Justin Semonsen (js2118)
Experimental Math — Fall 2016 Homework 6 October 22, 2016

Problem 1

We will prove the following by induction for n > 0:
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Now assume the statement is true for n — 1. This means that

Forn = 0, clearly "7 sinh™!
so the statement is true.
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However, since sinh™'(u) — sinh~ ( = sinh™" (uv/1+ 02 — vv/1+ u?), we have:
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Using this, by induction we have that for all n > 0:
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Then, since lim,,_,o, ——— W = 0 and sinh™! is a continuous function, this means that:
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