Homework 9

3) We will prove that

$$
b a S(h, d)=\frac{(h+1-d)(h+d)!}{d!(h+1)!}
$$

for all (h, d) with $0 \leq d, h \leq h+1$ by induction on $d+h$. Suppose that $d+h=0$. Then, both $d, h=0$. We verify that $b a S(h, d)=1$ and $\frac{(h+1-d)(h+d)!}{d!(h+1)!}=\frac{1}{1}=1$. Now, suppose that $d=0$. Then, $b a S(h, d)=1$, and $\frac{(h+1-d)(h+d)!}{d!(h+1)!}=\frac{(h+1)(h)!}{(h+1)!}=1$. Next, suppose that $d=h+1$. Then, $b a S(h, d)=0$ and $\frac{(h+1-d)(h+d)!}{d!(h+1)!}=\frac{0 \cdot(h+d)!}{d!(h+1)!}=0$. Finally, we are ready for the induction step. Suppose that the desired equality holds for all (h, d) pairs with $d+h \leq n-1$, and choose (h, d) such that $h+d=n$, assuming that $0<d<h+1$. Then, by the recurrence we found in class, $b a S(h, d)=b a S(h-1, d)+b a S(h, d-1)$. By our assumptions, we have $d-1, h-1 \geq 0$ and $d \leq h-1+1$, so we can apply the induction hypothesis to find that

$$
\begin{aligned}
b a S(h, d) & =\frac{(h-d)(h-1+d)!}{d!(h)!}+\frac{(h+2-d)(h+d-1)!}{(d-1)!(h+1)!} \\
& =\frac{(h+1)(h-d)(h-1+d)!+d(h+2-d)(h+d-1)!}{d!(h+1)!} \\
& =\frac{((h+1)(h-d)+d(h+2-d))(h-1+d)!}{d!(h+1)!}=\frac{(h+1-d)(h+d)(h-1+d)!}{d!(h+1)!} \\
& \frac{(h+1-d)(h+d)!}{d!(h+1)!},
\end{aligned}
$$

completing the proof by induction.
4) We will show a bijection f from the set of ordered complete binary trees (hereafter called binary trees or just trees) on n leaves to the set of ballot sequences of length $n-1$ on $\{H, D\}$ where, on every prefix, there are at least as many H 's as D 's. Suppose T is a binary tree. We first prove that T has exactly $2 n-1$ vertices. A binary tree must have an odd number of vertices, because there exists a bijection between left-children and the right-children of the same parent vertex, and this bijection leaves only the root un-paired. Therefore, it suffices to show that every binary tree on $2 n-1$ vertices has n leaves. We proceed by induction. Certainly a 1 -vertex tree has 1 leaf, so suppose that every $2 n-3$-vertex tree has n leaves and let R be a tree on $2 n-1$ vertices. There must be a vertex of R whose children are both leaves, so remove these two children to obtain R^{\prime}; a tree on $2 n-3$ vertices with on fewer leaf than R. By the induction hypothesis, R^{\prime} has $n-1$ leaves, so R has n leaves and the claim is proved.

Now, let $V(T)=\left\{v_{1}, \ldots v_{2 n-1}\right\}$ be the vertex set of T. Order the vertices by assigning each one a string of 0 s and 1 s by tracing a path from the root to that vertex - every time the path goes to a left child add a 0 to the end of the string and every time it goes to a right
child add a 1 to the end of the string. Then, order the vertices in lexicographical order by their corresponding strings. Define $f(T)$ by looking at the v_{i} 's in order (from v_{1} to $v_{2 n-2}$) and recording an H if v_{i} has children and a D if v_{i} does not have children. We claim that this gives a valid ballot sequence. By way of contradiction, suppose that at some point the prefix of the sequence contains more D 's than H 's; we can consider the first such point to ensure that there is exactly one more D than H, so choose k such that there are $k D$'s and $k-1 H$'s. Now, each D corresponds to a leaf, so there are k leaves and $2 k-1$ overall vertices, so this tree is already finished; there are no more vertices that have children whose children have not already been assigned. Therefore, $k=n$, and, since we don't look at $v_{2 n-1}$, we should not have added the last D to the ballot sequence.

Next it is time to define the inverse map g. Let B be a ballot sequence, and construct a tree as follows. Beginning with the root, mark it with the first letter of B, and then do the following for as long as possible: go to the next vertex marked with an H (where the vertices are ordered as in the previous paragraph), and give it two children marking the left one with the next unused letter of B and the right one with the letter of B following that. Since we start with one vertex, and each H adds two vertices which can marked, we will always have more vertices that can be marked than vertices which have been marked as long as the number of H 's exceeds the number of D 's. To complete the tree, we pretend that there is one final D at the end of the ballot sequence to mark the $(2 n-1)$ th vertex. For Maple implementations of f and g, refer to my txt file.

