Shalom Doron.

First, hamon toda for the wonderful gift: the three issues of the AAM for my 65-th birthday.
Here is a problem (probably classical) which might involve bijections.
Let $P(n)$ denote the set of the partitions of n. As usual, for $\lambda \in P(n), \ell(\lambda)$ is the number of parts of λ. Let $S P(n) \subset P(n)$ denote the partitions of n of odd distinct parts. For example, $S P(8)=\{(7,1),(5,3)\}$.

Fact:

1. $|P(n) \backslash S P(n)|$ is always even, and moreover,
2. for exactly half of the partitions $\lambda \in P(n) \backslash S P(n), \ell(\lambda)$ is even.

I can prove this purely combinatorial fact using the character theory of S_{n} and A_{n}. Is there a direct - purely combinatorial - proof?
Here is a "bijective" proof that $|P(n) \backslash S P(n)|$ is always even:
Let $P_{\text {sym }}(n)=\left\{\lambda \vdash n \mid \lambda=\lambda^{\prime}\right\}$, so $p_{\text {sym }}(n)=\left|P_{\text {sym }}(n)\right|$. Let $\lambda=\lambda^{\prime}$, write it in the Frobenius notation $\lambda=\left(a_{1}, \ldots, a_{k} \mid a_{1}, \ldots, a_{k}\right)$ then map it

$$
h:\left(a_{1}, \ldots, a_{k} \mid a_{1}, \ldots, a_{k}\right) \rightarrow\left(2 a_{1}+1, \ldots, 2 a_{k}+1\right) \in S P(n),
$$

then $h: P_{\text {sym }}(n) \rightarrow S P(n)$ is a bijection, so $\left|P_{\text {sym }}(n)\right|=|S P(n)|$. This yields a bijection between $P(n) \backslash S P(n)$ and $P(n) \backslash P_{\text {sym }}(n)$. But $P(n) \backslash P_{\text {sym }}(n)=\left\{\lambda \vdash n \mid \lambda \neq \lambda^{\prime}\right\}$ is a union of the pairs $\lambda, \lambda^{\prime}$, hence $\left|P(n) \backslash P_{s y m}(n)\right|=|P(n) \backslash S P(n)|$ is even.
We would get a proof of 2 . if we can extend the bijection $h: P_{s y m}(n) \rightarrow S P(n)$ into a bijection $h^{*}: P(n) \rightarrow P(n)$ - therefore also $h^{*}: P(n) \backslash P_{s y m}(n) \rightarrow P(n) \backslash S P(n)$ - such that to each pair $\lambda, \lambda^{\prime}$, exactly one partition of the pair $h^{*}(\lambda), h^{*}\left(\lambda^{\prime}\right)$ is of even length So, the question is how to find h^{*} for all n.
lehitraot,
Amitai

