Homework 21 (Part 5)

5) We want to show that the hook length formula is equivalent to

$$
F\left(a_{1}, \ldots, a_{k}\right)=\frac{\left(\prod_{i=1}^{k-1} \prod_{j=i+1}^{k}\left(a_{i}-a_{j}+j-i\right)\right) \cdot\left(\sum_{i=1}^{k} a_{i}\right)!}{\left(\prod_{i=1}^{k-1} \prod_{j=1}^{k-i}\left(a_{i}+j\right)\right) \cdot \prod_{i=1}^{k} a_{i}!}
$$

Since $\sum_{i=1}^{k} a_{i}=n$, we have to show that

$$
\prod h_{\lambda}(i, j)=\frac{\left(\prod_{i=1}^{k-1} \prod_{j=1}^{k-i}\left(a_{i}+j\right)\right) \cdot \prod_{i=1}^{k} a_{i}!}{\left(\prod_{i=1}^{k-1} \prod_{j=i+1}^{k}\left(a_{i}-a_{j}+j-i\right)\right)}=\prod_{i=1}^{k-1} \frac{\left(a_{i}+k-i\right)!}{\prod_{j=i+1}^{k}\left(a_{i}-a_{j}+j-i\right)}
$$

where $h_{\lambda}(i, j)$ is the hook length of box j in row i, and the product is taken over all boxes in the partition. For a fixed i, the numerator is the product of all numbers between the maximum possible hook length for an element of the row $i, a_{i}+k-i$, and 1 . The denominator determines which of these lengths do not actually appear in row i.

