Problem 1

We will prove the following by induction for $n \geq 0$:

$$
\sum_{i=1}^{n} \sinh ^{-1}\left(\frac{1}{\sqrt{2^{i+2}+2}+\sqrt{2^{i+1}+2}}\right)=\sinh ^{-1}\left(\frac{1}{\sqrt{2}}\right)-\sinh ^{-1}\left(\frac{1}{\sqrt{2^{n+1}}}\right)
$$

For $n=0$, clearly $\sum_{i=1}^{n} \sinh ^{-1}\left(\frac{1}{\sqrt{2^{n+2}+2}+\sqrt{2^{n+1}+2}}\right)=0$, while $\sinh ^{-1}\left(\frac{1}{\sqrt{2^{n+1}}}\right)=\sinh ^{-1}\left(\frac{1}{\sqrt{2}}\right)$, so the statement is true.
Now assume the statement is true for $n-1$. This means that

$$
\begin{aligned}
& \sum_{i=1}^{n} \sinh ^{-1}\left(\frac{1}{\sqrt{2^{i+2}+2}+\sqrt{2^{i+1}+2}}\right) \\
& =\sinh ^{-1}\left(\frac{1}{\sqrt{2^{n+2}+2}+\sqrt{2^{n+1}+2}}\right)+\sum_{i=1}^{n-1} \sinh ^{-1}\left(\frac{1}{\sqrt{2^{i+2}+2}+\sqrt{2^{i+1}+2}}\right) \\
& =\sinh ^{-1}\left(\frac{1}{\sqrt{2^{n+2}+2}+\sqrt{2^{n+1}+2}}\right)+\sinh ^{-1}\left(\frac{1}{\sqrt{2}}\right)-\sinh ^{-1}\left(\frac{1}{\sqrt{2^{n}}}\right)
\end{aligned}
$$

However, since $\sinh ^{-1}(u)-\sinh ^{-1}(v)=\sinh ^{-1}\left(u \sqrt{1+v^{2}}-v \sqrt{1+u^{2}}\right)$, we have:

$$
\begin{aligned}
\sinh ^{-1}\left(\frac{1}{\sqrt{2^{n}}}\right)-\sinh ^{-1}\left(\frac{1}{\sqrt{2^{n+1}}}\right) & =\sinh ^{-1}\left(\frac{1}{\sqrt{2^{n}}} \sqrt{1+\frac{1}{2^{n+1}}}-\frac{1}{\sqrt{2^{n+1}}} \sqrt{1+\frac{1}{2^{n}}}\right) \\
& =\sinh ^{-1}\left(\frac{1}{\sqrt{2^{2 n+1}}} \sqrt{1+2^{n+1}}-\frac{1}{\sqrt{2^{2 n+1}}} \sqrt{1+2^{n}}\right) \\
& =\sinh ^{-1}\left(\frac{\sqrt{1+2^{n+1}}-\sqrt{1+2^{n}}}{\sqrt{2^{2 n+1}}}\right) \\
& =\sinh ^{-1}\left(\frac{2^{n+1}-2^{n}}{2^{n} \sqrt{2}\left(\sqrt{1+2^{n+1}}+\sqrt{1+2^{n}}\right)}\right) \\
& =\sinh ^{-1}\left(\frac{1}{\left.\sqrt{2^{n+2}+2}+\sqrt{2^{n+1}+2}\right)}\right)
\end{aligned}
$$

Using this, by induction we have that for all $n \geq 0$:

$$
\sum_{i=1}^{n} \sinh ^{-1}\left(\frac{1}{\sqrt{2^{i+2}+2}+\sqrt{2^{i+1}+2}}\right)=\sinh ^{-1}\left(\frac{1}{\sqrt{2}}\right)-\sinh ^{-1}\left(\frac{1}{\sqrt{2^{n+1}}}\right)
$$

Then, since $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{2^{n+1}}}=0$ and $\sinh ^{-1}$ is a continuous function, this means that:

$$
\sum_{i=1}^{\infty} \sinh ^{-1}\left(\frac{1}{\sqrt{2^{i+2}+2}+\sqrt{2^{i+1}+2}}\right)=\lim _{n \rightarrow \infty} \sinh ^{-1}\left(\frac{1}{\sqrt{2}}\right)-\sinh ^{-1}\left(\frac{1}{\sqrt{2^{n+1}}}\right)=\sinh ^{-1}\left(\frac{1}{\sqrt{2}}\right)
$$

