 6.6. For each n, leteKKnðX Þ denote the kernel of KnðX Þ ! KnðF Þ, F ¼ CðX Þ, and let T ¼ Tn denote
the image of the differential H0ðX ;KnÞ ! H2ðX ;Knþ1Þ in the Brown^Gersten
spectral sequence (5.1). Thus we have exact sequences:

0! eKKnðX Þ ! KnðX Þ ! H0ðX ;KnÞ ! Tn! 0;

0! Tnþ1! H2ðX ;Knþ2Þ ! eKKnðX Þ ! H1ðX ;Knþ1Þ ! 0:
ð6:6:1Þ

Proof. For nX 2, we see by combining Theorem 6.5 and Proposition 6.4 that the
quotient Tnþ1 of H0ðX ;Knþ1Þ is divisible, so Tnþ1 is a summand of H2ðX ;Knþ2Þ.
Theorem 5.5 and (6.6.1) imply that Tnþ1 is torsion-free, hence uniquely divisible,
and that the groups H2ðX ;Knþ2Þ and H1ðX ;Knþ1Þ are divisible. From (6.6.1) we
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see that eKKnðX Þ is divisible and, again by Theorem 5.5, that eKKnðX Þtors is either ðQ=ZÞb3

or ðQ=ZÞrþb4 , according to the parity of n. The description of KnðX Þ follows by
piecing this together with the description ofH0ðX ;KnÞ in Corollary 5.3 and Theorem
6.5. &

EXAMPLE 6.7. Let X be a smooth projective surface over C. Then there are
uniquely divisible groups Vn so that:

KnðX Þ ffi
B � ðQ=ZÞ2þb2 � Vn; nX 1 odd;

A� ðQ=ZÞb1þb3 � Vn; nX 2 even.

(

Indeed, the cases n ¼ 1; 2 follow from Example 6.5.1, since r2 ¼ 0, and the cases
nX 3 are part of Theorem 6.6.
We can partially understand the uniquely divisible part as follows. Using the rela-

tive sequence (2.11.0) and the calculation of KU�ðX Þ (see (2.8.1)), we have exact
sequences:

0! Zb1þb3 ! Krel
0 ðX Þ ! K0ðX Þ ! Z� ðA�Zr

Þ �Z! 0;

0! Z2þb2 ! Krel
n ðX Þ ! KnðX Þ ! B! 0; nX 1 odd;

0! Zb1þb3 ! Krel
n ðX Þ ! KnðX Þ ! A! 0; nX 2 even:

For K0ðX Þ this combines the classical description of PicðX Þ in Example 6.2.2 with
Roitman’s theorem that the torsion in the Chow group CH2ðX Þ ¼ Z� A0ðX Þ is
ðQ=ZÞb3 . For K1ðX Þ, it shows that in addition to the two standard summands
C
� and the ¢nite summand B found by Colliot-The¤ le' ne and Raskind, there is a

torsion summand ðQ=ZÞb2 , which is the divisible part of H1ðX ;K2Þtors. The uniquely
divisible part of K1ðX Þ is the sum of the three uniquely divisible parts:
C
�= expð2piQÞ; V12 � H1ðX ;K2Þ and V23 � H2ðX ;K3Þ. This latter group is

isomorphic to W �C
�= expð2piQÞ, where W denotes the kernel of the transfer

map H2ðX ;K3Þ ! C
�.

Remark 6.7.1 The results of this section give us the following computations for the
groupsHpðX ;KqÞ of a smooth projective surface X overC. In the description below,
Vpq denotes a uniquely divisible Abelian group, while the ¢nite groups A and B are
de¢ned in Notation 6.1.

(i) For q ¼ 2 we have

H0ðX ;K2Þ ffi A� ðQ=ZÞb1 � V02;

H1ðX ;K2Þ ffi B � ðQ=ZÞb2 � V12;

H2ðX ;K2Þ ffi CH2ðX Þ ffi Z� ðQ=ZÞb3 � V22;
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(ii) For all odd nX 3,

H0ðX ;KnÞ ffi Q=Z� B � ðQ=ZÞb2�r � V0n;

H1ðX ;KnÞ ffi ðQ=ZÞb3 � V1n;

H2ðX ;KnÞ ffi Q=Z� V2n:

(iii) For all even nX 4,

H0ðX ;KnÞ ffi A� ðQ=ZÞb1 � V0n;

H1ðX ;KnÞ ffi ðQ=ZÞr � V1n;

H2ðX ;KnÞ ffi V2n:

The torsion subgroups of all these groups can be computed by means of the following
invariants of X :�

H2ðX ;ZÞtors;H
3ðX ;ZÞtors; r; b1; b2; b3

�
EXAMPLE 6.8. Let X ¼ SpecðRÞ be a smooth af¢ne surface. SinceH3

etðX ;Z=mÞ¼ 0,
we see that there are uniquely divisible groups Vn such that:

KnðX Þ ffi
ðQ=ZÞ � ðQ=ZÞb2 � Vn; nX 3 odd;

A� ðQ=ZÞb1 � Vn; nX 4 even.

(

The structure of K1ðX Þ and K2ðX Þ can be different from this pattern, as the following
two examples show.

