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Problem 1

We will prove the following by induction for n ≥ 0:
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so the statement is true.

Now assume the statement is true for n− 1. This means that
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, we have:
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Using this, by induction we have that for all n ≥ 0:
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Then, since limn→∞
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= 0 and sinh−1 is a continuous function, this means that:
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