6.8.1. Consider the af¢ne surface X ¼ SpecðC½x; 1=x; y; 1=y�Þ. It is well known (see
[Sh, 4.3]) that HpðX ;KqÞ ¼ 0 for p 6¼ 0, and that the fundamental theorem of
K-theory implies that K1ðX Þ ¼ H0ðX ;K1Þ ¼ Z�Z�C

� and

K2ðX Þ ¼ H0ðX ;K2Þ ¼ Z�C
�
�C

�
� K2ðCÞ:

These groups are not divisible.
We claim that for the above af¢ne surface the obvious map

H0ðX ;K2Þ=m! H0ðX ;K2ðZ=mÞÞ ffi H0ðX ;H2ðZ=mÞÞ

is an isomorphism. In particular, it is not the zero map (since all groups are Z=m).
This contrasts with the fact that it is always the zero map when X is projective
by [CT-R, 1.7]. The claim follows from the following factorization of the obvious
map: H0ðX ;K2Þ=m! H2ðX ;Z=mÞ ! H0ðX ;H2ðZ=mÞÞ. Since H1ðX ;K2Þ ¼ 0, the
¢rst map is an isomorphism by Suslin’s sequence (Remark 5.4.1). But since
PicðX Þ ¼ 0, the second map is also an isomorphism by the Bloch^Ogus sequence:

0! PicðX Þ=m! H2ðX ;Z=mÞ ! H0ðX ;H2ðZ=mÞÞ ! 0:
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6.8.2. Let �YY1 and �YY2 be smooth projective curves of genus g1 and g2, and let
Yi ¼ �YYi � pi be af¢ne curves obtained by removing one point. The af¢ne surface
X ¼ Y1 � Y2 has Betti numbers b1 ¼ 2ðg1 þ g2Þ and b2 ¼ 4g1g2. We claim that
KnðX Þ is divisible for all nX 1, with

KnðY1 � Y2Þtors ¼
Q=Z� ðQ=ZÞb2 ; nX 1 odd;

ðQ=ZÞb1 ; nX 2 even.

(

To see this, note that the pi induce closed immersions p1! �YY1, �YY1! �YY1 � �YY2 and
Y2! �YY1 � Y2 which are split by proper maps, viz. the projections. Thus these
immersions induce split injections on the level of K-theory. The K-theory
localization sequences for these immersions induce a decomposition for all n:

Knð �YY1 � �YY2Þ ffi Knð �YY1Þ � Knð �YY1 � Y 2Þ

ffi KnðkÞ � KnðY 1Þ � KnðY2Þ � KnðY1 � Y2Þ:

From Example 6.7, Knð �YY1 � �YY2Þ is divisible for nX 1, with torsion subgroup either
ðQ=ZÞ4þb2 or ðQ=ZÞ2b1 . (The bi in this formula are the Betti numbers of X , not
the Betti numbers of �YY1 � �YY2.) The description of KnðY1 � Y2Þ follows from this
using Theorem 3.2. In this case the difference between n ¼ 2 and n ¼ 4 is apparent
in the K-cohomology; since 0W rW 2g1g2 we see from Theorem 6.5 and Example
6.5.1 that there are uniquely divisible groups Vn so that:

H1ðY1 � Y2;KnÞ ¼

Vn; nX 1 odd;

ðQ=ZÞ4g1g2 � Vn; n ¼ 2;
ðQ=ZÞr � Vn; nX 4 even.

8><>:
EXAMPLE 6.9. Let U ¼ X � S, where X is a smooth projective surface and S is a
¢nite set of s closed points. Then H3

anðU;ZÞ ¼ H3ðX ;ZÞ �Zs�1, H4
anðU;ZÞ ¼ 0

and Hi
anðU;ZÞ ¼ Hi

anðX ;ZÞ for iW 2. Moreover, the standard resolution of Kn

shows that H0ðX ;KnÞ ¼ H0ðU;KnÞ for all n. Referring to Theorem 6.6 and (6.6.1),
we see that KnðX Þtors ffi ðQ=ZÞ � KnðUÞtors for all odd nX 3, while for all even
nX 2 we have a split exact sequence

0! KnðX Þtors ! KnðUÞtors ! Kn�1ðSÞtors ! Q=Z! 0:

We claim that K1ðX Þtors ffi ðQ=ZÞ � K1ðUÞtors as well. Given the decomposition of
K1ðX Þ in Proposition 6.3, the fact that H2ðX ;K3Þtors ffi ðQ=ZÞ �H2ðU;K3Þtors (from
Theorem 5.5) implies that we need only focus on H1ðX ;K2Þ. By [MS, 8.1.4] we
can re¢ne the continuation of the localization sequence as the exact sequence:

0! H1ðX ;K2Þ ! H1ðU;K2Þ ! ðZÞ
s
! H2ðX ;K2Þ ! H2ðU;K2Þ ! 0

Because A 7!Ators is left exact, this yields the claim. In fact,

SK1ðUÞtors ffi H1ðU;K2Þtors ffi H1ðX ;K2Þtors ffi B � ðQ=ZÞb2 :
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To study the image ofH1ðX ;K2Þ inZs, we identifyH2ðX ;K2Þwith the Chow group
CH2ðX Þ ¼ Z� A0ðX Þ of zero-cycles on X , and observe that the image of Zs in
CH2ðX Þ is the subgroup generated by the points in S. Picking S so that some dif-
ferences ½s� � ½s0� are torsion in A0ðX Þ yields a family of examples where
H1ðU;K2Þ contains B �Zr1 as a summand for any r1W b3. This shows that the
description of SK1ðUÞ in Proposition 6.3 is best possible. It also illustrates the
nontriviality of Suslin’s sequence (Remark 5.4.1) for the surface U :

0! H1ðU;K2Þ=m! H3ðU;Z=mÞ ! H2ðU;K2Þm ! 0:
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